llama.cpp/tests/test-tokenizer-0.cpp

144 lines
4.6 KiB
C++
Raw Normal View History

#include "llama.h"
#include <cstdio>
#include <string>
#include <map>
#include <vector>
static const std::map<std::string, std::vector<llama_token>> & k_tests()
{
static std::map<std::string, std::vector<llama_token>> _k_tests = {
2023-07-04 10:15:25 +00:00
{ "Hello World", { 1, 10994, 2787, }, },
{ " Hello World", { 1, 15043, 2787, }, },
{ " Hello World!", { 1, 15043, 2787, 29991, }, },
{ " this is 🦙.cpp", { 1, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, },
{ "w048 7tuijk dsdfhu", { 1, 29893, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, },
{ "нещо на Български", { 1, 821, 4851, 665, 1386, 29713, 1305, }, },
{ "\xe6\x88\x91\xe4\xbb\xac\xe5\xa4\xa7\xe5\xae\xb6\xe4\xb8\x80\xe8\xb5\xb7", { 1, 30672, 31381, 30257, 30613, 30287, 31558, }, },
2023-07-04 13:08:48 +00:00
{ " >>>>ANSWER<<", {1, 5099, 6778, 2190, 23066, 1001, 9314}, },
};
return _k_tests;
};
int main(int argc, char **argv) {
if (argc < 2) {
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
return 1;
}
const std::string fname = argv[1];
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
llama_model * model;
llama_context * ctx;
// load the vocab
{
auto lparams = llama_context_default_params();
lparams.vocab_only = true;
model = llama_load_model_from_file(fname.c_str(), lparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}
ctx = llama_new_context_with_model(model, lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}
const int n_vocab = llama_n_vocab(ctx);
if (n_vocab != 32000) {
fprintf(stderr, "%s : expected 32000 tokens, got %d\n", __func__, n_vocab);
llama_free_model(model);
llama_free(ctx);
return 2;
}
for (const auto & test_kv : k_tests()) {
std::vector<llama_token> res(test_kv.first.size());
const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), int(res.size()), true);
res.resize(n);
bool correct = res.size() == test_kv.second.size();
for (int i = 0; i < (int) res.size() && correct; ++i) {
if (res[i] != test_kv.second[i]) {
correct = false;
}
}
if (!correct) {
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
fprintf(stderr, "%s : expected tokens: ", __func__);
for (const auto & t : test_kv.second) {
fprintf(stderr, "%6d, ", t);
}
fprintf(stderr, "\n");
2023-07-04 10:15:25 +00:00
for (const auto & t : test_kv.second) {
fprintf(stderr, "%7s ", llama_token_to_str(ctx, t));
}
fprintf(stderr, "\n");
fprintf(stderr, "%s : got tokens: ", __func__);
for (const auto & t : res) {
fprintf(stderr, "%6d, ", t);
}
fprintf(stderr, "\n");
2023-07-04 10:15:25 +00:00
for (const auto & t : res) {
fprintf(stderr, "%7s ", llama_token_to_str(ctx, t));
}
fprintf(stderr, "\n");
llama_free_model(model);
llama_free(ctx);
return 3;
}
}
2023-07-02 14:06:10 +00:00
#if 0
// how many tokens would not tokenize to themselves
for (llama_token i = 1; i < llama_n_vocab(ctx); i++)
{
const char* str = llama_token_to_str(ctx, i);
std::vector<llama_token> res(100);
const int n = llama_tokenize(ctx, str, res.data(), int(res.size()), false);
res.resize(n);
for (const auto & t : res)
{
//if (t == 1) continue;
if (t != i) {
fprintf(stderr, "%s : failed test: '%s'\n", __func__, str);
fprintf(stderr, "%s : expected tokens: %d\n", __func__, i);
fprintf(stderr, "%s : got tokens: ", __func__);
for (const auto & t : res) {
fprintf(stderr, "%6d, ", t);
}
for (const auto & t : res) {
fprintf(stderr, "%s|", llama_token_to_str(ctx, t));
}
fprintf(stderr, "\n");
}
}
}
#endif
llama_free_model(model);
llama_free(ctx);
return 0;
}