llama.cpp/examples/server-embd.py

38 lines
1.0 KiB
Python
Raw Normal View History

2024-02-29 13:39:10 +00:00
import asyncio
import requests
import numpy as np
2024-03-04 15:07:12 +00:00
n = 1
2024-02-29 13:39:10 +00:00
result = []
async def requests_post_async(*args, **kwargs):
return await asyncio.to_thread(requests.post, *args, **kwargs)
async def main():
model_url = "http://127.0.0.1:6900"
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
url= f"{model_url}/embedding",
json= {"content": str(0)*32}
2024-03-04 15:07:12 +00:00
#json= {"content": str(0)*1024}
#json= {"content": str(i)*32}
#json= {"content": str(i%2)*32}
2024-02-29 13:39:10 +00:00
) for i in range(n)])
for response in responses:
embedding = response.json()["embedding"]
print(embedding[-8:])
result.append(embedding)
asyncio.run(main())
# compute cosine similarity
for i in range(n-1):
for j in range(i+1, n):
embedding1 = np.array(result[i])
embedding2 = np.array(result[j])
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
print(f"Similarity between {i} and {j}: {similarity:.2f}")