llama.cpp/examples/llava/README.md

140 lines
5.2 KiB
Markdown
Raw Permalink Normal View History

# LLaVA
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants,
as well as llava-1.6 [llava-v1.6](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2) variants.
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
models are available.
For llava-1.6 a variety of prepared gguf models are available as well [7b-34b](https://huggingface.co/cmp-nct/llava-1.6-gguf)
After API is confirmed, more models will be supported / uploaded.
## Usage
`build`: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809) * `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew * server: update refs -> llama-server gitignore llama-server * server: simplify nix package * main: update refs -> llama fix examples/main ref * main/server: fix targets * update more names * Update build.yml * rm accidentally checked in bins * update straggling refs * Update .gitignore * Update server-llm.sh * main: target name -> llama-cli * Prefix all example bins w/ llama- * fix main refs * rename {main->llama}-cmake-pkg binary * prefix more cmake targets w/ llama- * add/fix gbnf-validator subfolder to cmake * sort cmake example subdirs * rm bin files * fix llama-lookup-* Makefile rules * gitignore /llama-* * rename Dockerfiles * rename llama|main -> llama-cli; consistent RPM bin prefixes * fix some missing -cli suffixes * rename dockerfile w/ llama-cli * rename(make): llama-baby-llama * update dockerfile refs * more llama-cli(.exe) * fix test-eval-callback * rename: llama-cli-cmake-pkg(.exe) * address gbnf-validator unused fread warning (switched to C++ / ifstream) * add two missing llama- prefixes * Updating docs for eval-callback binary to use new `llama-` prefix. * Updating a few lingering doc references for rename of main to llama-cli * Updating `run-with-preset.py` to use new binary names. Updating docs around `perplexity` binary rename. * Updating documentation references for lookup-merge and export-lora * Updating two small `main` references missed earlier in the finetune docs. * Update apps.nix * update grammar/README.md w/ new llama-* names * update llama-rpc-server bin name + doc * Revert "update llama-rpc-server bin name + doc" This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930. * add hot topic notice to README.md * Update README.md * Update README.md * rename gguf-split & quantize bins refs in **/tests.sh --------- Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-12 23:41:52 +00:00
Build with cmake or run `make llama-llava-cli` to build it.
`build`: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809) * `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew * server: update refs -> llama-server gitignore llama-server * server: simplify nix package * main: update refs -> llama fix examples/main ref * main/server: fix targets * update more names * Update build.yml * rm accidentally checked in bins * update straggling refs * Update .gitignore * Update server-llm.sh * main: target name -> llama-cli * Prefix all example bins w/ llama- * fix main refs * rename {main->llama}-cmake-pkg binary * prefix more cmake targets w/ llama- * add/fix gbnf-validator subfolder to cmake * sort cmake example subdirs * rm bin files * fix llama-lookup-* Makefile rules * gitignore /llama-* * rename Dockerfiles * rename llama|main -> llama-cli; consistent RPM bin prefixes * fix some missing -cli suffixes * rename dockerfile w/ llama-cli * rename(make): llama-baby-llama * update dockerfile refs * more llama-cli(.exe) * fix test-eval-callback * rename: llama-cli-cmake-pkg(.exe) * address gbnf-validator unused fread warning (switched to C++ / ifstream) * add two missing llama- prefixes * Updating docs for eval-callback binary to use new `llama-` prefix. * Updating a few lingering doc references for rename of main to llama-cli * Updating `run-with-preset.py` to use new binary names. Updating docs around `perplexity` binary rename. * Updating documentation references for lookup-merge and export-lora * Updating two small `main` references missed earlier in the finetune docs. * Update apps.nix * update grammar/README.md w/ new llama-* names * update llama-rpc-server bin name + doc * Revert "update llama-rpc-server bin name + doc" This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930. * add hot topic notice to README.md * Update README.md * Update README.md * rename gguf-split & quantize bins refs in **/tests.sh --------- Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-12 23:41:52 +00:00
After building, run: `./llama-llava-cli` to see the usage. For example:
```sh
`build`: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809) * `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew * server: update refs -> llama-server gitignore llama-server * server: simplify nix package * main: update refs -> llama fix examples/main ref * main/server: fix targets * update more names * Update build.yml * rm accidentally checked in bins * update straggling refs * Update .gitignore * Update server-llm.sh * main: target name -> llama-cli * Prefix all example bins w/ llama- * fix main refs * rename {main->llama}-cmake-pkg binary * prefix more cmake targets w/ llama- * add/fix gbnf-validator subfolder to cmake * sort cmake example subdirs * rm bin files * fix llama-lookup-* Makefile rules * gitignore /llama-* * rename Dockerfiles * rename llama|main -> llama-cli; consistent RPM bin prefixes * fix some missing -cli suffixes * rename dockerfile w/ llama-cli * rename(make): llama-baby-llama * update dockerfile refs * more llama-cli(.exe) * fix test-eval-callback * rename: llama-cli-cmake-pkg(.exe) * address gbnf-validator unused fread warning (switched to C++ / ifstream) * add two missing llama- prefixes * Updating docs for eval-callback binary to use new `llama-` prefix. * Updating a few lingering doc references for rename of main to llama-cli * Updating `run-with-preset.py` to use new binary names. Updating docs around `perplexity` binary rename. * Updating documentation references for lookup-merge and export-lora * Updating two small `main` references missed earlier in the finetune docs. * Update apps.nix * update grammar/README.md w/ new llama-* names * update llama-rpc-server bin name + doc * Revert "update llama-rpc-server bin name + doc" This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930. * add hot topic notice to README.md * Update README.md * Update README.md * rename gguf-split & quantize bins refs in **/tests.sh --------- Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-12 23:41:52 +00:00
./llama-llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
llava : support v1.6 (#5267) * Create llava-survery-v2.py * Update convert-image-encoder-to-gguf.py * Update convert-image-encoder-to-gguf.py * Rename llava-survery-v2.py to llava-surgery-v2.py * Update convert-image-encoder-to-gguf.py will now search for projector * Update convert-image-encoder-to-gguf.py whoops * Update llava-surgery-v2.py * Clip: Bugfix for normalization (it did not loat the 3 std and mean values) Clip: bicubic resize function Clip: added save-to-bmp/pil for debugging and conversion from/to 32/8 images Clip: added normalization with FP16 precision simulation (image tensors match HF implementation, can be switched off, only used for llava-1.6) Clip: added newline tensor, mergetype kv, image-grid kv, new resize-pad function with resolution from gridpoints Clip: clip_image_preprocess now returns a float * vector instead of float, this way llava 1.5 and 1.6 is supported llava: added ggml cpu graph for embedding patching, added spatial_unpad preliminary support, added a lot of comments that need to be cleaned when all is final convert-image-encoder: fixed image-grid flattening * whitespace corrections * ws * Tensors are now properly permuted. Before the embeddings were inserted 1:1, now they are split into the 24x24 patches as in reference. * ws * added verbose_prompt support into cli added stopwords for llava-1.6 into cli * moved llava functions to llava.cpp, made clip.h C compatible API, replaced vector style functions with pointers, added a debug define to remove functions from compilation while not needed * ws * convert : skip unknown tensors (need for LLaVA) * llava : update readme * llava : fix compile warnings * llava : style * convert : add --skip-unknown CLI arg * server : remove clip structs * bugfix for non llava-1.6 It should now work with llava-1.5 as well * clip : minor code rearrange * llava : update readme a bit --------- Co-authored-by: John <cmt-nct@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-14 07:38:35 +00:00
## LLaVA 1.5
2024-04-12 08:52:36 +00:00
1. Clone a LLaVA and a CLIP model ([available options](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)). For example:
```sh
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
```
2. Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
```
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
```
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
python ./examples/convert_legacy_llama.py ../llava-v1.5-7b --skip-unknown
```
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
## LLaVA 1.6 gguf conversion
1) First clone a LLaVA 1.6 model:
```console
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
```
2) Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
```
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
```console
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
```
- you will find a llava.projector and a llava.clip file in your model directory
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
```console
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
```
5) Create the visual gguf model:
```console
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
6) Then convert the model to gguf format:
```console
python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
```
`build`: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809) * `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew * server: update refs -> llama-server gitignore llama-server * server: simplify nix package * main: update refs -> llama fix examples/main ref * main/server: fix targets * update more names * Update build.yml * rm accidentally checked in bins * update straggling refs * Update .gitignore * Update server-llm.sh * main: target name -> llama-cli * Prefix all example bins w/ llama- * fix main refs * rename {main->llama}-cmake-pkg binary * prefix more cmake targets w/ llama- * add/fix gbnf-validator subfolder to cmake * sort cmake example subdirs * rm bin files * fix llama-lookup-* Makefile rules * gitignore /llama-* * rename Dockerfiles * rename llama|main -> llama-cli; consistent RPM bin prefixes * fix some missing -cli suffixes * rename dockerfile w/ llama-cli * rename(make): llama-baby-llama * update dockerfile refs * more llama-cli(.exe) * fix test-eval-callback * rename: llama-cli-cmake-pkg(.exe) * address gbnf-validator unused fread warning (switched to C++ / ifstream) * add two missing llama- prefixes * Updating docs for eval-callback binary to use new `llama-` prefix. * Updating a few lingering doc references for rename of main to llama-cli * Updating `run-with-preset.py` to use new binary names. Updating docs around `perplexity` binary rename. * Updating documentation references for lookup-merge and export-lora * Updating two small `main` references missed earlier in the finetune docs. * Update apps.nix * update grammar/README.md w/ new llama-* names * update llama-rpc-server bin name + doc * Revert "update llama-rpc-server bin name + doc" This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930. * add hot topic notice to README.md * Update README.md * Update README.md * rename gguf-split & quantize bins refs in **/tests.sh --------- Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-12 23:41:52 +00:00
7) And finally we can run the llava cli using the 1.6 model version:
```console
`build`: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809) * `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew * server: update refs -> llama-server gitignore llama-server * server: simplify nix package * main: update refs -> llama fix examples/main ref * main/server: fix targets * update more names * Update build.yml * rm accidentally checked in bins * update straggling refs * Update .gitignore * Update server-llm.sh * main: target name -> llama-cli * Prefix all example bins w/ llama- * fix main refs * rename {main->llama}-cmake-pkg binary * prefix more cmake targets w/ llama- * add/fix gbnf-validator subfolder to cmake * sort cmake example subdirs * rm bin files * fix llama-lookup-* Makefile rules * gitignore /llama-* * rename Dockerfiles * rename llama|main -> llama-cli; consistent RPM bin prefixes * fix some missing -cli suffixes * rename dockerfile w/ llama-cli * rename(make): llama-baby-llama * update dockerfile refs * more llama-cli(.exe) * fix test-eval-callback * rename: llama-cli-cmake-pkg(.exe) * address gbnf-validator unused fread warning (switched to C++ / ifstream) * add two missing llama- prefixes * Updating docs for eval-callback binary to use new `llama-` prefix. * Updating a few lingering doc references for rename of main to llama-cli * Updating `run-with-preset.py` to use new binary names. Updating docs around `perplexity` binary rename. * Updating documentation references for lookup-merge and export-lora * Updating two small `main` references missed earlier in the finetune docs. * Update apps.nix * update grammar/README.md w/ new llama-* names * update llama-rpc-server bin name + doc * Revert "update llama-rpc-server bin name + doc" This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930. * add hot topic notice to README.md * Update README.md * Update README.md * rename gguf-split & quantize bins refs in **/tests.sh --------- Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-12 23:41:52 +00:00
./llama-llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
```
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
## llava-cli templating and llava-1.6 prompting
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`
For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:
**For Mistral and using llava-cli binary:**
Add this: `-p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n"`
The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role
**For the 34B this should work:**
Add this: `-e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n`
## How to know if you are running in llava-1.5 or llava-1.6 mode
When running llava-cli you will see a visual information right before the prompt is being processed:
**Llava-1.5:**
`encode_image_with_clip: image embedding created: 576 tokens`
**Llava-1.6 (anything above 576):**
`encode_image_with_clip: image embedding created: 2880 tokens`
Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6
llava : support v1.6 (#5267) * Create llava-survery-v2.py * Update convert-image-encoder-to-gguf.py * Update convert-image-encoder-to-gguf.py * Rename llava-survery-v2.py to llava-surgery-v2.py * Update convert-image-encoder-to-gguf.py will now search for projector * Update convert-image-encoder-to-gguf.py whoops * Update llava-surgery-v2.py * Clip: Bugfix for normalization (it did not loat the 3 std and mean values) Clip: bicubic resize function Clip: added save-to-bmp/pil for debugging and conversion from/to 32/8 images Clip: added normalization with FP16 precision simulation (image tensors match HF implementation, can be switched off, only used for llava-1.6) Clip: added newline tensor, mergetype kv, image-grid kv, new resize-pad function with resolution from gridpoints Clip: clip_image_preprocess now returns a float * vector instead of float, this way llava 1.5 and 1.6 is supported llava: added ggml cpu graph for embedding patching, added spatial_unpad preliminary support, added a lot of comments that need to be cleaned when all is final convert-image-encoder: fixed image-grid flattening * whitespace corrections * ws * Tensors are now properly permuted. Before the embeddings were inserted 1:1, now they are split into the 24x24 patches as in reference. * ws * added verbose_prompt support into cli added stopwords for llava-1.6 into cli * moved llava functions to llava.cpp, made clip.h C compatible API, replaced vector style functions with pointers, added a debug define to remove functions from compilation while not needed * ws * convert : skip unknown tensors (need for LLaVA) * llava : update readme * llava : fix compile warnings * llava : style * convert : add --skip-unknown CLI arg * server : remove clip structs * bugfix for non llava-1.6 It should now work with llava-1.5 as well * clip : minor code rearrange * llava : update readme a bit --------- Co-authored-by: John <cmt-nct@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-14 07:38:35 +00:00
## TODO
llava : support v1.6 (#5267) * Create llava-survery-v2.py * Update convert-image-encoder-to-gguf.py * Update convert-image-encoder-to-gguf.py * Rename llava-survery-v2.py to llava-surgery-v2.py * Update convert-image-encoder-to-gguf.py will now search for projector * Update convert-image-encoder-to-gguf.py whoops * Update llava-surgery-v2.py * Clip: Bugfix for normalization (it did not loat the 3 std and mean values) Clip: bicubic resize function Clip: added save-to-bmp/pil for debugging and conversion from/to 32/8 images Clip: added normalization with FP16 precision simulation (image tensors match HF implementation, can be switched off, only used for llava-1.6) Clip: added newline tensor, mergetype kv, image-grid kv, new resize-pad function with resolution from gridpoints Clip: clip_image_preprocess now returns a float * vector instead of float, this way llava 1.5 and 1.6 is supported llava: added ggml cpu graph for embedding patching, added spatial_unpad preliminary support, added a lot of comments that need to be cleaned when all is final convert-image-encoder: fixed image-grid flattening * whitespace corrections * ws * Tensors are now properly permuted. Before the embeddings were inserted 1:1, now they are split into the 24x24 patches as in reference. * ws * added verbose_prompt support into cli added stopwords for llava-1.6 into cli * moved llava functions to llava.cpp, made clip.h C compatible API, replaced vector style functions with pointers, added a debug define to remove functions from compilation while not needed * ws * convert : skip unknown tensors (need for LLaVA) * llava : update readme * llava : fix compile warnings * llava : style * convert : add --skip-unknown CLI arg * server : remove clip structs * bugfix for non llava-1.6 It should now work with llava-1.5 as well * clip : minor code rearrange * llava : update readme a bit --------- Co-authored-by: John <cmt-nct@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-14 07:38:35 +00:00
- [x] Support non-CPU backend for the image encoding part.
- [ ] Support different sampling methods.
- [ ] Support more model variants.