llama.cpp/convert-llama-h5-to-gguf.py

248 lines
7.6 KiB
Python
Raw Normal View History

2023-07-29 09:20:05 +00:00
# Quick and dirty HF llama --> gguf conversion, GQA/70b wont work
import gguf
import sys
import struct
import json
import numpy as np
from typing import Any, List
2023-07-29 09:20:05 +00:00
from pathlib import Path
from transformers import AutoModelForCausalLM
from sentencepiece import SentencePieceProcessor
NDArray = np.ndarray[Any, Any]
2023-07-29 10:31:07 +00:00
2023-07-29 09:20:05 +00:00
def permute(weights: NDArray, n_head: int) -> NDArray:
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
2023-07-29 10:31:07 +00:00
2023-07-29 09:20:05 +00:00
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-model.bin"
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
2023-07-29 10:31:07 +00:00
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
2023-07-29 09:20:05 +00:00
list_vars = model.state_dict()
# count tensors to be converted
tensor_count = 0
for name in list_vars.keys():
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
tensor_count += 1
gguf_writer = gguf.GGUFWriter.open(fname_out)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
2023-07-30 15:29:56 +00:00
# This must be changed when adding/deleting kv
kv_count = 13
2023-07-29 09:20:05 +00:00
2023-07-29 10:31:07 +00:00
print("tensors " + str(tensor_count) + " kv " + str(kv_count))
2023-07-29 09:20:05 +00:00
print("write gguf header")
gguf_writer.write_header(tensor_count, kv_count)
print("write gguf hparams")
llm_arch = "llama"
gguf_writer.write_name("llama2-7b")
gguf_writer.write_description("gguf test model")
gguf_writer.write_architecture(llm_arch)
gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.write_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
2023-07-30 13:01:47 +00:00
gguf_writer.write_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
2023-07-29 09:20:05 +00:00
# TOKENIZATION
2023-07-29 19:38:01 +00:00
print("write gguf tokenizer")
2023-07-29 09:20:05 +00:00
tokens: List[str] = []
scores: List[float] = []
2023-07-29 10:31:07 +00:00
if Path(dir_model + "/tokenizer.model").is_file():
2023-07-29 19:38:01 +00:00
# vocab type sentencepiece
2023-07-29 10:31:07 +00:00
print("Adding sentencepiece tokenizer vocab.")
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
2023-07-29 09:20:05 +00:00
# output vocab_size followed by all piece/score pairs
outbytes: bytes
outbytes = b""
outbytes += struct.pack("I", tokenizer.vocab_size())
for i in range(tokenizer.vocab_size()):
text: bytes
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
if tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
raise Exception(f"Invalid token: {piece}")
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
score: float = tokenizer.get_score(i)
2023-07-29 14:47:00 +00:00
tokens.append(text)
2023-07-29 10:31:07 +00:00
scores.append(score)
2023-07-29 09:20:05 +00:00
2023-07-29 10:31:07 +00:00
gguf_writer.write_tokenizer_model("llama")
gguf_writer.write_token_list(tokens)
gguf_writer.write_token_scores(scores)
2023-07-29 09:20:05 +00:00
# TENSORS
# tensor info
print("write gguf tensor info")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
# permute these
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
2023-07-29 10:31:07 +00:00
data = permute(data, hparams["num_attention_heads"])
2023-07-29 09:20:05 +00:00
# chnage tensor name
if name == "model.embed_tokens.weight":
name = "tok_embeddings.weight"
elif name == "model.norm.weight":
name = "norm.weight"
elif name == "lm_head.weight":
name = "output.weight"
else:
for i in range(80): # maximum number of layers
if name == "model.layers." + str(i) + ".input_layernorm.weight":
name = "layers." + str(i) + ".attention_norm.weight"
break
if name == "model.layers." + str(i) + ".self_attn.q_proj.weight":
name = "layers." + str(i) + ".attention.wq.weight"
break
if name == "model.layers." + str(i) + ".self_attn.k_proj.weight":
name = "layers." + str(i) + ".attention.wk.weight"
break
if name == "model.layers." + str(i) + ".self_attn.v_proj.weight":
name = "layers." + str(i) + ".attention.wv.weight"
break
if name == "model.layers." + str(i) + ".self_attn.o_proj.weight":
name = "layers." + str(i) + ".attention.wo.weight"
break
if name == "model.layers." + str(i) + ".post_attention_layernorm.weight":
name = "layers." + str(i) + ".ffn_norm.weight"
break
if name == "model.layers." + str(i) + ".mlp.gate_proj.weight":
name = "layers." + str(i) + ".feed_forward.w1.weight"
break
if name == "model.layers." + str(i) + ".mlp.down_proj.weight":
name = "layers." + str(i) + ".feed_forward.w2.weight"
break
if name == "model.layers." + str(i) + ".mlp.up_proj.weight":
name = "layers." + str(i) + ".feed_forward.w3.weight"
break
2023-07-29 14:47:00 +00:00
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if ftype != 0:
if name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
ftype_cur = 1
else:
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
data = data.astype(np.float32)
ftype_cur = 0
2023-07-29 09:20:05 +00:00
gguf_writer.write_tensor_info(name, data)
# tensor data
print("write gguf tensor data")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Process tensor: " + name + " with shape: ", data.shape)
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
print(" Skip tensor: " + name)
continue
2023-07-29 10:31:07 +00:00
# permute these
2023-07-29 09:20:05 +00:00
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
print(" Permute tensor: " + name)
2023-07-29 10:31:07 +00:00
data = permute(data, hparams["num_attention_heads"])
2023-07-29 09:20:05 +00:00
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if ftype != 0:
if name.endswith(".weight") and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
gguf_writer.write_tensor(data)
gguf_writer.close()
print("Done. Output file: " + fname_out)
print("")