mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 07:44:35 +00:00
199 lines
7.7 KiB
C++
199 lines
7.7 KiB
C++
|
/*
|
||
|
* Copyright (c) 2023-2024 The ggml authors
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to
|
||
|
* deal in the Software without restriction, including without limitation the
|
||
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||
|
* sell copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in
|
||
|
* all copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
|
* IN THE SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include "acl_tensor.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cstring>
|
||
|
|
||
|
aclDataType ggml_cann_type_mapping(ggml_type type) {
|
||
|
switch (type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
return ACL_FLOAT;
|
||
|
case GGML_TYPE_F16:
|
||
|
return ACL_FLOAT16;
|
||
|
case GGML_TYPE_I8:
|
||
|
return ACL_INT8;
|
||
|
case GGML_TYPE_I16:
|
||
|
return ACL_INT16;
|
||
|
case GGML_TYPE_I32:
|
||
|
return ACL_INT32;
|
||
|
default:
|
||
|
return ACL_DT_UNDEFINED;
|
||
|
}
|
||
|
return ACL_DT_UNDEFINED;
|
||
|
}
|
||
|
|
||
|
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||
|
size_t* nb, int64_t dims, aclFormat format,
|
||
|
size_t offset) {
|
||
|
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
|
||
|
// added.
|
||
|
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
|
||
|
|
||
|
int64_t acl_storage_len = 0;
|
||
|
if (ne == nullptr) {
|
||
|
acl_storage_len = ggml_nbytes(tensor);
|
||
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||
|
acl_ne[i] = tensor->ne[i];
|
||
|
// The step size of acl is in elements.
|
||
|
acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
|
||
|
}
|
||
|
} else {
|
||
|
// With bcast
|
||
|
for (int i = 0; i < dims; i++) {
|
||
|
acl_storage_len += (ne[i] - 1) * nb[i];
|
||
|
acl_ne[i] = ne[i];
|
||
|
acl_stride[i] = nb[i] / ggml_element_size(tensor);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Reverse ne and stride.
|
||
|
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
|
||
|
std::reverse(acl_ne, acl_ne + final_dims);
|
||
|
std::reverse(acl_stride, acl_stride + final_dims);
|
||
|
|
||
|
aclTensor* acl_tensor = aclCreateTensor(
|
||
|
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
|
||
|
offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
|
||
|
tensor->data);
|
||
|
|
||
|
return acl_tensor;
|
||
|
}
|
||
|
|
||
|
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
|
||
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||
|
if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||
|
size_t type_size, int64_t* ne, size_t* nb,
|
||
|
int64_t dims, aclFormat format,
|
||
|
size_t offset) {
|
||
|
int64_t tmp_ne[GGML_MAX_DIMS * 2];
|
||
|
int64_t tmp_stride[GGML_MAX_DIMS * 2];
|
||
|
|
||
|
memcpy(tmp_ne, ne, dims * sizeof(int64_t));
|
||
|
for (int i = 0; i < dims; i++) {
|
||
|
tmp_stride[i] = nb[i] / type_size;
|
||
|
}
|
||
|
|
||
|
std::reverse(tmp_ne, tmp_ne + dims);
|
||
|
std::reverse(tmp_stride, tmp_stride + dims);
|
||
|
|
||
|
int64_t acl_storage_len = 0;
|
||
|
for (int i = 0; i < dims; i++) {
|
||
|
acl_storage_len += (ne[i] - 1) * nb[i];
|
||
|
}
|
||
|
|
||
|
aclTensor* acl_tensor =
|
||
|
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
|
||
|
format, &acl_storage_len, 1, data_ptr);
|
||
|
|
||
|
return acl_tensor;
|
||
|
}
|
||
|
|
||
|
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
|
||
|
const ggml_tensor* src1,
|
||
|
int64_t* bcast_src0_ne,
|
||
|
int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
|
||
|
size_t* bcast_src1_nb) {
|
||
|
GGML_ASSERT(ggml_can_repeat(src1, src0));
|
||
|
int bcast_dim_cnt = 0;
|
||
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||
|
int64_t nr = src0->ne[i] / src1->ne[i];
|
||
|
bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
|
||
|
bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
|
||
|
bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
|
||
|
bcast_src1_nb[bcast_dim_cnt] = src1->nb[i];
|
||
|
bcast_dim_cnt++;
|
||
|
if (nr != 1) {
|
||
|
// Need to add an extra dim.
|
||
|
bcast_src0_ne[bcast_dim_cnt] = nr;
|
||
|
bcast_src1_ne[bcast_dim_cnt] = 1;
|
||
|
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
|
||
|
bcast_src0_ne[bcast_dim_cnt - 1];
|
||
|
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
|
||
|
bcast_src1_ne[bcast_dim_cnt - 1];
|
||
|
bcast_dim_cnt++;
|
||
|
}
|
||
|
}
|
||
|
return bcast_dim_cnt;
|
||
|
}
|
||
|
|
||
|
int64_t ggml_cann_get_mulmat_bcast_shape(
|
||
|
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
|
||
|
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
|
||
|
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
|
||
|
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
|
||
|
// input and dst shoule in same shape, except first two dims.
|
||
|
GGML_ASSERT(input_ne[2] == dst_ne[2]);
|
||
|
GGML_ASSERT(input_ne[3] == dst_ne[3]);
|
||
|
|
||
|
int bcast_dim_cnt = 0;
|
||
|
|
||
|
// For mul_mat, a dimension needs to be added before the dimension that
|
||
|
// weight needs to be expanded to satisfy the bcast rule of matrix
|
||
|
// multiplication.
|
||
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||
|
int64_t nr = input_ne[i] / weight_ne[i];
|
||
|
// Do not use bcast in the first two dimensions because we only support
|
||
|
// the bcast batch dimension. Just copy them.
|
||
|
if (i < 2 || nr == 1) {
|
||
|
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
|
||
|
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
||
|
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
|
||
|
|
||
|
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||
|
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
||
|
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||
|
bcast_dim_cnt++;
|
||
|
} else {
|
||
|
// Need to add an extra dim.
|
||
|
bcast_input_ne[bcast_dim_cnt] = nr;
|
||
|
bcast_dst_ne[bcast_dim_cnt] = nr;
|
||
|
bcast_weight_ne[bcast_dim_cnt] = 1;
|
||
|
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||
|
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||
|
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
||
|
bcast_dim_cnt++;
|
||
|
|
||
|
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
|
||
|
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
|
||
|
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
||
|
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
|
||
|
bcast_input_ne[bcast_dim_cnt - 1];
|
||
|
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
|
||
|
bcast_dst_ne[bcast_dim_cnt - 1];
|
||
|
bcast_weight_nb[bcast_dim_cnt] =
|
||
|
bcast_weight_nb[bcast_dim_cnt - 1] *
|
||
|
bcast_weight_ne[bcast_dim_cnt - 1];
|
||
|
bcast_dim_cnt++;
|
||
|
}
|
||
|
}
|
||
|
return bcast_dim_cnt;
|
||
|
}
|