2023-08-11 23:17:25 +00:00
# include "ggml.h"
# include "llama.h"
2023-08-16 16:25:29 +00:00
2023-08-11 23:17:25 +00:00
# include <unordered_map>
# include <vector>
# include <cassert>
# include <climits>
# include <cstring>
# include <cstdarg>
# include <ctime>
# include <random>
# include <stdexcept>
# include <algorithm>
# include <string>
# if defined(_MSC_VER)
# pragma warning(disable: 4244 4267) // possible loss of data
# endif
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
typedef struct {
int dim ; // transformer dimension
int hidden_dim ; // for ffn layers
int n_layers ; // number of layers
int n_heads ; // number of query heads
int n_kv_heads ; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size ; // vocabulary size, usually 256 (byte-level)
int seq_len ; // max sequence length
} Config ;
typedef struct {
// token embedding table
float * token_embedding_table ; // (vocab_size, dim)
// weights for rmsnorms
float * rms_att_weight ; // (layer, dim) rmsnorm weights
float * rms_ffn_weight ; // (layer, dim)
// weights for matmuls
float * wq ; // (layer, dim, dim)
float * wk ; // (layer, dim, dim)
float * wv ; // (layer, dim, dim)
float * wo ; // (layer, dim, dim)
// weights for ffn
float * w1 ; // (layer, hidden_dim, dim)
float * w2 ; // (layer, dim, hidden_dim)
float * w3 ; // (layer, hidden_dim, dim)
// final rmsnorm
float * rms_final_weight ; // (dim,)
// freq_cis for RoPE relatively positional embeddings
// float* freq_cis_real; // (seq_len, dim/2)
// float* freq_cis_imag; // (seq_len, dim/2)
// (optional) classifier weights for the logits, on the last layer
//float* wcls;
} TransformerWeights ;
void malloc_weights ( TransformerWeights * w , Config * p ) {
// we calloc instead of malloc to keep valgrind happy
w - > token_embedding_table = new float [ p - > vocab_size * p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table \n " , __func__ , p - > vocab_size , p - > dim , p - > vocab_size * p - > dim ) ;
w - > rms_att_weight = new float [ p - > n_layers * p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight \n " , __func__ , p - > n_layers , p - > dim , p - > n_layers * p - > dim ) ;
w - > rms_ffn_weight = new float [ p - > n_layers * p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight \n " , __func__ , p - > n_layers , p - > dim , p - > n_layers * p - > dim ) ;
w - > wq = new float [ p - > n_layers * p - > dim * p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq \n " , __func__ , p - > n_layers , p - > dim , p - > dim , p - > n_layers * p - > dim * p - > dim ) ;
w - > wk = new float [ p - > n_layers * p - > dim * p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk \n " , __func__ , p - > n_layers , p - > dim , p - > dim , p - > n_layers * p - > dim * p - > dim ) ;
w - > wv = new float [ p - > n_layers * p - > dim * p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv \n " , __func__ , p - > n_layers , p - > dim , p - > dim , p - > n_layers * p - > dim * p - > dim ) ;
w - > wo = new float [ p - > n_layers * p - > dim * p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo \n " , __func__ , p - > n_layers , p - > dim , p - > dim , p - > n_layers * p - > dim * p - > dim ) ;
w - > w1 = new float [ p - > n_layers * p - > hidden_dim * p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1 \n " , __func__ , p - > n_layers , p - > hidden_dim , p - > dim , p - > n_layers * p - > hidden_dim * p - > dim ) ;
w - > w2 = new float [ p - > n_layers * p - > hidden_dim * p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2 \n " , __func__ , p - > n_layers , p - > dim , p - > hidden_dim , p - > n_layers * p - > hidden_dim * p - > dim ) ;
w - > w3 = new float [ p - > n_layers * p - > hidden_dim * p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3 \n " , __func__ , p - > n_layers , p - > hidden_dim , p - > dim , p - > n_layers * p - > hidden_dim * p - > dim ) ;
w - > rms_final_weight = new float [ p - > dim ] ( ) ;
printf ( " [%s:AK] Allocating [%d] float space for w->rms_final_weight \n " , __func__ , p - > dim ) ;
}
int checkpoint_init_weights ( TransformerWeights * w , Config * p , FILE * f ) {
if ( fread ( w - > token_embedding_table , sizeof ( float ) , p - > vocab_size * p - > dim , f ) ! = static_cast < size_t > ( p - > vocab_size * p - > dim ) ) return 1 ;
if ( fread ( w - > rms_att_weight , sizeof ( float ) , p - > n_layers * p - > dim , f ) ! = static_cast < size_t > ( p - > n_layers * p - > dim ) ) return 1 ;
if ( fread ( w - > wq , sizeof ( float ) , p - > n_layers * p - > dim * p - > dim , f ) ! = static_cast < size_t > ( p - > n_layers * p - > dim * p - > dim ) ) return 1 ;
if ( fread ( w - > wk , sizeof ( float ) , p - > n_layers * p - > dim * p - > dim , f ) ! = static_cast < size_t > ( p - > n_layers * p - > dim * p - > dim ) ) return 1 ;
if ( fread ( w - > wv , sizeof ( float ) , p - > n_layers * p - > dim * p - > dim , f ) ! = static_cast < size_t > ( p - > n_layers * p - > dim * p - > dim ) ) return 1 ;
if ( fread ( w - > wo , sizeof ( float ) , p - > n_layers * p - > dim * p - > dim , f ) ! = static_cast < size_t > ( p - > n_layers * p - > dim * p - > dim ) ) return 1 ;
if ( fread ( w - > rms_ffn_weight , sizeof ( float ) , p - > n_layers * p - > dim , f ) ! = static_cast < size_t > ( p - > n_layers * p - > dim ) ) return 1 ;
if ( fread ( w - > w1 , sizeof ( float ) , p - > n_layers * p - > dim * p - > hidden_dim , f ) ! = static_cast < size_t > ( p - > n_layers * p - > dim * p - > hidden_dim ) ) return 1 ;
if ( fread ( w - > w2 , sizeof ( float ) , p - > n_layers * p - > hidden_dim * p - > dim , f ) ! = static_cast < size_t > ( p - > n_layers * p - > hidden_dim * p - > dim ) ) return 1 ;
if ( fread ( w - > w3 , sizeof ( float ) , p - > n_layers * p - > dim * p - > hidden_dim , f ) ! = static_cast < size_t > ( p - > n_layers * p - > dim * p - > hidden_dim ) ) return 1 ;
if ( fread ( w - > rms_final_weight , sizeof ( float ) , p - > dim , f ) ! = static_cast < size_t > ( p - > dim ) ) return 1 ;
return 0 ;
}
void free_weights ( TransformerWeights * w ) {
delete w - > token_embedding_table ;
delete w - > rms_att_weight ;
delete w - > rms_ffn_weight ;
delete w - > wq ;
delete w - > wk ;
delete w - > wv ;
delete w - > wo ;
delete w - > w1 ;
delete w - > w2 ;
delete w - > w3 ;
delete w - > rms_final_weight ;
}
void print_sample_weights ( TransformerWeights * w ) {
printf ( " ----- Quick print of first of the weight vales of all the variables \n " ) ;
printf ( " %f \n " , w - > token_embedding_table [ 0 ] ) ;
printf ( " %f \n " , w - > rms_att_weight [ 0 ] ) ;
printf ( " %f \n " , w - > rms_ffn_weight [ 0 ] ) ;
printf ( " %f \n " , w - > wq [ 0 ] ) ;
printf ( " %f \n " , w - > wk [ 0 ] ) ;
printf ( " %f \n " , w - > wv [ 0 ] ) ;
printf ( " %f \n " , w - > wo [ 0 ] ) ;
printf ( " %f \n " , w - > w1 [ 0 ] ) ;
printf ( " %f \n " , w - > w2 [ 0 ] ) ;
printf ( " %f \n " , w - > w3 [ 0 ] ) ;
printf ( " %f \n " , w - > rms_att_weight [ 0 ] ) ;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
struct llama_vocab {
using id = int32_t ;
using token = std : : string ;
2023-08-21 16:35:31 +00:00
using ttype = llama_token_type ;
2023-08-11 23:17:25 +00:00
2023-08-21 16:35:31 +00:00
struct token_data {
token text ;
2023-08-11 23:17:25 +00:00
float score ;
2023-08-21 16:35:31 +00:00
ttype type ;
2023-08-11 23:17:25 +00:00
} ;
std : : unordered_map < token , id > token_to_id ;
2023-08-21 16:35:31 +00:00
std : : vector < token_data > id_to_token ;
2023-08-11 23:17:25 +00:00
} ;
struct my_llama_hparams {
uint32_t n_vocab = 32000 ;
uint32_t n_ctx = 512 ; // this is provided as user input?
uint32_t n_embd = 4096 ;
uint32_t n_mult = 4 ;
uint32_t n_head = 32 ;
uint32_t n_layer = 32 ;
uint32_t n_rot = 64 ;
bool operator ! = ( const my_llama_hparams & other ) const {
return memcmp ( this , & other , sizeof ( my_llama_hparams ) ) ;
}
} ;
struct my_llama_layer {
// normalization
struct ggml_tensor * attention_norm ;
// attention
struct ggml_tensor * wq ;
struct ggml_tensor * wk ;
struct ggml_tensor * wv ;
struct ggml_tensor * wo ;
// normalization
struct ggml_tensor * ffn_norm ;
// ff
struct ggml_tensor * w1 ;
struct ggml_tensor * w2 ;
struct ggml_tensor * w3 ;
} ;
struct my_llama_model {
struct ggml_context * ctx = NULL ;
my_llama_hparams hparams ;
struct ggml_tensor * tok_embeddings ;
struct ggml_tensor * norm ;
struct ggml_tensor * output ;
std : : vector < my_llama_layer > layers ;
uint32_t train_its = 0 ;
uint32_t train_samples = 0 ;
uint32_t train_tokens = 0 ;
} ;
struct train_params {
const char * fn_vocab_model ;
const char * fn_llama2c_model ;
const char * fn_llama2c_output_model ;
const char * fn_train_data ;
const char * fn_checkpoint_in ;
const char * fn_checkpoint_out ;
const char * fn_model_out ;
uint32_t seed ;
int n_ctx ;
int n_embd ;
int n_mult ;
int n_head ;
int n_layer ;
int n_rotmax ;
int n_threads ;
int n_batch ;
int n_examples ;
int n_predict ;
int print_info_interval ;
int print_details_interval ;
bool samples_start_after_nl ;
bool use_adam ;
bool use_flash ;
bool use_scratch ;
// only adam
int warmup ;
int cos_decay_steps ;
float cos_decay_restart ;
float cos_decay_alpha ;
int lbfgs_n_iter ;
int adam_n_iter ;
float adam_alpha ;
float adam_decay ;
int mem_model_gb ;
int mem_compute_gb ;
int mem_compute0_gb ;
int mem_compute1_gb ;
} ;
uint32_t get_n_ff ( const struct my_llama_hparams * hparams ) {
const uint32_t n_ff = ( ( 2 * ( 4 * hparams - > n_embd ) / 3 + hparams - > n_mult - 1 ) / hparams - > n_mult ) * hparams - > n_mult ;
return n_ff ;
}
void print_params ( struct my_llama_hparams * params ) {
printf ( " %s: n_vocab: %d \n " , __func__ , params - > n_vocab ) ;
printf ( " %s: n_ctx: %d \n " , __func__ , params - > n_ctx ) ;
printf ( " %s: n_embd: %d \n " , __func__ , params - > n_embd ) ;
printf ( " %s: n_mult: %d \n " , __func__ , params - > n_mult ) ;
printf ( " %s: n_head: %d \n " , __func__ , params - > n_head ) ;
printf ( " %s: n_ff: %d \n " , __func__ , get_n_ff ( params ) ) ;
printf ( " %s: n_layer: %d \n " , __func__ , params - > n_layer ) ;
printf ( " %s: n_rot: %d \n " , __func__ , params - > n_rot ) ;
}
void init_model ( struct my_llama_model * model ) {
const auto & hparams = model - > hparams ;
const uint32_t n_embd = hparams . n_embd ;
const uint32_t n_layer = hparams . n_layer ;
const uint32_t n_vocab = hparams . n_vocab ;
const uint32_t n_ff = get_n_ff ( & hparams ) ;
struct ggml_context * ctx = model - > ctx ;
model - > train_its = 0 ;
model - > train_samples = 0 ;
model - > train_tokens = 0 ;
model - > tok_embeddings = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_embd , n_vocab ) ;
printf ( " [%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings \n " , __func__ , n_embd , n_vocab , n_embd * n_vocab ) ;
model - > norm = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_embd ) ;
printf ( " [%s:GG] Allocating [%d] float space for model->norm \n " , __func__ , n_embd ) ;
model - > output = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_embd , n_vocab ) ;
printf ( " [%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output \n " , __func__ , n_embd , n_vocab , n_embd * n_vocab ) ;
// printing the per-layer allocations here so we dont print in the for loop.
printf ( " [%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers \n " , __func__ , n_embd , n_embd , n_embd * n_embd , n_layer ) ;
printf ( " [%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers \n " , __func__ , n_embd , n_embd , n_embd * n_embd , n_layer ) ;
printf ( " [%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers \n " , __func__ , n_embd , n_embd , n_embd * n_embd , n_layer ) ;
printf ( " [%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers \n " , __func__ , n_embd , n_embd , n_embd * n_embd , n_layer ) ;
printf ( " [%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers \n " , __func__ , n_embd , n_layer ) ;
printf ( " [%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers \n " , __func__ , n_ff , n_embd , n_embd * n_ff , n_layer ) ;
printf ( " [%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers \n " , __func__ , n_embd , n_ff , n_ff * n_embd , n_layer ) ;
printf ( " [%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers \n " , __func__ , n_ff , n_embd , n_embd * n_ff , n_layer ) ;
ggml_set_name ( model - > tok_embeddings , " tok_embeddings.weight " ) ;
ggml_set_name ( model - > norm , " norm.weight " ) ;
ggml_set_name ( model - > output , " output.weight " ) ;
model - > layers . resize ( n_layer ) ;
for ( uint32_t i = 0 ; i < n_layer ; + + i ) {
auto & layer = model - > layers [ i ] ;
std : : string layers_i = " layers. " + std : : to_string ( i ) ;
layer . attention_norm = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_embd ) ;
layer . wq = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_embd , n_embd ) ;
layer . wk = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_embd , n_embd ) ;
layer . wv = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_embd , n_embd ) ;
layer . wo = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_embd , n_embd ) ;
layer . ffn_norm = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_embd ) ;
layer . w1 = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_embd , n_ff ) ;
layer . w2 = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_ff , n_embd ) ;
layer . w3 = ggml_new_tensor_2d ( ctx , GGML_TYPE_F32 , n_embd , n_ff ) ;
ggml_set_name ( layer . attention_norm , ( layers_i + " .attention_norm.weight " ) . c_str ( ) ) ;
ggml_set_name ( layer . wq , ( layers_i + " .attention.wq.weight " ) . c_str ( ) ) ;
ggml_set_name ( layer . wk , ( layers_i + " .attention.wk.weight " ) . c_str ( ) ) ;
ggml_set_name ( layer . wv , ( layers_i + " .attention.wv.weight " ) . c_str ( ) ) ;
ggml_set_name ( layer . wo , ( layers_i + " .attention.wo.weight " ) . c_str ( ) ) ;
ggml_set_name ( layer . ffn_norm , ( layers_i + " .ffn_norm.weight " ) . c_str ( ) ) ;
ggml_format_name ( layer . w1 , " %s.feed_forward.w1.weight " , layers_i . c_str ( ) ) ;
ggml_format_name ( layer . w2 , " %s.feed_forward.w2.weight " , layers_i . c_str ( ) ) ;
ggml_format_name ( layer . w3 , " %s.feed_forward.w3.weight " , layers_i . c_str ( ) ) ;
}
}
float get_f32_2d ( struct ggml_tensor * tensor , int64_t i0 , int64_t i1 ) {
float * ptr = ( float * ) ( ( char * ) tensor - > data + i0 * tensor - > nb [ 0 ] + i1 * tensor - > nb [ 1 ] ) ;
return * ptr ;
}
int32_t get_i32_2d ( struct ggml_tensor * tensor , int64_t i0 , int64_t i1 ) {
int32_t * ptr = ( int32_t * ) ( ( char * ) tensor - > data + i0 * tensor - > nb [ 0 ] + i1 * tensor - > nb [ 1 ] ) ;
return * ptr ;
}
void print_row ( struct ggml_tensor * probs , int i ) {
for ( int k = 0 ; k < probs - > ne [ 0 ] ; + + k ) {
float p = get_f32_2d ( probs , k , i ) ;
printf ( " %f " , p ) ;
}
printf ( " \n " ) ;
}
void print_matrix ( struct ggml_tensor * probs ) {
assert ( probs - > n_dims = = 2 ) ;
for ( int i = 0 ; i < probs - > ne [ 1 ] ; + + i ) {
for ( int k = 0 ; k < probs - > ne [ 0 ] ; + + k ) {
float p = get_f32_2d ( probs , k , i ) ;
printf ( " %.2f " , p ) ;
}
printf ( " \n " ) ;
}
}
# ifdef __GNUC__
# ifdef __MINGW32__
__attribute__ ( ( format ( gnu_printf , 1 , 2 ) ) )
# else
__attribute__ ( ( format ( printf , 1 , 2 ) ) )
# endif
# endif
static std : : string format ( const char * fmt , . . . ) {
va_list ap , ap2 ;
va_start ( ap , fmt ) ;
va_copy ( ap2 , ap ) ;
int size = vsnprintf ( NULL , 0 , fmt , ap ) ;
GGML_ASSERT ( size > = 0 & & size < INT_MAX ) ;
std : : vector < char > buf ( size + 1 ) ;
int size2 = vsnprintf ( buf . data ( ) , size + 1 , fmt , ap2 ) ;
GGML_ASSERT ( size2 = = size ) ;
va_end ( ap2 ) ;
va_end ( ap ) ;
return std : : string ( buf . data ( ) , size ) ;
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp ;
size_t size ;
llama_file ( const char * fname , const char * mode ) {
fp = std : : fopen ( fname , mode ) ;
if ( fp = = NULL ) {
size = 0 ;
} else {
seek ( 0 , SEEK_END ) ;
size = tell ( ) ;
seek ( 0 , SEEK_SET ) ;
}
}
size_t tell ( ) const {
# ifdef _WIN32
__int64 ret = _ftelli64 ( fp ) ;
# else
long ret = std : : ftell ( fp ) ;
# endif
GGML_ASSERT ( ret ! = - 1 ) ; // this really shouldn't fail
return ( size_t ) ret ;
}
void seek ( size_t offset , int whence ) {
# ifdef _WIN32
int ret = _fseeki64 ( fp , ( __int64 ) offset , whence ) ;
# else
int ret = std : : fseek ( fp , ( long ) offset , whence ) ;
# endif
GGML_ASSERT ( ret = = 0 ) ; // same
}
void read_raw ( void * ptr , size_t size ) {
if ( size = = 0 ) {
return ;
}
errno = 0 ;
std : : size_t ret = std : : fread ( ptr , size , 1 , fp ) ;
if ( ferror ( fp ) ) {
throw std : : runtime_error ( format ( " read error: %s " , strerror ( errno ) ) ) ;
}
if ( ret ! = 1 ) {
throw std : : runtime_error ( std : : string ( " unexpectedly reached end of file " ) ) ;
}
}
std : : uint32_t read_u32 ( ) {
std : : uint32_t ret ;
read_raw ( & ret , sizeof ( ret ) ) ;
return ret ;
}
std : : float_t read_f32 ( ) {
std : : float_t ret ;
read_raw ( & ret , sizeof ( ret ) ) ;
return ret ;
}
std : : string read_string ( std : : uint32_t len ) {
std : : vector < char > chars ( len ) ;
read_raw ( chars . data ( ) , len ) ;
return std : : string ( chars . data ( ) , len ) ;
}
void write_raw ( const void * ptr , size_t size ) {
if ( size = = 0 ) {
return ;
}
errno = 0 ;
size_t ret = std : : fwrite ( ptr , size , 1 , fp ) ;
if ( ret ! = 1 ) {
throw std : : runtime_error ( format ( " write error: %s " , strerror ( errno ) ) ) ;
}
}
void write_u32 ( std : : uint32_t val ) {
write_raw ( & val , sizeof ( val ) ) ;
}
~ llama_file ( ) {
if ( fp ) {
std : : fclose ( fp ) ;
}
}
} ;
void write_tensor ( struct llama_file * file , struct ggml_tensor * tensor ) {
if ( tensor = = NULL ) {
file - > write_u32 ( 0 ) ;
file - > write_u32 ( 0 ) ;
file - > write_u32 ( GGML_TYPE_F32 ) ;
file - > seek ( ( 0 - file - > tell ( ) ) & 31 , SEEK_CUR ) ;
return ;
}
const char * name = ggml_get_name ( tensor ) ;
uint32_t name_len = strlen ( name ) ;
uint32_t nd = tensor - > n_dims ;
uint32_t ne [ 4 ] = { ( uint32_t ) tensor - > ne [ 0 ] ,
( uint32_t ) tensor - > ne [ 1 ] ,
( uint32_t ) tensor - > ne [ 2 ] ,
( uint32_t ) tensor - > ne [ 3 ] } ;
file - > write_u32 ( nd ) ;
file - > write_u32 ( name_len ) ;
file - > write_u32 ( tensor - > type ) ;
file - > write_raw ( ne , sizeof ( ne [ 0 ] ) * nd ) ;
file - > write_raw ( name , name_len ) ;
file - > seek ( ( 0 - file - > tell ( ) ) & 31 , SEEK_CUR ) ;
file - > write_raw ( tensor - > data , ggml_nbytes ( tensor ) ) ;
}
bool is_ggml_file ( const char * filename ) {
llama_file file ( filename , " rb " ) ;
if ( file . size < 4 ) {
return false ;
}
uint32_t magic = file . read_u32 ( ) ;
2023-08-16 16:25:29 +00:00
return magic = = GGUF_MAGIC ;
2023-08-11 23:17:25 +00:00
}
void load_vocab ( const char * filename , Config * config , struct llama_vocab * vocab ) {
// heuristic to infer whether vocab is from ggml or from llama2.c vocabulary
if ( is_ggml_file ( filename ) ) {
struct llama_context_params llama_params = llama_context_default_params ( ) ;
llama_params . vocab_only = true ;
struct llama_model * lmodel = llama_load_model_from_file ( filename , llama_params ) ;
struct llama_context * lctx = llama_new_context_with_model ( lmodel , llama_params ) ;
2023-08-21 16:35:31 +00:00
const int n_vocab = llama_n_vocab ( lctx ) ;
2023-08-11 23:17:25 +00:00
vocab - > id_to_token . resize ( n_vocab ) ;
for ( int i = 0 ; i < n_vocab ; + + i ) {
2023-08-21 16:35:31 +00:00
vocab - > id_to_token [ i ] . text = llama_token_get_text ( lctx , i ) ;
vocab - > id_to_token [ i ] . score = llama_token_get_score ( lctx , i ) ;
vocab - > id_to_token [ i ] . type = llama_token_get_type ( lctx , i ) ;
vocab - > token_to_id . emplace ( vocab - > id_to_token [ i ] . text , i ) ;
2023-08-11 23:17:25 +00:00
}
llama_free ( lctx ) ;
llama_free_model ( lmodel ) ;
} else { // assume llama2.c vocabulary
printf ( " Assuming llama2.c vocabulary since %s is not a ggml file \n " , filename ) ;
llama_file file ( filename , " rb " ) ;
2023-08-21 16:35:31 +00:00
const int n_vocab = config - > vocab_size ;
2023-08-11 23:17:25 +00:00
/* uint32_t max_token_length = */ file . read_u32 ( ) ; // unused
vocab - > id_to_token . resize ( n_vocab ) ;
2023-08-21 16:35:31 +00:00
for ( int i = 0 ; i < n_vocab ; + + i ) {
2023-08-11 23:17:25 +00:00
float_t score = file . read_f32 ( ) ;
uint32_t len = file . read_u32 ( ) ;
2023-08-21 16:35:31 +00:00
std : : string text = file . read_string ( len ) ;
vocab - > id_to_token [ i ] . text = text ;
2023-08-11 23:17:25 +00:00
vocab - > id_to_token [ i ] . score = score ;
2023-08-21 16:35:31 +00:00
vocab - > id_to_token [ i ] . type = LLAMA_TOKEN_TYPE_UNDEFINED ;
vocab - > token_to_id . emplace ( text , i ) ;
2023-08-11 23:17:25 +00:00
}
}
}
void stuff_karpathy_weights_into_gg ( struct ggml_tensor * gg_weights , float * karpathy_weights ) {
int ct ;
switch ( gg_weights - > n_dims ) {
case 1 :
ct = 0 ;
for ( int i0 = 0 ; i0 < gg_weights - > ne [ 0 ] ; i0 + + ) {
float * ptr = ( float * ) ( ( char * ) gg_weights - > data + i0 * gg_weights - > nb [ 0 ] ) ;
* ptr = karpathy_weights [ ct ] ;
ct + + ;
}
break ;
case 2 :
ct = 0 ;
for ( int i1 = 0 ; i1 < gg_weights - > ne [ 1 ] ; i1 + + ) {
for ( int i0 = 0 ; i0 < gg_weights - > ne [ 0 ] ; i0 + + ) {
float * ptr = ( float * ) ( ( char * ) gg_weights - > data + i0 * gg_weights - > nb [ 0 ] + i1 * gg_weights - > nb [ 1 ] ) ;
* ptr = karpathy_weights [ ct ] ;
ct + + ;
}
}
break ;
case 3 :
ct = 0 ;
for ( int i2 = 0 ; i2 < gg_weights - > ne [ 2 ] ; i2 + + ) {
for ( int i1 = 0 ; i1 < gg_weights - > ne [ 1 ] ; i1 + + ) {
for ( int i0 = 0 ; i0 < gg_weights - > ne [ 0 ] ; i0 + + ) {
float * ptr = ( float * ) ( ( char * ) gg_weights - > data + i0 * gg_weights - > nb [ 0 ] + i1 * gg_weights - > nb [ 1 ] + i2 * gg_weights - > nb [ 2 ] ) ;
* ptr = karpathy_weights [ ct ] ;
ct + + ;
}
}
}
break ;
}
}
void save_as_llama_model ( struct llama_vocab * vocab , struct my_llama_model * model , TransformerWeights * w , const char * filename ) {
struct llama_file file ( filename , " wb " ) ;
if ( file . fp = = NULL ) {
return ;
}
2023-08-16 16:25:29 +00:00
# pragma message("TODO: implement file saving using gguf")
( void ) vocab ;
( void ) model ;
( void ) w ;
// // write_magic
// file.write_u32(LLAMA_FILE_MAGIC); // magic
// file.write_u32(LLAMA_FILE_VERSION); // version
// // write_hparams
// file.write_u32(model->hparams.n_vocab);
// file.write_u32(model->hparams.n_embd);
// file.write_u32(model->hparams.n_mult);
// file.write_u32(model->hparams.n_head);
// file.write_u32(model->hparams.n_layer);
// file.write_u32(model->hparams.n_rot);
// file.write_u32(LLAMA_FTYPE_ALL_F32);
//
// // write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
// uint32_t n_vocab = model->hparams.n_vocab;
// for (uint32_t i = 0; i < n_vocab; i++) {
2023-08-21 16:35:31 +00:00
// const auto & token_data = vocab->id_to_token.at(i);
// file.write_u32((uint32_t) token_data.tok.size());
// file.write_raw(token_data.tok.data(), token_data.tok.size());
// file.write_raw(&token_data.score, sizeof(token_data.score));
2023-08-16 16:25:29 +00:00
// }
//
// // stuff AK weights into GG weights one by one.
// // w->token_embedding_table -> model->tok_embeddings
// // float* -> struct ggml_tensor
// stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
// stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table);
//
// stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
// //print_row(model->norm, 0);
//
// // for rms-att-weight
// int row_length = model->hparams.n_embd;
// const auto & hparams = model->hparams;
// //int n_ff = model->hparams.n_embd;
// int n_ff = get_n_ff(&hparams);
//
// for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
// auto & layer = model->layers[i];
// // 1d
// stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
// stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
//
// // from 3d matrix layer x dim x dim to 2d matrix dim x dim
// stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
// stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
// stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
// stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
//
// stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
// stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
// stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
// }
// // write tensors
// write_tensor(&file, model->tok_embeddings);
// write_tensor(&file, model->norm);
// write_tensor(&file, model->output); // ?
// for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
// auto & layer = model->layers[i];
//
// write_tensor(&file, layer.attention_norm);
// write_tensor(&file, layer.wq);
// write_tensor(&file, layer.wk);
// write_tensor(&file, layer.wv);
// write_tensor(&file, layer.wo);
// write_tensor(&file, layer.ffn_norm);
// write_tensor(&file, layer.w1);
// write_tensor(&file, layer.w2);
// write_tensor(&file, layer.w3);
// }
2023-08-11 23:17:25 +00:00
}
struct train_params get_default_train_params ( ) {
struct train_params params ;
params . fn_vocab_model = " models/ggml-vocab.bin " ;
params . fn_llama2c_output_model = " ak_llama_model.bin " ;
params . fn_train_data = " shakespeare.txt " ;
params . fn_checkpoint_in = " checkpoint.bin " ;
params . fn_checkpoint_out = " checkpoint.bin " ;
params . fn_model_out = " ggml-checkpoint-f32.bin " ;
params . seed = - 1 ;
params . n_ctx = 128 ;
params . n_embd = 256 ;
params . n_mult = 256 ;
params . n_head = 8 ;
params . n_layer = 16 ;
params . n_rotmax = 64 ;
params . n_threads = 6 ;
params . n_batch = 8 ;
params . n_examples = 8 ;
params . n_predict = 1024 ;
params . print_info_interval = 1 ;
params . print_details_interval = 2 ;
params . samples_start_after_nl = false ;
params . use_adam = true ;
params . use_flash = true ;
params . use_scratch = true ;
// only adam
params . warmup = 100 ;
params . cos_decay_steps = 1000 ;
params . cos_decay_restart = 1.1f ;
params . cos_decay_alpha = 0.0f ;
params . lbfgs_n_iter = 16 ;
params . adam_n_iter = 16 ;
params . adam_alpha = 1e-3 f ;
params . adam_decay = 1e-3 f ;
params . mem_model_gb = 2 ;
params . mem_compute_gb = 24 ;
params . mem_compute0_gb = 8 ;
params . mem_compute1_gb = 2 ;
return params ;
}
void print_usage ( int /*argc*/ , char * * argv , const struct train_params * params ) {
fprintf ( stderr , " usage: %s [options] \n " , argv [ 0 ] ) ;
fprintf ( stderr , " \n " ) ;
fprintf ( stderr , " options: \n " ) ;
fprintf ( stderr , " -h, --help show this help message and exit \n " ) ;
fprintf ( stderr , " --copy-vocab-from-model FNAME llama2.c vocabulary or ggml model path from which to copy vocab (default '%s') \n " , params - > fn_vocab_model ) ;
fprintf ( stderr , " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model \n " ) ;
fprintf ( stderr , " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s') \n " , params - > fn_llama2c_output_model ) ;
fprintf ( stderr , " \n " ) ;
}
bool params_parse ( int argc , char * * argv , struct train_params * params ) {
bool invalid_param = false ;
bool reqd_param_found = false ;
std : : string arg ;
struct train_params default_params = get_default_train_params ( ) ;
const std : : string arg_prefix = " -- " ;
for ( int i = 1 ; i < argc ; i + + ) {
arg = argv [ i ] ;
if ( arg . compare ( 0 , arg_prefix . size ( ) , arg_prefix ) = = 0 ) {
std : : replace ( arg . begin ( ) , arg . end ( ) , ' _ ' , ' - ' ) ;
}
if ( arg = = " --copy-vocab-from-model " ) {
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
params - > fn_vocab_model = argv [ i ] ;
} else if ( arg = = " --llama2c-model " ) {
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
reqd_param_found = true ;
params - > fn_llama2c_model = argv [ i ] ;
} else if ( arg = = " --llama2c-output-model " ) {
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
params - > fn_llama2c_output_model = argv [ i ] ;
} else if ( arg = = " -h " | | arg = = " --help " ) {
print_usage ( argc , argv , & default_params ) ;
exit ( 0 ) ;
} else {
fprintf ( stderr , " error: unknown argument: %s \n " , arg . c_str ( ) ) ;
print_usage ( argc , argv , & default_params ) ;
exit ( 1 ) ;
}
}
if ( invalid_param ) {
fprintf ( stderr , " error: invalid parameter for argument: %s \n " , arg . c_str ( ) ) ;
print_usage ( argc , argv , & default_params ) ;
exit ( 1 ) ;
}
if ( ! reqd_param_found ) {
fprintf ( stderr , " error: please specify a llama2.c .bin file to be converted with argument --llama2c-model \n " ) ;
print_usage ( argc , argv , & default_params ) ;
exit ( 1 ) ;
}
return true ;
}
int main ( int argc , char * * argv ) {
struct train_params params = get_default_train_params ( ) ;
if ( ! params_parse ( argc , argv , & params ) ) {
return 1 ;
}
Config config ;
TransformerWeights weights ;
{
FILE * file = fopen ( params . fn_llama2c_model , " rb " ) ;
if ( ! file ) { printf ( " Unable to open the checkpoint file %s! \n " , params . fn_llama2c_model ) ; return 1 ; }
// read in the config header
if ( fread ( & config , sizeof ( Config ) , 1 , file ) ! = 1 ) { return 1 ; }
// read in the Transformer weights
malloc_weights ( & weights , & config ) ;
if ( checkpoint_init_weights ( & weights , & config , file ) ) { return 1 ; }
fclose ( file ) ;
}
struct llama_vocab vocab ;
load_vocab ( params . fn_vocab_model , & config , & vocab ) ;
struct my_llama_model model ;
model . hparams . n_vocab = config . vocab_size ; //llama_n_vocab(lctx);
model . hparams . n_ctx = params . n_ctx ;
model . hparams . n_embd = config . dim ; //params.n_embd;
model . hparams . n_mult = 32 ; //params.n_mult;
model . hparams . n_head = config . n_heads ; //params.n_head;
model . hparams . n_layer = config . n_layers ; //params.n_layer;
model . hparams . n_rot = std : : min ( ( uint32_t ) params . n_rotmax , model . hparams . n_embd / model . hparams . n_head ) ;
print_params ( & model . hparams ) ;
struct ggml_init_params lcparams ;
lcparams . mem_size = 1024ll * 1024ll * 1024ll * ( ( size_t ) params . mem_model_gb ) ;
lcparams . mem_buffer = NULL ;
lcparams . no_alloc = false ;
model . ctx = ggml_init ( lcparams ) ;
init_model ( & model ) ;
save_as_llama_model ( & vocab , & model , & weights , params . fn_llama2c_output_model ) ;
printf ( " Saving llama.c model file %s in ggml format at %s \n " , params . fn_llama2c_model , params . fn_llama2c_output_model ) ;
ggml_free ( model . ctx ) ;
free_weights ( & weights ) ;
return 0 ;
}