llama.cpp/examples/gguf/gguf-llama-simple.cpp

127 lines
3.5 KiB
C++
Raw Normal View History

#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "common.h"
#include "gguf-llama.h"
#include "build-info.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
2023-08-14 09:56:48 +00:00
int main(int argc, char ** argv) {
gpt_params params;
2023-08-14 09:56:48 +00:00
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
return 1 ;
}
2023-08-14 09:56:48 +00:00
if (argc >= 2) {
params.model = argv[1];
}
2023-08-14 09:56:48 +00:00
if (argc >= 3) {
params.prompt = argv[2];
}
2023-08-14 09:56:48 +00:00
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
2023-08-14 09:56:48 +00:00
// init LLM
llama_backend_init(params.numa);
llama_context_params ctx_params = llama_context_default_params();
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
2023-08-14 09:56:48 +00:00
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
2023-08-14 09:56:48 +00:00
// tokenize the prompt
std::vector<llama_token> tokens_list;
2023-08-14 09:56:48 +00:00
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
2023-08-14 09:56:48 +00:00
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
2023-08-14 09:56:48 +00:00
if ((int)tokens_list.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
return 1;
}
2023-08-14 09:56:48 +00:00
fprintf(stderr, "\n\n");
2023-08-14 09:56:48 +00:00
for (auto id : tokens_list) {
fprintf(stderr, "%s", llama_token_to_str(ctx, id));
}
2023-08-14 09:56:48 +00:00
fflush(stderr);
2023-08-14 09:56:48 +00:00
// main loop
// The LLM keeps a contextual cache memory of previous token evaluation.
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
2023-08-14 09:56:48 +00:00
while (llama_get_kv_cache_token_count(ctx) < max_context_size) {
// evaluate the transformer
2023-08-14 09:56:48 +00:00
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
tokens_list.clear();
2023-08-14 09:56:48 +00:00
// sample the next token
llama_token new_token_id = 0;
2023-08-14 09:56:48 +00:00
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
std::vector<llama_token_data> candidates;
2023-08-14 09:56:48 +00:00
candidates.reserve(n_vocab);
2023-08-14 09:56:48 +00:00
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
2023-08-14 09:56:48 +00:00
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
// is it an end of stream ?
2023-08-14 09:56:48 +00:00
if (new_token_id == llama_token_eos()) {
fprintf(stderr, " [end of text]\n");
break;
}
2023-08-14 09:56:48 +00:00
// print the new token :
printf("%s", llama_token_to_str(ctx, new_token_id));
fflush(stdout);
2023-08-14 09:56:48 +00:00
// push this new token for next evaluation
tokens_list.push_back(new_token_id);
2023-08-14 09:56:48 +00:00
}
2023-08-14 09:56:48 +00:00
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}