llama.cpp/ggml-backend.c

1005 lines
38 KiB
C
Raw Normal View History

#include "ggml-backend.h"
#include <assert.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define UNUSED(x) (void)(x)
2023-07-21 23:46:49 +00:00
#define MAX(a, b) ((a) > (b) ? (a) : (b))
//#define GGML_ALLOCATOR_DEBUG
2023-07-21 10:41:46 +00:00
//#define AT_PRINTF printf
#define AT_PRINTF(...) ((void)0)
// allocator
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
assert(alignment && !(alignment & (alignment - 1))); // power of 2
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
return offset + align;
}
static inline size_t ggml_backend_buffer_get_alloc_size(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
return alloc->interface.get_alloc_size(alloc, tensor);
}
static inline void ggml_backend_buffer_init_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
alloc->interface.init_tensor(alloc, tensor);
}
void ggml_backend_buffer_free(struct ggml_backend_buffer * alloc) {
alloc->interface.free_buffer(alloc);
free(alloc);
}
2023-07-21 23:46:49 +00:00
#if 0
// backend buffer allocator - simple - cannot free tensors, good for weights and small contexts
struct ggml_allocator_simple_context {
void * data;
size_t size;
size_t offset;
size_t alignment;
};
static void ggml_allocator_simple_free_buffer(struct ggml_backend_buffer * alloc) {
struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context;
free(context);
}
static void ggml_allocator_simple_alloc_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context;
size_t size = ggml_backend_buffer_get_alloc_size(alloc, tensor);
if (!alloc->measure && context->offset + size > context->size) {
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, available %zu)\n",
__func__, size, context->size - context->offset);
GGML_ASSERT(!"not enough space in the buffer");
return;
}
alloc->max_size = MAX(alloc->max_size, context->offset + size);
2023-07-20 22:28:49 +00:00
tensor->data = (char*)context->data + context->offset;
2023-07-20 22:28:49 +00:00
if (!alloc->measure) {
if (alloc->interface.init_tensor) {
ggml_backend_buffer_init_tensor(alloc, tensor);
}
}
context->offset = aligned_offset(context->data, context->offset + size, context->alignment);
}
static void ggml_allocator_simple_free_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
2023-07-20 22:28:49 +00:00
GGML_ASSERT(!"ggml_allocator_simple cannot free individual tensors");
UNUSED(alloc);
UNUSED(tensor);
}
static void ggml_allocator_simple_reset(struct ggml_backend_buffer * alloc) {
struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context;
context->offset = aligned_offset(context->data, 0, context->alignment);
}
size_t ggml_allocator_simple_get_alloc_size(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
return ggml_nbytes(tensor);
UNUSED(alloc);
}
static const struct ggml_backend_buffer_interface ggml_allocator_simple_interface = {
/* .free_buffer = */ ggml_allocator_simple_free_buffer,
/* .alloc_tensor = */ ggml_allocator_simple_alloc_tensor,
/* .free_tensor = */ ggml_allocator_simple_free_tensor,
/* .reset = */ ggml_allocator_simple_reset,
/* .get_alloc_size = */ ggml_allocator_simple_get_alloc_size,
/* .init_tensor = */ NULL,
/* .free_data = */ NULL,
};
static struct ggml_backend_buffer * ggml_allocator_simple_init(void * data, size_t size, size_t alignment) {
struct ggml_allocator_simple_context * ctx = malloc(sizeof(struct ggml_allocator_simple_context));
ctx->data = data;
ctx->size = size;
ctx->offset = aligned_offset(data, 0, alignment);
ctx->alignment = alignment;
struct ggml_backend_buffer * allocator = malloc(sizeof(struct ggml_backend_buffer));
*allocator = (struct ggml_backend_buffer){
/* .interface = */ ggml_allocator_simple_interface,
/* .context = */ ctx,
/* .backend = */ NULL,
/* .backend_data = */ NULL,
/* .measure = */ false,
/* .max_size = */ 0,
};
return allocator;
}
2023-07-21 23:46:49 +00:00
#endif
2023-07-20 22:28:49 +00:00
// backend buffer allocator - default - can free tensors
struct free_block {
void * addr;
size_t size;
};
#define MAX_FREE_BLOCKS 128
struct ggml_allocator_default_context {
void * data;
size_t size;
size_t alignment;
int n_free_blocks;
2023-07-21 23:46:49 +00:00
struct free_block free_blocks[MAX_FREE_BLOCKS];
#ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024];
#endif
2023-07-20 22:28:49 +00:00
};
#ifdef GGML_ALLOCATOR_DEBUG
void add_allocated_tensor(struct ggml_allocator_default_context * ctx, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (ctx->allocated_tensors[i] == NULL) {
ctx->allocated_tensors[i] = tensor;
return;
}
}
GGML_ASSERT(!"out of allocated_tensors");
}
void remove_allocated_tensor(struct ggml_allocator_default_context * ctx, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (ctx->allocated_tensors[i] == tensor ||
(ctx->allocated_tensors[i] != NULL && ctx->allocated_tensors[i]->data == tensor->data)) {
ctx->allocated_tensors[i] = NULL;
return;
}
}
printf("tried to free tensor %s not found\n", tensor->name);
GGML_ASSERT(!"tensor not found");
}
#endif
2023-07-20 22:28:49 +00:00
void ggml_allocator_default_free_buffer(struct ggml_backend_buffer * alloc) {
struct ggml_allocator_default_context * allocator_ctx = (struct ggml_allocator_default_context *)alloc->context;
free(allocator_ctx);
}
static const size_t MAX_SIZE_INIT = (1ULL<<40)-1;
void ggml_allocator_default_alloc_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
struct ggml_allocator_default_context * allocator_ctx = (struct ggml_allocator_default_context *)alloc->context;
/////
if (alloc->measure && allocator_ctx->size != MAX_SIZE_INIT) {
allocator_ctx->size = MAX_SIZE_INIT;
allocator_ctx->data = (void*) 0x1000;
2023-07-20 22:28:49 +00:00
allocator_ctx->free_blocks[0].size = MAX_SIZE_INIT;
allocator_ctx->free_blocks[0].addr = (void*) 0x1000;
2023-07-20 22:28:49 +00:00
}
/////
size_t size = ggml_backend_buffer_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, allocator_ctx->alignment);
2023-07-21 10:41:46 +00:00
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
2023-07-20 22:28:49 +00:00
size_t max_avail = 0;
// find the best fitting free block
int best_fit_block = -1;
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < allocator_ctx->n_free_blocks; i++) {
struct free_block * block = &allocator_ctx->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_block = i;
best_fit_size = block->size;
}
}
2023-07-21 10:41:46 +00:00
AT_PRINTF("block %d\n", best_fit_block);
2023-07-20 22:28:49 +00:00
if (best_fit_block == -1) {
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
__func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer");
return;
}
struct free_block * block = &allocator_ctx->free_blocks[best_fit_block];
void * addr = block->addr;
block->addr = (char*)block->addr + size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
allocator_ctx->n_free_blocks--;
for (int j = best_fit_block; j < allocator_ctx->n_free_blocks; j++) {
allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1];
}
}
tensor->data = addr;
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(allocator_ctx, tensor);
size_t cur_max = (char*)addr - (char*)allocator_ctx->data + size;
if (cur_max > alloc->max_size) {
2023-07-21 23:46:49 +00:00
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
for (int i = 0; i < 1024; i++) {
if (allocator_ctx->allocated_tensors[i]) {
2023-07-21 23:46:49 +00:00
printf("%s (%.2f MB) ", allocator_ctx->allocated_tensors[i]->name, ggml_nbytes(allocator_ctx->allocated_tensors[i]) / 1024.0 / 1024.0);
}
}
2023-07-21 23:46:49 +00:00
printf("\n");
}
#endif
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)allocator_ctx->data + size);
2023-07-20 22:28:49 +00:00
if (!alloc->measure) {
if (alloc->interface.init_tensor) {
ggml_backend_buffer_init_tensor(alloc, tensor);
}
}
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
void ggml_allocator_default_free_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
struct ggml_allocator_default_context * allocator_ctx = (struct ggml_allocator_default_context *)alloc->context;
void * ptr = tensor->data;
if (ptr < allocator_ctx->data || (char*)ptr >= (char*)allocator_ctx->data + alloc->max_size) {
2023-07-21 23:46:49 +00:00
// the tensor was not allocated in this buffer
// this can happen because the allocator can try to free weights and other constants
// the easiest way to deal with this is to just ignore it
2023-07-20 22:28:49 +00:00
return;
}
size_t size = ggml_backend_buffer_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, allocator_ctx->alignment);
2023-07-21 10:41:46 +00:00
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, allocator_ctx->n_free_blocks);
2023-07-20 22:28:49 +00:00
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(allocator_ctx, tensor);
#endif
2023-07-20 22:28:49 +00:00
// see if we can merge with an existing block
for (int i = 0; i < allocator_ctx->n_free_blocks; i++) {
struct free_block * block = &allocator_ctx->free_blocks[i];
// check if ptr is at the end of the block
if ((char*)block->addr + block->size == ptr) {
block->size += size;
// check if we can merge with the next block
if (i < allocator_ctx->n_free_blocks - 1 && (char*)block->addr + block->size == allocator_ctx->free_blocks[i+1].addr) {
block->size += allocator_ctx->free_blocks[i+1].size;
allocator_ctx->n_free_blocks--;
for (int j = i+1; j < allocator_ctx->n_free_blocks; j++) {
allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1];
}
}
return;
}
// check if ptr is at the beginning of the block
if ((char*)ptr + size == block->addr) {
block->addr = ptr;
block->size += size;
// check if we can merge with the previous block
if (i > 0 && (char*)allocator_ctx->free_blocks[i-1].addr + allocator_ctx->free_blocks[i-1].size == block->addr) {
allocator_ctx->free_blocks[i-1].size += block->size;
allocator_ctx->n_free_blocks--;
for (int j = i; j < allocator_ctx->n_free_blocks; j++) {
allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1];
}
}
return;
}
}
// otherwise, add a new block
2023-07-21 23:46:49 +00:00
GGML_ASSERT(allocator_ctx->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted
int insert_pos = 0;
while (insert_pos < allocator_ctx->n_free_blocks && allocator_ctx->free_blocks[insert_pos].addr < ptr) {
insert_pos++;
2023-07-20 22:28:49 +00:00
}
2023-07-21 23:46:49 +00:00
// shift all blocks from insert_pos onward to make room for the new block
for (int i = allocator_ctx->n_free_blocks; i > insert_pos; i--) {
allocator_ctx->free_blocks[i] = allocator_ctx->free_blocks[i-1];
2023-07-20 22:28:49 +00:00
}
2023-07-21 23:46:49 +00:00
// insert the new block
allocator_ctx->free_blocks[insert_pos].addr = ptr;
allocator_ctx->free_blocks[insert_pos].size = size;
allocator_ctx->n_free_blocks++;
2023-07-20 22:28:49 +00:00
}
static void ggml_allocator_default_reset(struct ggml_backend_buffer * alloc) {
struct ggml_allocator_default_context * ctx = (struct ggml_allocator_default_context *)alloc->context;
2023-07-21 23:46:49 +00:00
ctx->n_free_blocks = 1;
2023-07-20 22:28:49 +00:00
size_t align_offset = aligned_offset(ctx->data, 0, ctx->alignment);
ctx->free_blocks[0].addr = (char *)ctx->data + align_offset;
ctx->free_blocks[0].size = ctx->size - align_offset;
}
2023-07-21 23:46:49 +00:00
size_t ggml_allocator_default_get_alloc_size(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
return ggml_nbytes(tensor);
UNUSED(alloc);
}
2023-07-20 22:28:49 +00:00
static const struct ggml_backend_buffer_interface ggml_allocator_default_interface = {
/* .free_buffer = */ ggml_allocator_default_free_buffer,
/* .alloc_tensor = */ ggml_allocator_default_alloc_tensor,
/* .free_tensor = */ ggml_allocator_default_free_tensor,
/* .reset = */ ggml_allocator_default_reset,
2023-07-21 23:46:49 +00:00
/* .get_alloc_size = */ ggml_allocator_default_get_alloc_size,
2023-07-20 22:28:49 +00:00
/* .init_tensor = */ NULL,
/* .free_data = */ NULL,
};
struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t size, size_t alignment) {
2023-07-20 22:28:49 +00:00
struct ggml_allocator_default_context * ctx = malloc(sizeof(struct ggml_allocator_default_context) /* + n_free_blocks * sizeof(struct free_block) */);
// debug
memset(ctx, 0, sizeof(struct ggml_allocator_default_context));
2023-07-20 22:28:49 +00:00
ctx->data = data;
ctx->size = size;
ctx->alignment = alignment;
2023-07-21 23:46:49 +00:00
ctx->n_free_blocks = 1;
2023-07-20 22:28:49 +00:00
size_t align_offset = aligned_offset(data, 0, alignment);
ctx->free_blocks[0].addr = (char *)data + align_offset;
ctx->free_blocks[0].size = size - align_offset;
struct ggml_backend_buffer * allocator = malloc(sizeof(struct ggml_backend_buffer));
*allocator = (struct ggml_backend_buffer){
/* .interface = */ ggml_allocator_default_interface,
/* .context = */ ctx,
/* .backend = */ NULL,
/* .backend_data = */ NULL,
/* .measure = */ false,
/* .max_size = */ 0,
};
return allocator;
}
2023-07-20 22:28:49 +00:00
//struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t size, size_t alignment) {
// return ggml_allocator_simple_init(data, size, alignment);
//}
// buffer
struct ggml_buffer * ggml_buffer_alloc(struct ggml_backend * backend, size_t size, size_t max_tensors) {
struct ggml_buffer * buffer = malloc(sizeof(struct ggml_buffer));
buffer->mem_size = ggml_tensor_overhead() * max_tensors;
buffer->mem_buffer = malloc(buffer->mem_size);
2023-07-15 17:04:37 +00:00
size += 128 * max_tensors; // alignment overhead
buffer->backend_buffer = backend->interface.alloc_buffer(backend, size);
buffer->backend_buffer->backend = backend;
return buffer;
}
struct ggml_buffer * ggml_buffer_measure_alloc(struct ggml_backend * backend, size_t max_tensors) {
struct ggml_buffer * buffer = ggml_buffer_alloc(backend, 0, max_tensors);
buffer->backend_buffer->measure = true;
return buffer;
}
void ggml_buffer_free(struct ggml_buffer * buffer) {
ggml_backend_buffer_free(buffer->backend_buffer);
free(buffer->mem_buffer);
free(buffer);
}
// backend copy
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
//printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
// printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
if (src == dst) {
return;
}
if (dst->backend->interface.cpy_tensor_from != NULL) {
dst->backend->interface.cpy_tensor_from(dst->backend->context, src, dst);
} else if (src->backend->interface.cpy_tensor_to != NULL) {
src->backend->interface.cpy_tensor_to(src->backend->context, src, dst);
} else {
// not ideal, but shouldn't be hit when copying from/to CPU
// TODO: print a performance warning in debug builds
size_t nbytes = ggml_nbytes(src);
void * data = malloc(nbytes);
ggml_backend_tensor_get(src, data, 0, nbytes);
ggml_backend_tensor_set(dst, data, 0, nbytes);
free(data);
}
}
// backend CPU
struct ggml_backend_cpu_context {
int n_threads;
void * work_data;
size_t work_size;
};
static const char * ggml_backend_cpu_name(struct ggml_backend * backend) {
return "CPU";
UNUSED(backend);
}
static void ggml_backend_cpu_free(struct ggml_backend * backend) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
free(cpu_ctx->work_data);
free(cpu_ctx);
free(backend);
}
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
static void ggml_backend_cpu_free_buffer(struct ggml_backend_buffer * alloc) {
free(alloc->backend_data);
}
static struct ggml_backend_buffer * ggml_backend_cpu_alloc_buffer(struct ggml_backend * backend, size_t size) {
void * data = malloc(size);
struct ggml_backend_buffer * buffer = ggml_allocator_default_init(data, size, TENSOR_ALIGNMENT);
buffer->interface.free_data = ggml_backend_cpu_free_buffer;
buffer->backend_data = data;
return buffer;
UNUSED(backend);
}
static void ggml_backend_cpu_set_tensor_async(struct ggml_backend * backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
memcpy((char *)tensor->data + offset, data, size);
UNUSED(backend);
}
static void ggml_backend_cpu_get_tensor_async(struct ggml_backend * backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
memcpy(data, (const char *)tensor->data + offset, size);
UNUSED(backend);
}
static void ggml_backend_cpu_synchronize(struct ggml_backend * backend) {
UNUSED(backend);
}
static void ggml_backend_cpu_cpy_tensor_from(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
UNUSED(backend);
}
static void ggml_backend_cpu_cpy_tensor_to(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
// for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
UNUSED(backend);
}
struct ggml_backend_cpu_plan {
struct ggml_cplan cplan;
struct ggml_cgraph cgraph;
};
static ggml_graph_plan_t ggml_backend_cpu_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_backend_cpu_plan * cpu_plan = malloc(sizeof(struct ggml_backend_cpu_plan));
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
cpu_plan->cgraph = *cgraph;
if (cpu_plan->cplan.work_size > 0) {
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
}
return cpu_plan;
}
static void ggml_backend_cpu_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) {
struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan;
free(cpu_plan->cplan.work_data);
free(cpu_plan);
UNUSED(backend);
}
static void ggml_backend_cpu_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) {
struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan;
ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
UNUSED(backend);
}
static void ggml_backend_cpu_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
if (cpu_ctx->work_size < cplan.work_size) {
// TODO: may be faster to free and use malloc to avoid the copy
cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
cpu_ctx->work_size = cplan.work_size;
}
cplan.work_data = cpu_ctx->work_data;
ggml_graph_compute(cgraph, &cplan);
}
static struct ggml_backend_interface cpu_backend_interface = {
/* .get_name = */ ggml_backend_cpu_name,
/* .free = */ ggml_backend_cpu_free,
/* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
/* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
/* .synchronize = */ ggml_backend_cpu_synchronize,
/* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to,
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
/* .graph_compute = */ ggml_backend_cpu_graph_compute
};
struct ggml_backend * ggml_backend_cpu_init(void) {
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
ctx->n_threads = GGML_DEFAULT_N_THREADS;
ctx->work_data = NULL;
ctx->work_size = 0;
struct ggml_backend * cpu_backend = malloc(sizeof(struct ggml_backend));
*cpu_backend = (struct ggml_backend) {
/* .interface = */ cpu_backend_interface,
/* .context = */ ctx
};
return cpu_backend;
}
void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads) {
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
ctx->n_threads = n_threads;
}
// splits
struct ggml_graph_splits ggml_graph_split_init(void) {
struct ggml_graph_splits splits = {0};
return splits;
}
// TODO: this can be removed after allocating the graphs in a ggml_context
void ggml_graph_splits_free(struct ggml_graph_splits * splits) {
for (int i = 0; i < splits->n_splits; i++) {
if (splits->splits[i].graph) {
free(splits->splits[i].graph);
}
}
}
void ggml_graph_splits_add_n_va(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, va_list args) {
GGML_ASSERT(splits->n_splits < GGML_MAX_SPLITS);
struct ggml_graph_split * split = &splits->splits[splits->n_splits];
if (splits->n_splits == 0) {
// always add the first split
int i = 0;
while (inputs[i] != NULL) {
GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS);
split->src_inputs[i] = *inputs[i];
split->dst_inputs[i] = *inputs[i];
i++;
}
split->src_inputs[i] = NULL;
split->dst_inputs[i] = NULL;
split->ctx = ctx;
}
// check if the split is on the same context as the previous one
else if (splits->n_splits > 0 && splits->splits[splits->n_splits - 1].ctx == ctx) {
// add to the previous split
char name[GGML_MAX_NAME - 2];
int n = vsnprintf(name, sizeof(name), fmt, args);
char new_name[GGML_MAX_NAME];
snprintf(new_name, sizeof(new_name), "%.*s,%s", GGML_MAX_NAME - n - 2, splits->splits[splits->n_splits - 1].name, name);
strcpy(splits->splits[splits->n_splits - 1].name, new_name);
return;
} else {
// add a new split
int i = 0;
while (inputs[i] != NULL) {
GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS);
split->src_inputs[i] = *inputs[i];
split->dst_inputs[i] = ggml_dup_tensor(ctx, *inputs[i]);
ggml_format_name(split->dst_inputs[i], "%s (split output)", split->src_inputs[i]->name);
2023-07-21 23:46:49 +00:00
// TODO: maybe support different layouts in ggml_backend_cpy_tensor instead
for (int j = 0; j < GGML_MAX_DIMS; j++) {
split->dst_inputs[i]->nb[j] = split->src_inputs[i]->nb[j];
}
ggml_set_name(split->dst_inputs[i], ggml_get_name(*inputs[i]));
*inputs[i] = split->dst_inputs[i];
i++;
}
split->src_inputs[i] = NULL;
split->dst_inputs[i] = NULL;
split->ctx = ctx;
}
vsnprintf(split->name, GGML_MAX_NAME, fmt, args);
split->graph = NULL;
splits->n_splits++;
}
void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** input, struct ggml_context * ctx, const char * fmt, ...) {
va_list args;
va_start(args, fmt);
ggml_graph_splits_add_n_va(splits, input, ctx, fmt, args);
va_end(args);
}
void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...) {
va_list args;
va_start(args, fmt);
ggml_graph_splits_add_n_va(splits, (struct ggml_tensor**[2]){ input, NULL }, ctx, fmt, args);
va_end(args);
}
void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output) {
struct ggml_tensor *last_outputs[2] = { output, NULL };
struct ggml_tensor ** outputs;
for (int i = 0; i < splits->n_splits; i++) {
struct ggml_graph_split * split = &splits->splits[i];
if (i < splits->n_splits - 1) {
outputs = splits->splits[i + 1].src_inputs;
} else {
outputs = last_outputs;
}
// build the graph
// TODO: allocate graphs in context
split->graph = (struct ggml_cgraph *) malloc(sizeof(struct ggml_cgraph));
memset(split->graph, 0, sizeof(struct ggml_cgraph));
for (int j = 0; outputs[j] != NULL; j++) {
ggml_build_forward_expand(split->graph, outputs[j]);
}
for (int j = 1; j < split->graph->n_nodes; j++) {
if (split->graph->nodes[j]->backend != split->graph->nodes[0]->backend) {
fprintf(stderr, "split %s: node %s has different backend (%s) than the first node (%s)\n",
split->name, split->graph->nodes[j]->name,
ggml_backend_name(split->graph->nodes[j]->backend),
ggml_backend_name(split->graph->nodes[0]->backend));
}
}
for (int j = 1; j < split->graph->n_leafs; j++) {
if (split->graph->leafs[j]->backend != split->graph->leafs[0]->backend) {
fprintf(stderr, "split %s: leaf %s has different backend (%s) than the first leaf (%s)\n",
split->name, split->graph->leafs[j]->name,
ggml_backend_name(split->graph->leafs[j]->backend),
ggml_backend_name(split->graph->leafs[0]->backend));
}
}
}
// close graphs
for (int i = 0; i < splits->n_splits; i++) {
struct ggml_graph_split * split = &splits->splits[i];
ggml_graph_close(split->graph);
}
}
void ggml_graph_splits_compute(struct ggml_graph_splits * splits) {
uint64_t copy_us = 0;
uint64_t compute_cpu_us = 0;
uint64_t compute_gpu_us = 0;
int n_nodes = 0;
for (int i = 0; i < splits->n_splits; i++) {
struct ggml_graph_split * split = &splits->splits[i];
//printf("computing split %i (%s) on backend %s (%i nodes)\n", i, split->name, ggml_backend_name(split->dst_inputs[0]->backend), split->graph->n_nodes);
// copy the input tensor to the backend
uint64_t copy_start_us = ggml_time_us();
for (int j = 0; split->src_inputs[j] != NULL; j++) {
//printf("\tcopying tensor %d (%s) (%s -> %s) (%lu bytes)\n", j, split->src_inputs[j]->name, ggml_backend_name(split->src_inputs[j]->backend), ggml_backend_name(split->dst_inputs[j]->backend), ggml_nbytes(split->src_inputs[j]));
//printf("%p %p\n", split->src_inputs[j], split->dst_inputs[j]);
ggml_backend_tensor_copy(split->src_inputs[j], split->dst_inputs[j]);
}
2023-07-15 17:04:37 +00:00
// ggml_backend_synchronize(split->dst_inputs[0]->backend);
copy_us += ggml_time_us() - copy_start_us;
#if 0
char split_filename[GGML_MAX_NAME];
snprintf(split_filename, GGML_MAX_NAME, "split_%i.dot", i);
ggml_graph_dump_dot(split->graph, NULL, split_filename);
#endif
uint64_t start = ggml_time_us();
ggml_backend_graph_compute(split->dst_inputs[0]->backend, split->graph);
2023-07-15 17:04:37 +00:00
//ggml_backend_synchronize(split->dst_inputs[0]->backend);
uint64_t end = ggml_time_us();
if (strcmp(ggml_backend_name(split->dst_inputs[0]->backend), "CPU") == 0) {
compute_cpu_us += end - start;
} else {
compute_gpu_us += end - start;
}
n_nodes += split->graph->n_nodes;
}
//printf("splits: %d, nodes: %d, copy: %.2fms, compute_cpu: %.2fms, compute_gpu: %.2fms\n", splits->n_splits, n_nodes, copy_us / 1000.0, compute_cpu_us / 1000.0, compute_gpu_us / 1000.0);
//exit(0);
}
static bool ggml_is_view(struct ggml_tensor * t) {
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
}
2023-07-20 22:28:49 +00:00
struct ggml_tensor * view_parent(struct ggml_tensor * t) {
switch (t->op) {
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
return t->src[0];
case GGML_OP_CPY:
return t->src[1];
default:
return NULL;
}
}
2023-07-21 23:46:49 +00:00
static void allocate_node(struct ggml_buffer * buffer, struct ggml_tensor * node) {
2023-07-20 22:28:49 +00:00
if (node->data == NULL) {
if (ggml_is_view(node)) {
size_t offset;
switch(node->op) {
case GGML_OP_VIEW:
memcpy(&offset, node->op_params, sizeof(size_t));
node->data = (char *) node->src[0]->data + offset;
break;
case GGML_OP_RESHAPE:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
node->data = node->src[0]->data;
break;
case GGML_OP_CPY:
node->data = node->src[1]->data;
break;
default:
GGML_ASSERT(!"unknown view op");
break;
}
} else {
// see if we can reuse a parent's buffer (inplace)
for (int i = 0; i < GGML_MAX_SRC; i++) {
struct ggml_tensor * parent = node->src[i];
if (parent == NULL) {
break;
}
// TODO: make a list of operations that can be safely made inplace
if (parent->data != NULL && parent->n_children == 1 && parent->n_views == 0 && ggml_are_same_layout(node, parent) && node->op != GGML_OP_MUL_MAT) {
if (ggml_is_view(parent)) {
struct ggml_tensor * ancestor = parent;
do {
ancestor = view_parent(ancestor);
} while (ggml_is_view(ancestor));
if (ancestor->n_views == 1 && ancestor->n_children == 0) {
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, ancestor->name, node->name);
node->data = ancestor->data;
return;
}
}
else {
node->data = parent->data;
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
}
return;
}
}
2023-07-20 22:28:49 +00:00
ggml_backend_buffer_tensor_alloc(buffer->backend_buffer, node);
}
}
}
2023-07-21 23:46:49 +00:00
static void ggml_graph_allocate_tensors_n(
struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs,
struct ggml_context * ctx) {
2023-07-20 22:28:49 +00:00
struct ggml_buffer * buffer = ggml_get_buffer(ctx);
// reset counters
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
node->n_children = 0;
node->n_views = 0;
}
2023-07-22 11:29:44 +00:00
2023-07-20 22:28:49 +00:00
for (int i = 0; i < gf->n_leafs; i++) {
struct ggml_tensor * leaf = gf->leafs[i];
leaf->n_children = 0;
leaf->n_views = 0;
}
}
// count number of children and views
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
2023-07-21 23:46:49 +00:00
2023-07-21 10:41:46 +00:00
if (ggml_is_view(node)) {
struct ggml_tensor * ancestor = node;
do {
ancestor = view_parent(ancestor);
} while (ggml_is_view(ancestor));
ancestor->n_views += 1;
}
2023-07-21 23:46:49 +00:00
2023-07-20 22:28:49 +00:00
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
parent->n_children += 1;
}
}
}
// allocate tensors
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
2023-07-21 23:46:49 +00:00
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
if (inputs != NULL && inputs[g] != NULL) {
for (int i = 0; inputs[g][i] != NULL; i++) {
struct ggml_tensor * input = inputs[g][i];
AT_PRINTF("input: %s\n", input->name);
allocate_node(buffer, input);
}
}
2023-07-20 22:28:49 +00:00
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs)
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
allocate_node(buffer, parent);
}
// allocate node
allocate_node(buffer, node);
2023-07-21 10:41:46 +00:00
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
AT_PRINTF("%s", parent->name);
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
AT_PRINTF(", ");
}
}
AT_PRINTF("\n");
2023-07-20 22:28:49 +00:00
// update parents
2023-07-21 10:41:46 +00:00
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
2023-07-20 22:28:49 +00:00
}
2023-07-21 10:41:46 +00:00
parent->n_children -= 1;
2023-07-21 23:46:49 +00:00
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
2023-07-21 10:41:46 +00:00
if (parent->n_children == 0 && parent->n_views == 0) {
2023-07-20 22:28:49 +00:00
if (ggml_is_view(parent)) {
struct ggml_tensor * ancestor = parent;
do {
ancestor = view_parent(ancestor);
} while (ggml_is_view(ancestor));
ancestor->n_views -= 1;
2023-07-21 23:46:49 +00:00
AT_PRINTF("ancestor %s: %d children, %d views\n", ancestor->name, ancestor->n_children, ancestor->n_views);
if (ancestor->n_views == 0 && ancestor->n_children == 0 && ancestor->data != node->data) {
2023-07-21 23:46:49 +00:00
//AT_PRINTF("free1\n");
2023-07-20 22:28:49 +00:00
ggml_backend_buffer_tensor_free(buffer->backend_buffer, ancestor);
}
}
else {
if (parent->data != node->data) {
2023-07-21 23:46:49 +00:00
//AT_PRINTF("free2\n");
ggml_backend_buffer_tensor_free(buffer->backend_buffer, parent);
}
2023-07-20 22:28:49 +00:00
}
}
}
2023-07-21 10:41:46 +00:00
AT_PRINTF("\n");
2023-07-20 22:28:49 +00:00
}
2023-07-21 23:46:49 +00:00
if (outputs != NULL && outputs[g] != NULL) {
for (int i = 0; outputs[g][i] != NULL; i++) {
struct ggml_tensor * output = outputs[g][i];
AT_PRINTF("output: %s\n", output->name);
ggml_backend_buffer_tensor_free(buffer->backend_buffer, output);
}
}
2023-07-20 22:28:49 +00:00
}
}
2023-07-21 23:46:49 +00:00
void ggml_graph_allocate_tensors(struct ggml_cgraph * graph, struct ggml_context * ctx) {
ggml_graph_allocate_tensors_n(&graph, 1, NULL, NULL, ctx);
}
void ggml_graph_splits_allocate_tensors(struct ggml_graph_splits * splits) {
bool visited[GGML_MAX_SPLITS] = {false};
for (int i = 0; i < splits->n_splits; i++) {
if (!visited[i]) {
struct ggml_graph_split * split = &splits->splits[i];
struct ggml_context * ctx = split->ctx;
struct ggml_cgraph * backend_graphs[GGML_MAX_SPLITS];
2023-07-21 23:46:49 +00:00
struct ggml_tensor ** graph_inputs[GGML_MAX_SPLITS];
struct ggml_tensor ** graph_outputs[GGML_MAX_SPLITS];
int n_graphs = 0;
for (int j = i; j < splits->n_splits; j++) {
if (splits->splits[j].ctx == ctx) {
2023-07-21 23:46:49 +00:00
graph_inputs[n_graphs] = splits->splits[j].dst_inputs;
graph_outputs[n_graphs] = j < splits->n_splits - 1 ? splits->splits[j + 1].src_inputs : NULL;
backend_graphs[n_graphs] = splits->splits[j].graph;
visited[j] = true;
2023-07-21 23:46:49 +00:00
n_graphs++;
}
}
2023-07-21 23:46:49 +00:00
AT_PRINTF("allocating tensors for %s [%d graphs/%d splits]\n", ggml_backend_name(ggml_get_buffer(ctx)->backend_buffer->backend), n_graphs, splits->n_splits);
ggml_graph_allocate_tensors_n(backend_graphs, n_graphs, graph_inputs, graph_outputs, ctx);
}
}
}