llama.cpp/common/sampling.h

100 lines
3.3 KiB
C
Raw Normal View History

#pragma once
#include "llama.h"
2023-10-15 19:30:59 +00:00
#include "grammar-parser.h"
#include <string>
#include <vector>
#include <unordered_map>
// sampling parameters
typedef struct llama_sampling_params {
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled
float repeat_penalty = 1.10f; // 1.0 = disabled
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float frequency_penalty = 0.00f; // 0.0 = disabled
float presence_penalty = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = true; // consider newlines as a repeatable token
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
// Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806
std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // How strong is guidance
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
} llama_sampling_params;
// general sampler context
2023-10-15 19:30:59 +00:00
// TODO: move to llama.h
struct llama_sampling_context {
// parameters that will be used for sampling
llama_sampling_params params;
// mirostat sampler state
float mirostat_mu;
llama_grammar * grammar;
2023-10-15 19:30:59 +00:00
// internal
grammar_parser::parse_state parsed_grammar;
// TODO: replace with ring-buffer
2023-10-15 19:30:59 +00:00
std::vector<llama_token> prev;
std::vector<llama_token_data> cur;
};
#include "common.h"
// Create a new sampling context instance.
2023-10-15 19:30:59 +00:00
struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params);
2023-10-15 19:30:59 +00:00
void llama_sampling_free(struct llama_sampling_context * ctx);
// Reset the sampler context
// - clear prev tokens
// - reset grammar
void llama_sampling_reset(llama_sampling_context * ctx);
// Copy the sampler context
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
// Note: When using multiple sequences, it is the caller's responsibility to call
2023-10-15 19:30:59 +00:00
// llama_sampling_reset when a sequence ends
//
// required:
2023-10-15 19:30:59 +00:00
// - ctx_main: context to use for sampling
// - ctx_sampling: sampling-specific context
//
// optional:
2023-10-15 19:30:59 +00:00
// - ctx_guidance: context to use for guidance
// - idx: sample from llama_get_logits_ith(ctx, idx)
//
// returns:
// - token: sampled token
// - candidates: vector of candidate tokens
//
llama_token llama_sampling_sample(
2023-10-15 19:30:59 +00:00
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_guidance,
int idx = 0);
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id);