llama.cpp/examples/llava/llava.cpp

157 lines
5.1 KiB
C++
Raw Normal View History

#include "clip.h"
#include "llava-utils.h"
#include "common.h"
#include "llama.h"
#include <cstdio>
#include <cstdlib>
#include <vector>
static void show_additional_info(int /*argc*/, char ** argv) {
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
int main(int argc, char ** argv) {
ggml_time_init();
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
show_additional_info(argc, argv);
return 1;
}
if (params.mmproj.empty() || params.image.empty()) {
gpt_print_usage(argc, argv, params);
show_additional_info(argc, argv);
return 1;
}
const char * clip_path = params.mmproj.c_str();
const char * img_path = params.image.c_str();
if (params.prompt.empty()) {
params.prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
// load and preprocess the image
clip_image_u8 img;
clip_image_f32 img_res;
if (!clip_image_load_from_file(img_path, &img)) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, img_path);
clip_free(ctx_clip);
return 1;
}
if (!clip_image_preprocess(ctx_clip, &img, &img_res, /*pad2square =*/ true)) {
fprintf(stderr, "%s: unable to preprocess %s\n", __func__, img_path);
clip_free(ctx_clip);
return 1;
}
int n_img_pos = clip_n_patches(ctx_clip);
int n_img_embd = clip_n_mmproj_embd(ctx_clip);
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip));
if (!image_embd) {
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
return 1;
}
const int64_t t_img_enc_start_us = ggml_time_us();
if (!clip_image_encode(ctx_clip, params.n_threads, &img_res, image_embd)) {
fprintf(stderr, "Unable to encode image\n");
return 1;
}
const int64_t t_img_enc_end_us = ggml_time_us();
// we get the embeddings, free up the memory required for CLIP
clip_free(ctx_clip);
llama_backend_init(params.numa);
llama_model_params model_params = llama_model_default_params();
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = params.n_ctx < 2048 ? 2048 : params.n_ctx; // we need a longer context size to process image embeddings
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
if (ctx_llama == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// make sure that the correct mmproj was used, i.e., compare apples to apples
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
if (n_img_embd != n_llama_embd) {
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_img_embd, n_llama_embd);
llama_free(ctx_llama);
llama_free_model(model);
llama_backend_free();
free(image_embd);
return 1;
}
// process the prompt
// llava chat format is "<system_prompt>USER: <image_embeddings>\n<textual_prompt>\nASSISTANT:"
int n_past = 0;
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
// GG: are we sure that the should be a trailing whitespace at the end of this string?
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER: ", params.n_batch, &n_past);
eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
eval_string(ctx_llama, params.prompt.c_str(), params.n_batch, &n_past);
eval_string(ctx_llama, "\nASSISTANT:", params.n_batch, &n_past);
// generate the response
printf("\n");
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_llama, params, &n_past);
if (strcmp(tmp, "</s>") == 0) break;
printf("%s", tmp);
fflush(stdout);
}
printf("\n");
{
const float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / n_img_pos);
}
llama_print_timings(ctx_llama);
llama_free(ctx_llama);
llama_free_model(model);
llama_backend_free();
free(image_embd);
return 0;
}