mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 20:04:35 +00:00
239 lines
8.1 KiB
Python
239 lines
8.1 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# HF bloom --> gguf conversion
|
||
|
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import argparse
|
||
|
import json
|
||
|
import os
|
||
|
import re
|
||
|
import struct
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
from typing import Any
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from transformers import AutoTokenizer # type: ignore[import]
|
||
|
|
||
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||
|
import gguf
|
||
|
|
||
|
|
||
|
def count_model_parts(dir_model: Path) -> int:
|
||
|
num_parts = 0
|
||
|
for filename in os.listdir(dir_model):
|
||
|
if filename.startswith("pytorch_model-"):
|
||
|
num_parts += 1
|
||
|
|
||
|
if num_parts > 0:
|
||
|
print("gguf: found " + str(num_parts) + " model parts")
|
||
|
return num_parts
|
||
|
|
||
|
|
||
|
# Supported Models:
|
||
|
# https://huggingface.co/bigscience/bloom-1b7
|
||
|
# https://huggingface.co/bigscience/bloom-3b
|
||
|
# https://huggingface.co/bigscience/bloom-7b1
|
||
|
# https://huggingface.co/Langboat/bloom-1b4-zh
|
||
|
def parse_args() -> argparse.Namespace:
|
||
|
parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file")
|
||
|
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||
|
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
|
||
|
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
|
||
|
return parser.parse_args()
|
||
|
|
||
|
args = parse_args()
|
||
|
|
||
|
dir_model = args.model
|
||
|
ftype = args.ftype
|
||
|
if not dir_model.is_dir():
|
||
|
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||
|
sys.exit(1)
|
||
|
|
||
|
# possible tensor data types
|
||
|
# ftype == 0 -> float32
|
||
|
# ftype == 1 -> float16
|
||
|
|
||
|
# map from ftype to string
|
||
|
ftype_str = ["f32", "f16"]
|
||
|
|
||
|
if args.outfile is not None:
|
||
|
fname_out = args.outfile
|
||
|
else:
|
||
|
# output in the same directory as the model by default
|
||
|
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||
|
|
||
|
print("gguf: loading model "+dir_model.name)
|
||
|
|
||
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||
|
hparams = json.load(f)
|
||
|
|
||
|
if hparams["architectures"][0] != "BloomForCausalLM":
|
||
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
||
|
sys.exit(1)
|
||
|
|
||
|
# get number of model parts
|
||
|
num_parts = count_model_parts(dir_model)
|
||
|
|
||
|
ARCH=gguf.MODEL_ARCH.BLOOM
|
||
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||
|
|
||
|
print("gguf: get model metadata")
|
||
|
|
||
|
block_count = hparams["n_layer"]
|
||
|
|
||
|
gguf_writer.add_name("Bloom")
|
||
|
n_embed = hparams.get("hidden_size", hparams.get("n_embed"))
|
||
|
n_head = hparams.get("n_head", hparams.get("num_attention_heads"))
|
||
|
gguf_writer.add_context_length(hparams.get("seq_length", n_embed))
|
||
|
gguf_writer.add_embedding_length(n_embed)
|
||
|
gguf_writer.add_feed_forward_length(4 * n_embed)
|
||
|
gguf_writer.add_block_count(block_count)
|
||
|
gguf_writer.add_head_count(n_head)
|
||
|
gguf_writer.add_head_count_kv(n_head)
|
||
|
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||
|
gguf_writer.add_file_type(ftype)
|
||
|
|
||
|
# TOKENIZATION
|
||
|
|
||
|
print("gguf: get tokenizer metadata")
|
||
|
|
||
|
tokens: list[bytearray] = []
|
||
|
scores: list[float] = []
|
||
|
toktypes: list[int] = []
|
||
|
|
||
|
# gpt2 tokenizer
|
||
|
gguf_writer.add_tokenizer_model("gpt2")
|
||
|
|
||
|
print("gguf: get gpt2 tokenizer vocab")
|
||
|
|
||
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||
|
|
||
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||
|
assert max(tokenizer.vocab.values()) < vocab_size
|
||
|
|
||
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||
|
|
||
|
for i in range(vocab_size):
|
||
|
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||
|
scores.append(0.0) # dummy
|
||
|
toktypes.append(gguf.TokenType.NORMAL)
|
||
|
|
||
|
gguf_writer.add_token_list(tokens)
|
||
|
gguf_writer.add_token_scores(scores)
|
||
|
gguf_writer.add_token_types(toktypes)
|
||
|
|
||
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
||
|
special_vocab.add_to_gguf(gguf_writer)
|
||
|
|
||
|
# TENSORS
|
||
|
|
||
|
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
||
|
|
||
|
# params for qkv transform
|
||
|
n_head_kv = hparams.get("n_head_kv", n_head)
|
||
|
head_dim = n_embed // n_head
|
||
|
|
||
|
# tensor info
|
||
|
print("gguf: get tensor metadata")
|
||
|
|
||
|
if num_parts == 0:
|
||
|
part_names = iter(("pytorch_model.bin",))
|
||
|
else:
|
||
|
part_names = (
|
||
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||
|
)
|
||
|
|
||
|
for part_name in part_names:
|
||
|
if args.vocab_only:
|
||
|
break
|
||
|
print("gguf: loading model part '" + part_name + "'")
|
||
|
model_part = torch.load(dir_model / part_name, map_location="cpu")
|
||
|
|
||
|
has_lm_head = True
|
||
|
if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys():
|
||
|
has_lm_head = False
|
||
|
|
||
|
for original_name in model_part.keys():
|
||
|
data = model_part[original_name]
|
||
|
name = re.sub(r'transformer\.', '', original_name)
|
||
|
|
||
|
old_dtype = data.dtype
|
||
|
|
||
|
# convert any unsupported data types to float32
|
||
|
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||
|
data = data.to(torch.float32)
|
||
|
|
||
|
data = data.squeeze().numpy()
|
||
|
|
||
|
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
|
||
|
# Map bloom-style qkv_linear to gpt-style qkv_linear
|
||
|
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
|
||
|
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
|
||
|
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
|
||
|
data = np.concatenate(
|
||
|
(qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
|
||
|
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
|
||
|
qkv_weights[:, 2, :, :].reshape((-1, n_embed))),
|
||
|
axis=0
|
||
|
)
|
||
|
print("re-format attention.linear_qkv.weight")
|
||
|
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
|
||
|
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
|
||
|
data = np.concatenate(
|
||
|
(qkv_bias[:, 0, :].reshape((n_embed,)),
|
||
|
qkv_bias[:, 1, :].reshape((n_embed,)),
|
||
|
qkv_bias[:, 2, :].reshape((n_embed,))),
|
||
|
axis=0
|
||
|
)
|
||
|
print("re-format attention.linear_qkv.bias")
|
||
|
|
||
|
# map tensor names
|
||
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||
|
if new_name is None:
|
||
|
print("Can not map tensor '" + name + "'")
|
||
|
sys.exit()
|
||
|
|
||
|
n_dims = len(data.shape)
|
||
|
data_dtype = data.dtype
|
||
|
|
||
|
# if f32 desired, convert any float16 to float32
|
||
|
if ftype == 0 and data_dtype == np.float16:
|
||
|
data = data.astype(np.float32)
|
||
|
|
||
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||
|
data = data.astype(np.float32)
|
||
|
|
||
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||
|
data = data.astype(np.float16)
|
||
|
|
||
|
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||
|
|
||
|
gguf_writer.add_tensor(new_name, data)
|
||
|
|
||
|
if not has_lm_head and name == "word_embeddings.weight":
|
||
|
gguf_writer.add_tensor("output.weight", data)
|
||
|
print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa
|
||
|
|
||
|
|
||
|
print("gguf: write header")
|
||
|
gguf_writer.write_header_to_file()
|
||
|
print("gguf: write metadata")
|
||
|
gguf_writer.write_kv_data_to_file()
|
||
|
if not args.vocab_only:
|
||
|
print("gguf: write tensors")
|
||
|
gguf_writer.write_tensors_to_file()
|
||
|
|
||
|
gguf_writer.close()
|
||
|
|
||
|
print(f"gguf: model successfully exported to '{fname_out}'")
|
||
|
print("")
|