mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-15 15:29:53 +00:00
251 lines
11 KiB
C++
251 lines
11 KiB
C++
|
#include "norm.hpp"
|
||
|
|
||
|
template <bool vals_smem, int ncols_template, int block_size_template>
|
||
|
static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
|
||
|
const int nrows_y, const float scale, const float max_bias, const float m0,
|
||
|
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
|
||
|
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
||
|
|
||
|
const int tid = item_ct1.get_local_id(2);
|
||
|
const int rowx = item_ct1.get_group(2);
|
||
|
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
|
||
|
|
||
|
const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
|
||
|
|
||
|
const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||
|
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||
|
const int nthreads = block_size;
|
||
|
const int nwarps = nthreads / WARP_SIZE;
|
||
|
int nreduce = nwarps / WARP_SIZE;
|
||
|
float slope = 1.0f;
|
||
|
|
||
|
// ALiBi
|
||
|
if (max_bias > 0.0f) {
|
||
|
const uint32_t h = rowx/nrows_y; // head index
|
||
|
|
||
|
const float base = h < n_head_log2 ? m0 : m1;
|
||
|
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||
|
|
||
|
slope = sycl::pow(base, float(exp));
|
||
|
}
|
||
|
|
||
|
float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols;
|
||
|
float max_val = -INFINITY;
|
||
|
|
||
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||
|
const int col = col0 + tid;
|
||
|
|
||
|
if (ncols_template == 0 && col >= ncols) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
const int ix = rowx*ncols + col;
|
||
|
const int iy = rowy*ncols + col;
|
||
|
|
||
|
const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
|
||
|
|
||
|
vals[col] = val;
|
||
|
max_val = sycl::max(max_val, val);
|
||
|
}
|
||
|
|
||
|
// find the max value in the block
|
||
|
max_val = warp_reduce_max(max_val, item_ct1);
|
||
|
if (block_size > WARP_SIZE) {
|
||
|
if (warp_id == 0) {
|
||
|
buf[lane_id] = -INFINITY;
|
||
|
for (size_t i = 1; i < nreduce; i += 1)
|
||
|
buf[lane_id + i * WARP_SIZE] = -INFINITY;
|
||
|
}
|
||
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
|
||
|
if (lane_id == 0) {
|
||
|
buf[warp_id] = max_val;
|
||
|
}
|
||
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
max_val = buf[lane_id];
|
||
|
for (size_t i = 1; i < nreduce; i += 1)
|
||
|
{
|
||
|
max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]);
|
||
|
}
|
||
|
max_val = warp_reduce_max(max_val, item_ct1);
|
||
|
}
|
||
|
|
||
|
float tmp = 0.f;
|
||
|
#pragma unroll
|
||
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||
|
const int col = col0 + tid;
|
||
|
if (ncols_template == 0 && col >= ncols) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
const float val = sycl::native::exp(vals[col] - max_val);
|
||
|
tmp += val;
|
||
|
vals[col] = val;
|
||
|
}
|
||
|
|
||
|
// find the sum of exps in the block
|
||
|
tmp = warp_reduce_sum(tmp, item_ct1);
|
||
|
if (block_size > WARP_SIZE) {
|
||
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
if (warp_id == 0) {
|
||
|
buf[lane_id] = 0.f;
|
||
|
for (size_t i = 1; i < nreduce; i += 1)
|
||
|
buf[lane_id + i * WARP_SIZE] = 0.f;
|
||
|
}
|
||
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
|
||
|
if (lane_id == 0) {
|
||
|
buf[warp_id] = tmp;
|
||
|
}
|
||
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
|
||
|
tmp = buf[lane_id];
|
||
|
for (size_t i = 1; i < nreduce; i += 1)
|
||
|
{
|
||
|
tmp += buf[lane_id + i * WARP_SIZE];
|
||
|
}
|
||
|
tmp = warp_reduce_sum(tmp, item_ct1);
|
||
|
}
|
||
|
|
||
|
const float inv_sum = 1.f / tmp;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||
|
const int col = col0 + tid;
|
||
|
|
||
|
if (ncols_template == 0 && col >= ncols) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const int idst = rowx*ncols + col;
|
||
|
dst[idst] = vals[col] * inv_sum;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <bool vals_smem, int ncols_template, int block_size_template>
|
||
|
static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
|
||
|
const int nrows_y, const float scale, const float max_bias, const float m0,
|
||
|
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
|
||
|
const size_t n_local_scratch, queue_ptr stream) {
|
||
|
stream->submit([&](sycl::handler &cgh) {
|
||
|
sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
|
||
|
|
||
|
cgh.parallel_for(
|
||
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||
|
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
|
||
|
nrows_y, scale, max_bias, m0,
|
||
|
m1, n_head_log2, item_ct1,
|
||
|
local_buf_acc.get_pointer());
|
||
|
});
|
||
|
});
|
||
|
}
|
||
|
|
||
|
static void soft_max_f32_sycl(const float * x, const float * mask,
|
||
|
float * dst, const int ncols_x, const int nrows_x,
|
||
|
const int nrows_y, const float scale, const float max_bias,
|
||
|
queue_ptr stream, int device) {
|
||
|
int nth = WARP_SIZE;
|
||
|
int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
|
||
|
while (nth < ncols_x && nth < max_block_size) nth *= 2;
|
||
|
if (nth>max_block_size) nth = max_block_size;
|
||
|
|
||
|
const sycl::range<3> block_dims(1, 1, nth);
|
||
|
const sycl::range<3> block_nums(1, 1, nrows_x);
|
||
|
const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
|
||
|
|
||
|
const uint32_t n_head_kv = nrows_x/nrows_y;
|
||
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
||
|
|
||
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||
|
|
||
|
const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
|
||
|
if (n_local_scratch*sizeof(float) < local_mem_size) {
|
||
|
if (ncols_x > max_block_size) {
|
||
|
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, n_local_scratch, stream);
|
||
|
return;
|
||
|
}
|
||
|
switch (ncols_x) {
|
||
|
case 32:
|
||
|
soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, n_local_scratch, stream);
|
||
|
break;
|
||
|
case 64:
|
||
|
soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, n_local_scratch, stream);
|
||
|
break;
|
||
|
case 128:
|
||
|
soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, n_local_scratch, stream);
|
||
|
break;
|
||
|
case 256:
|
||
|
soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, n_local_scratch, stream);
|
||
|
break;
|
||
|
case 512:
|
||
|
soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, n_local_scratch, stream);
|
||
|
break;
|
||
|
case 1024:
|
||
|
soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, n_local_scratch, stream);
|
||
|
break;
|
||
|
case 2048:
|
||
|
soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, n_local_scratch, stream);
|
||
|
break;
|
||
|
case 4096:
|
||
|
soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, n_local_scratch, stream);
|
||
|
break;
|
||
|
default:
|
||
|
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, n_local_scratch, stream);
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
|
max_bias, m0, m1, n_head_log2, block_nums,
|
||
|
block_dims, WARP_SIZE, stream);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
|
const ggml_tensor *src1, ggml_tensor *dst,
|
||
|
const float *src0_dd, const float *src1_dd,
|
||
|
float *dst_dd,
|
||
|
const queue_ptr &main_stream) {
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
|
||
|
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
|
||
|
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
||
|
|
||
|
const int64_t ne00 = src0->ne[0];
|
||
|
const int64_t nrows_x = ggml_nrows(src0);
|
||
|
const int64_t nrows_y = src0->ne[1];
|
||
|
|
||
|
float scale = 1.0f;
|
||
|
float max_bias = 0.0f;
|
||
|
|
||
|
memcpy(&scale, dst->op_params + 0, sizeof(float));
|
||
|
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
|
||
|
|
||
|
soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
|
||
|
nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
|
||
|
}
|