2023-08-23 14:29:09 +00:00
#!/usr/bin/env python3
2023-07-04 18:06:12 +00:00
import argparse
from flask import Flask , jsonify , request , Response
import urllib . parse
import requests
import time
import json
app = Flask ( __name__ )
2023-10-17 20:53:38 +00:00
slot_id = - 1
2023-07-04 18:06:12 +00:00
parser = argparse . ArgumentParser ( description = " An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp. " )
parser . add_argument ( " --chat-prompt " , type = str , help = " the top prompt in chat completions(default: ' A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what. \\ n ' ) " , default = ' A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what. \\ n ' )
parser . add_argument ( " --user-name " , type = str , help = " USER name in chat completions(default: ' \\ nUSER: ' ) " , default = " \\ nUSER: " )
parser . add_argument ( " --ai-name " , type = str , help = " ASSISTANT name in chat completions(default: ' \\ nASSISTANT: ' ) " , default = " \\ nASSISTANT: " )
parser . add_argument ( " --system-name " , type = str , help = " SYSTEM name in chat completions(default: ' \\ nASSISTANT ' s RULE: ' ) " , default = " \\ nASSISTANT ' s RULE: " )
parser . add_argument ( " --stop " , type = str , help = " the end of response in chat completions(default: ' </s> ' ) " , default = " </s> " )
parser . add_argument ( " --llama-api " , type = str , help = " Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080) " , default = ' http://127.0.0.1:8080 ' )
parser . add_argument ( " --api-key " , type = str , help = " Set the api key to allow only few user(default: NULL) " , default = " " )
parser . add_argument ( " --host " , type = str , help = " Set the ip address to listen.(default: 127.0.0.1) " , default = ' 127.0.0.1 ' )
parser . add_argument ( " --port " , type = int , help = " Set the port to listen.(default: 8081) " , default = 8081 )
args = parser . parse_args ( )
def is_present ( json , key ) :
2023-10-08 10:55:58 +00:00
try :
buf = json [ key ]
except KeyError :
return False
if json [ key ] == None :
return False
return True
2023-07-04 18:06:12 +00:00
#convert chat to prompt
def convert_chat ( messages ) :
prompt = " " + args . chat_prompt . replace ( " \\ n " , " \n " )
system_n = args . system_name . replace ( " \\ n " , " \n " )
user_n = args . user_name . replace ( " \\ n " , " \n " )
ai_n = args . ai_name . replace ( " \\ n " , " \n " )
stop = args . stop . replace ( " \\ n " , " \n " )
for line in messages :
if ( line [ " role " ] == " system " ) :
prompt + = f " { system_n } { line [ ' content ' ] } "
if ( line [ " role " ] == " user " ) :
prompt + = f " { user_n } { line [ ' content ' ] } "
if ( line [ " role " ] == " assistant " ) :
prompt + = f " { ai_n } { line [ ' content ' ] } { stop } "
prompt + = ai_n . rstrip ( )
return prompt
def make_postData ( body , chat = False , stream = False ) :
postData = { }
if ( chat ) :
postData [ " prompt " ] = convert_chat ( body [ " messages " ] )
else :
postData [ " prompt " ] = body [ " prompt " ]
if ( is_present ( body , " temperature " ) ) : postData [ " temperature " ] = body [ " temperature " ]
if ( is_present ( body , " top_k " ) ) : postData [ " top_k " ] = body [ " top_k " ]
if ( is_present ( body , " top_p " ) ) : postData [ " top_p " ] = body [ " top_p " ]
if ( is_present ( body , " max_tokens " ) ) : postData [ " n_predict " ] = body [ " max_tokens " ]
if ( is_present ( body , " presence_penalty " ) ) : postData [ " presence_penalty " ] = body [ " presence_penalty " ]
if ( is_present ( body , " frequency_penalty " ) ) : postData [ " frequency_penalty " ] = body [ " frequency_penalty " ]
if ( is_present ( body , " repeat_penalty " ) ) : postData [ " repeat_penalty " ] = body [ " repeat_penalty " ]
if ( is_present ( body , " mirostat " ) ) : postData [ " mirostat " ] = body [ " mirostat " ]
if ( is_present ( body , " mirostat_tau " ) ) : postData [ " mirostat_tau " ] = body [ " mirostat_tau " ]
if ( is_present ( body , " mirostat_eta " ) ) : postData [ " mirostat_eta " ] = body [ " mirostat_eta " ]
if ( is_present ( body , " seed " ) ) : postData [ " seed " ] = body [ " seed " ]
if ( is_present ( body , " logit_bias " ) ) : postData [ " logit_bias " ] = [ [ int ( token ) , body [ " logit_bias " ] [ token ] ] for token in body [ " logit_bias " ] . keys ( ) ]
if ( args . stop != " " ) :
postData [ " stop " ] = [ args . stop ]
else :
postData [ " stop " ] = [ ]
if ( is_present ( body , " stop " ) ) : postData [ " stop " ] + = body [ " stop " ]
postData [ " n_keep " ] = - 1
postData [ " stream " ] = stream
2023-10-17 20:53:38 +00:00
postData [ " cache_prompt " ] = True
postData [ " slot_id " ] = slot_id
2023-07-04 18:06:12 +00:00
return postData
def make_resData ( data , chat = False , promptToken = [ ] ) :
resData = {
" id " : " chatcmpl " if ( chat ) else " cmpl " ,
" object " : " chat.completion " if ( chat ) else " text_completion " ,
" created " : int ( time . time ( ) ) ,
" truncated " : data [ " truncated " ] ,
" model " : " LLaMA_CPP " ,
" usage " : {
" prompt_tokens " : data [ " tokens_evaluated " ] ,
" completion_tokens " : data [ " tokens_predicted " ] ,
" total_tokens " : data [ " tokens_evaluated " ] + data [ " tokens_predicted " ]
}
}
if ( len ( promptToken ) != 0 ) :
resData [ " promptToken " ] = promptToken
if ( chat ) :
#only one choice is supported
resData [ " choices " ] = [ {
" index " : 0 ,
" message " : {
" role " : " assistant " ,
" content " : data [ " content " ] ,
} ,
" finish_reason " : " stop " if ( data [ " stopped_eos " ] or data [ " stopped_word " ] ) else " length "
} ]
else :
#only one choice is supported
resData [ " choices " ] = [ {
" text " : data [ " content " ] ,
" index " : 0 ,
" logprobs " : None ,
" finish_reason " : " stop " if ( data [ " stopped_eos " ] or data [ " stopped_word " ] ) else " length "
} ]
return resData
def make_resData_stream ( data , chat = False , time_now = 0 , start = False ) :
resData = {
" id " : " chatcmpl " if ( chat ) else " cmpl " ,
" object " : " chat.completion.chunk " if ( chat ) else " text_completion.chunk " ,
" created " : time_now ,
" model " : " LLaMA_CPP " ,
" choices " : [
{
" finish_reason " : None ,
" index " : 0
}
]
}
2023-10-17 20:53:38 +00:00
slot_id = data [ " slot_id " ]
2023-07-04 18:06:12 +00:00
if ( chat ) :
if ( start ) :
resData [ " choices " ] [ 0 ] [ " delta " ] = {
" role " : " assistant "
}
else :
resData [ " choices " ] [ 0 ] [ " delta " ] = {
" content " : data [ " content " ]
}
if ( data [ " stop " ] ) :
resData [ " choices " ] [ 0 ] [ " finish_reason " ] = " stop " if ( data [ " stopped_eos " ] or data [ " stopped_word " ] ) else " length "
else :
resData [ " choices " ] [ 0 ] [ " text " ] = data [ " content " ]
if ( data [ " stop " ] ) :
resData [ " choices " ] [ 0 ] [ " finish_reason " ] = " stop " if ( data [ " stopped_eos " ] or data [ " stopped_word " ] ) else " length "
return resData
@app.route ( ' /chat/completions ' , methods = [ ' POST ' ] )
@app.route ( ' /v1/chat/completions ' , methods = [ ' POST ' ] )
def chat_completions ( ) :
if ( args . api_key != " " and request . headers [ " Authorization " ] . split ( ) [ 1 ] != args . api_key ) :
return Response ( status = 403 )
body = request . get_json ( )
stream = False
tokenize = False
if ( is_present ( body , " stream " ) ) : stream = body [ " stream " ]
if ( is_present ( body , " tokenize " ) ) : tokenize = body [ " tokenize " ]
postData = make_postData ( body , chat = True , stream = stream )
promptToken = [ ]
if ( tokenize ) :
tokenData = requests . request ( " POST " , urllib . parse . urljoin ( args . llama_api , " /tokenize " ) , data = json . dumps ( { " content " : postData [ " prompt " ] } ) ) . json ( )
promptToken = tokenData [ " tokens " ]
if ( not stream ) :
data = requests . request ( " POST " , urllib . parse . urljoin ( args . llama_api , " /completion " ) , data = json . dumps ( postData ) )
print ( data . json ( ) )
resData = make_resData ( data . json ( ) , chat = True , promptToken = promptToken )
return jsonify ( resData )
else :
def generate ( ) :
data = requests . request ( " POST " , urllib . parse . urljoin ( args . llama_api , " /completion " ) , data = json . dumps ( postData ) , stream = True )
time_now = int ( time . time ( ) )
resData = make_resData_stream ( { } , chat = True , time_now = time_now , start = True )
yield ' data: {} \n ' . format ( json . dumps ( resData ) )
for line in data . iter_lines ( ) :
if line :
decoded_line = line . decode ( ' utf-8 ' )
resData = make_resData_stream ( json . loads ( decoded_line [ 6 : ] ) , chat = True , time_now = time_now )
yield ' data: {} \n ' . format ( json . dumps ( resData ) )
return Response ( generate ( ) , mimetype = ' text/event-stream ' )
@app.route ( ' /completions ' , methods = [ ' POST ' ] )
@app.route ( ' /v1/completions ' , methods = [ ' POST ' ] )
def completion ( ) :
if ( args . api_key != " " and request . headers [ " Authorization " ] . split ( ) [ 1 ] != args . api_key ) :
return Response ( status = 403 )
body = request . get_json ( )
stream = False
tokenize = False
if ( is_present ( body , " stream " ) ) : stream = body [ " stream " ]
if ( is_present ( body , " tokenize " ) ) : tokenize = body [ " tokenize " ]
postData = make_postData ( body , chat = False , stream = stream )
promptToken = [ ]
if ( tokenize ) :
tokenData = requests . request ( " POST " , urllib . parse . urljoin ( args . llama_api , " /tokenize " ) , data = json . dumps ( { " content " : postData [ " prompt " ] } ) ) . json ( )
promptToken = tokenData [ " tokens " ]
if ( not stream ) :
data = requests . request ( " POST " , urllib . parse . urljoin ( args . llama_api , " /completion " ) , data = json . dumps ( postData ) )
print ( data . json ( ) )
resData = make_resData ( data . json ( ) , chat = False , promptToken = promptToken )
return jsonify ( resData )
else :
def generate ( ) :
data = requests . request ( " POST " , urllib . parse . urljoin ( args . llama_api , " /completion " ) , data = json . dumps ( postData ) , stream = True )
time_now = int ( time . time ( ) )
for line in data . iter_lines ( ) :
if line :
decoded_line = line . decode ( ' utf-8 ' )
resData = make_resData_stream ( json . loads ( decoded_line [ 6 : ] ) , chat = False , time_now = time_now )
yield ' data: {} \n ' . format ( json . dumps ( resData ) )
return Response ( generate ( ) , mimetype = ' text/event-stream ' )
if __name__ == ' __main__ ' :
app . run ( args . host , port = args . port )