mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 21:39:52 +00:00
189 lines
5.8 KiB
C++
189 lines
5.8 KiB
C++
|
#ifndef _GNU_SOURCE
|
||
|
#define _GNU_SOURCE
|
||
|
#endif
|
||
|
|
||
|
#include "common.h"
|
||
|
#include "llama.h"
|
||
|
#include "build-info.h"
|
||
|
|
||
|
#include <cassert>
|
||
|
#include <cinttypes>
|
||
|
#include <cmath>
|
||
|
#include <cstdio>
|
||
|
#include <cstring>
|
||
|
#include <ctime>
|
||
|
#include <fstream>
|
||
|
#include <iostream>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||
|
#include <signal.h>
|
||
|
#include <unistd.h>
|
||
|
#elif defined (_WIN32)
|
||
|
#define WIN32_LEAN_AND_MEAN
|
||
|
#define NOMINMAX
|
||
|
#include <windows.h>
|
||
|
#include <signal.h>
|
||
|
#endif
|
||
|
|
||
|
// Used for debugging to print out beam tokens.
|
||
|
struct ostream_beam_view {
|
||
|
llama_context * ctx;
|
||
|
llama_beam_view beam_view;
|
||
|
};
|
||
|
std::ostream& operator<<(std::ostream& os, const ostream_beam_view & obv) {
|
||
|
os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens(";
|
||
|
for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
|
||
|
os << llama_token_to_str(obv.ctx, obv.beam_view.tokens[i]);
|
||
|
}
|
||
|
return os << ')';
|
||
|
}
|
||
|
|
||
|
// Put here anything you want back in beam_search_callback().
|
||
|
struct beam_search_callback_data {
|
||
|
llama_context * ctx;
|
||
|
std::vector<llama_token> response;
|
||
|
};
|
||
|
|
||
|
// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
|
||
|
// For example, eob can be flagged due to maximum token length, stop words, etc.
|
||
|
bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, const size_t n_tokens) {
|
||
|
return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx);
|
||
|
}
|
||
|
|
||
|
// Function matching type llama_beam_search_callback_fn_t.
|
||
|
// Custom callback example is called each time the beams lengths increase:
|
||
|
// * Show progress by printing ',' following by number of convergent beam tokens if any.
|
||
|
// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
|
||
|
// This is also called when the stop condition is met.
|
||
|
// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
|
||
|
void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) {
|
||
|
auto& callback_data = *static_cast<beam_search_callback_data*>(callback_data_ptr);
|
||
|
// Mark beams as EOS as needed.
|
||
|
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
|
||
|
llama_beam_view& beam_view = beams_state.beam_views[i];
|
||
|
if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) {
|
||
|
beam_view.eob = true;
|
||
|
}
|
||
|
}
|
||
|
printf(","); // Show progress
|
||
|
if (const size_t n = beams_state.common_prefix_length) {
|
||
|
callback_data.response.resize(callback_data.response.size() + n);
|
||
|
assert(0u < beams_state.n_beams);
|
||
|
const llama_token * tokens = beams_state.beam_views[0].tokens;
|
||
|
std::copy(tokens, tokens + n, callback_data.response.end() - n);
|
||
|
printf("%lu", n);
|
||
|
}
|
||
|
fflush(stdout);
|
||
|
#if 1 // DEBUG: print current beams for this iteration
|
||
|
std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n";
|
||
|
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
|
||
|
std::cout << "beams["<<i<<"]: " << ostream_beam_view{callback_data.ctx,beams_state.beam_views[i]} << std::endl;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
int main(int argc, char ** argv)
|
||
|
{
|
||
|
gpt_params params;
|
||
|
//params.n_gpu_layers = 200;
|
||
|
|
||
|
//---------------------------------
|
||
|
// Print help :
|
||
|
//---------------------------------
|
||
|
|
||
|
if ( argc < 2 || argv[1][0] == '-' )
|
||
|
{
|
||
|
printf( "Usage: %s MODEL_PATH [BEAM_WIDTH=2] [PROMPT]\n" , argv[0] );
|
||
|
return 1 ;
|
||
|
}
|
||
|
|
||
|
//---------------------------------
|
||
|
// Load parameters :
|
||
|
//---------------------------------
|
||
|
|
||
|
params.model = argv[1];
|
||
|
|
||
|
params.n_beams = 2 < argc ? std::stoi(argv[2]) : 2;
|
||
|
|
||
|
if ( argc > 3 )
|
||
|
{
|
||
|
params.prompt = argv[3];
|
||
|
}
|
||
|
|
||
|
if ( params.prompt.empty() )
|
||
|
{
|
||
|
params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n";
|
||
|
}
|
||
|
|
||
|
//---------------------------------
|
||
|
// Init LLM :
|
||
|
//---------------------------------
|
||
|
|
||
|
llama_backend_init(params.numa);
|
||
|
|
||
|
llama_model * model;
|
||
|
llama_context * ctx;
|
||
|
|
||
|
std::tie(model, ctx) = llama_init_from_gpt_params( params );
|
||
|
|
||
|
if ( model == NULL )
|
||
|
{
|
||
|
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
//---------------------------------
|
||
|
// Tokenize the prompt :
|
||
|
//---------------------------------
|
||
|
|
||
|
std::vector<llama_token> tokens_list = llama_tokenize(ctx, params.prompt, true);
|
||
|
|
||
|
const size_t max_context_size = llama_n_ctx( ctx );
|
||
|
const size_t max_tokens_list_size = max_context_size - 4 ;
|
||
|
|
||
|
if (tokens_list.size() > max_tokens_list_size)
|
||
|
{
|
||
|
fprintf( stderr , "%s: error: prompt too long (%lu tokens, max %lu)\n" ,
|
||
|
__func__ , tokens_list.size() , max_tokens_list_size );
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
fprintf( stderr, "\n\n" );
|
||
|
|
||
|
// Print the tokens from the prompt :
|
||
|
|
||
|
for( auto id : tokens_list )
|
||
|
{
|
||
|
std::cout << llama_token_to_str(ctx, id);
|
||
|
}
|
||
|
std::cout << std::flush;
|
||
|
|
||
|
int n_past = llama_get_kv_cache_token_count(ctx);
|
||
|
if (llama_eval(ctx, tokens_list.data(), tokens_list.size(), n_past, params.n_threads))
|
||
|
{
|
||
|
fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
|
||
|
return 1;
|
||
|
}
|
||
|
n_past += tokens_list.size();
|
||
|
|
||
|
beam_search_callback_data callback_data{ctx, {}};
|
||
|
size_t const beam_width = static_cast<size_t>(params.n_beams);
|
||
|
int const n_predict = 256;
|
||
|
llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict, params.n_threads);
|
||
|
|
||
|
std::cout << "\n\n";
|
||
|
for (llama_token const token_id : callback_data.response) {
|
||
|
std::cout << llama_token_to_str(ctx,token_id);
|
||
|
}
|
||
|
std::cout << std::endl;
|
||
|
|
||
|
llama_free( ctx );
|
||
|
llama_free_model( model );
|
||
|
|
||
|
llama_backend_free();
|
||
|
|
||
|
return 0;
|
||
|
}
|