2023-07-30 13:05:37 +00:00
|
|
|
# Quick and dirty HF gptneox--> gguf conversion
|
|
|
|
|
|
|
|
import gguf
|
|
|
|
import sys
|
|
|
|
import struct
|
|
|
|
import json
|
|
|
|
import numpy as np
|
|
|
|
from typing import Any, List
|
|
|
|
from pathlib import Path
|
|
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
if len(sys.argv) < 3:
|
|
|
|
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
|
|
|
print(" ftype == 0 -> float32")
|
|
|
|
print(" ftype == 1 -> float16")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
# output in the same directory as the model
|
|
|
|
dir_model = sys.argv[1]
|
|
|
|
fname_out = sys.argv[1] + "/ggml-model.bin"
|
|
|
|
|
|
|
|
|
|
|
|
# possible tensor data types
|
|
|
|
# ftype == 0 -> float32
|
|
|
|
# ftype == 1 -> float16
|
|
|
|
#
|
|
|
|
# map from ftype to string
|
|
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
|
|
|
|
ftype = 1
|
|
|
|
if len(sys.argv) > 2:
|
|
|
|
ftype = int(sys.argv[2])
|
|
|
|
if ftype < 0 or ftype > 1:
|
|
|
|
print("Invalid ftype: " + str(ftype))
|
|
|
|
sys.exit(1)
|
|
|
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
|
|
|
|
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
|
|
|
list_vars = model.state_dict()
|
|
|
|
|
|
|
|
# count tensors to be converted
|
|
|
|
tensor_count = 0
|
|
|
|
for name in list_vars.keys():
|
|
|
|
# we don't need these
|
|
|
|
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
|
|
|
continue
|
|
|
|
tensor_count += 1
|
|
|
|
|
|
|
|
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
|
|
|
|
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
|
|
|
hparams = json.load(f)
|
|
|
|
|
2023-07-30 15:31:11 +00:00
|
|
|
# This must be changed when adding/deleting kv
|
2023-07-30 13:05:37 +00:00
|
|
|
kv_count = 14
|
|
|
|
|
|
|
|
print("tensors " + str(tensor_count) + " kv " + str(kv_count))
|
|
|
|
|
|
|
|
print("write gguf header")
|
|
|
|
|
|
|
|
gguf_writer.write_header(tensor_count, kv_count)
|
|
|
|
|
|
|
|
print("write gguf hparams")
|
|
|
|
|
|
|
|
llm_arch = "gptneox"
|
|
|
|
|
|
|
|
gguf_writer.write_name("pythia-70b-deduped")
|
|
|
|
gguf_writer.write_description("gguf test model")
|
|
|
|
gguf_writer.write_architecture(llm_arch)
|
|
|
|
gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
|
|
|
|
gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
|
|
|
|
gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
|
|
|
|
gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
|
|
|
gguf_writer.write_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
|
|
|
|
gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
|
|
|
|
gguf_writer.write_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
|
|
|
gguf_writer.write_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
|
|
|
|
|
|
|
|
# TOKENIZATION
|
|
|
|
|
|
|
|
print("write gguf tokenizer")
|
|
|
|
|
|
|
|
tokens: List[str] = []
|
|
|
|
merges: List[str] = []
|
|
|
|
|
|
|
|
if Path(dir_model + "/tokenizer.json").is_file():
|
|
|
|
# vocab type gpt2
|
|
|
|
print("Adding gpt2 tokenizer vocab")
|
|
|
|
|
|
|
|
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
|
|
|
tokenizer = json.load(f)
|
|
|
|
|
|
|
|
for key in tokenizer["model"]["vocab"]:
|
|
|
|
tokens.append(key)
|
|
|
|
|
|
|
|
merges = tokenizer["model"]["merges"]
|
|
|
|
|
|
|
|
gguf_writer.write_tokenizer_model("gpt2")
|
|
|
|
gguf_writer.write_token_list(tokens)
|
|
|
|
gguf_writer.write_token_merges(merges)
|
|
|
|
|
|
|
|
# TENSORS
|
|
|
|
|
|
|
|
# tensor info
|
|
|
|
print("write gguf tensor info")
|
|
|
|
|
|
|
|
for name in list_vars.keys():
|
|
|
|
data = list_vars[name].squeeze().numpy()
|
|
|
|
|
|
|
|
# we don't need these
|
|
|
|
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
|
|
|
continue
|
|
|
|
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
|
|
ftype_cur = 0
|
|
|
|
if ftype != 0:
|
|
|
|
if name.endswith(".weight") and n_dims == 2:
|
|
|
|
data = data.astype(np.float16)
|
|
|
|
ftype_cur = 1
|
|
|
|
else:
|
|
|
|
data = data.astype(np.float32)
|
|
|
|
ftype_cur = 0
|
|
|
|
else:
|
|
|
|
if data.dtype != np.float32:
|
|
|
|
data = data.astype(np.float32)
|
|
|
|
ftype_cur = 0
|
|
|
|
|
|
|
|
gguf_writer.write_tensor_info(name, data)
|
|
|
|
|
|
|
|
|
|
|
|
# tensor data
|
|
|
|
print("write gguf tensor data")
|
|
|
|
|
|
|
|
for name in list_vars.keys():
|
|
|
|
data = list_vars[name].squeeze().numpy()
|
|
|
|
print("Process tensor: " + name + " with shape: ", data.shape)
|
|
|
|
|
|
|
|
# we don't need these
|
|
|
|
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
|
|
|
print(" Skip tensor: " + name)
|
|
|
|
continue
|
|
|
|
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
|
|
ftype_cur = 0
|
|
|
|
if ftype != 0:
|
|
|
|
if name.endswith(".weight") and n_dims == 2:
|
|
|
|
print(" Converting to float16")
|
|
|
|
data = data.astype(np.float16)
|
|
|
|
ftype_cur = 1
|
|
|
|
else:
|
|
|
|
print(" Converting to float32")
|
|
|
|
data = data.astype(np.float32)
|
|
|
|
ftype_cur = 0
|
|
|
|
else:
|
|
|
|
if data.dtype != np.float32:
|
|
|
|
print(" Converting to float32")
|
|
|
|
data = data.astype(np.float32)
|
|
|
|
ftype_cur = 0
|
|
|
|
|
|
|
|
gguf_writer.write_tensor(data)
|
|
|
|
|
|
|
|
gguf_writer.close()
|
|
|
|
|
|
|
|
|
|
|
|
print("Done. Output file: " + fname_out)
|
|
|
|
print("")
|