mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-30 21:34:36 +00:00
475 lines
15 KiB
C++
475 lines
15 KiB
C++
|
|
||
|
#include "common.h"
|
||
|
#include "ggml.h"
|
||
|
#include "ggml-alloc.h"
|
||
|
|
||
|
#include <vector>
|
||
|
#include <string>
|
||
|
#include <thread>
|
||
|
|
||
|
static const size_t tensor_alignment = 32;
|
||
|
|
||
|
struct lora_info {
|
||
|
std::string filename;
|
||
|
float scale;
|
||
|
};
|
||
|
|
||
|
struct export_lora_params {
|
||
|
std::string fn_model_base;
|
||
|
std::string fn_model_out;
|
||
|
std::vector<struct lora_info> lora;
|
||
|
int n_threads;
|
||
|
};
|
||
|
|
||
|
struct lora_data {
|
||
|
struct lora_info info;
|
||
|
std::vector<uint8_t> data;
|
||
|
struct ggml_context * ctx;
|
||
|
|
||
|
uint32_t lora_r;
|
||
|
uint32_t lora_alpha;
|
||
|
};
|
||
|
|
||
|
struct llama_file {
|
||
|
// use FILE * so we don't have to re-open the file to mmap
|
||
|
FILE * fp;
|
||
|
size_t size;
|
||
|
|
||
|
llama_file(const char * fname, const char * mode) {
|
||
|
fp = std::fopen(fname, mode);
|
||
|
if (fp == NULL) {
|
||
|
size = 0;
|
||
|
} else {
|
||
|
seek(0, SEEK_END);
|
||
|
size = tell();
|
||
|
seek(0, SEEK_SET);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
size_t tell() const {
|
||
|
#ifdef _WIN32
|
||
|
__int64 ret = _ftelli64(fp);
|
||
|
#else
|
||
|
long ret = std::ftell(fp);
|
||
|
#endif
|
||
|
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
||
|
return (size_t) ret;
|
||
|
}
|
||
|
|
||
|
void seek(size_t offset, int whence) {
|
||
|
#ifdef _WIN32
|
||
|
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||
|
#else
|
||
|
int ret = std::fseek(fp, (long) offset, whence);
|
||
|
#endif
|
||
|
GGML_ASSERT(ret == 0); // same
|
||
|
}
|
||
|
|
||
|
void read_raw(void * ptr, size_t size) {
|
||
|
if (size == 0) {
|
||
|
return;
|
||
|
}
|
||
|
errno = 0;
|
||
|
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||
|
if (ferror(fp)) {
|
||
|
die_fmt("read error: %s", strerror(errno));
|
||
|
}
|
||
|
if (ret != 1) {
|
||
|
die("unexpectedly reached end of file");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::uint32_t read_u32() {
|
||
|
std::uint32_t ret;
|
||
|
read_raw(&ret, sizeof(ret));
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
std::string read_string(std::uint32_t len) {
|
||
|
std::vector<char> chars(len);
|
||
|
read_raw(chars.data(), len);
|
||
|
return std::string(chars.data(), len);
|
||
|
}
|
||
|
|
||
|
void write_raw(const void * ptr, size_t size) {
|
||
|
if (size == 0) {
|
||
|
return;
|
||
|
}
|
||
|
errno = 0;
|
||
|
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||
|
if (ret != 1) {
|
||
|
die_fmt("write error: %s", strerror(errno));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void write_u32(std::uint32_t val) {
|
||
|
write_raw(&val, sizeof(val));
|
||
|
}
|
||
|
|
||
|
bool eof() {
|
||
|
return tell() >= size;
|
||
|
}
|
||
|
|
||
|
~llama_file() {
|
||
|
if (fp) {
|
||
|
std::fclose(fp);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static struct export_lora_params get_default_export_lora_params() {
|
||
|
struct export_lora_params result;
|
||
|
result.fn_model_base = "";
|
||
|
result.fn_model_out = "";
|
||
|
result.n_threads = GGML_DEFAULT_N_THREADS;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) {
|
||
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||
|
fprintf(stderr, "\n");
|
||
|
fprintf(stderr, "options:\n");
|
||
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||
|
fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str());
|
||
|
fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str());
|
||
|
fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n");
|
||
|
fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n");
|
||
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads);
|
||
|
}
|
||
|
|
||
|
static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) {
|
||
|
bool invalid_param = false;
|
||
|
std::string arg;
|
||
|
struct export_lora_params default_params = get_default_export_lora_params();
|
||
|
const std::string arg_prefix = "--";
|
||
|
|
||
|
for (int i = 1; i < argc; i++) {
|
||
|
arg = argv[i];
|
||
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||
|
std::replace(arg.begin(), arg.end(), '_', '-');
|
||
|
}
|
||
|
|
||
|
if (arg == "-m" || arg == "--model-base") {
|
||
|
if (++i >= argc) {
|
||
|
invalid_param = true;
|
||
|
break;
|
||
|
}
|
||
|
params->fn_model_base = argv[i];
|
||
|
} else if (arg == "-o" || arg == "--model-out") {
|
||
|
if (++i >= argc) {
|
||
|
invalid_param = true;
|
||
|
break;
|
||
|
}
|
||
|
params->fn_model_out = argv[i];
|
||
|
} else if (arg == "-l" || arg == "--lora") {
|
||
|
if (++i >= argc) {
|
||
|
invalid_param = true;
|
||
|
break;
|
||
|
}
|
||
|
struct lora_info lora;
|
||
|
lora.filename = argv[i];
|
||
|
lora.scale = 1.0f;
|
||
|
params->lora.push_back(lora);
|
||
|
} else if (arg == "-s" || arg == "--lora-scaled") {
|
||
|
if (++i >= argc) {
|
||
|
invalid_param = true;
|
||
|
break;
|
||
|
}
|
||
|
struct lora_info lora;
|
||
|
lora.filename = argv[i];
|
||
|
if (++i >= argc) {
|
||
|
invalid_param = true;
|
||
|
break;
|
||
|
}
|
||
|
lora.scale = std::stof(argv[i]);
|
||
|
params->lora.push_back(lora);
|
||
|
} else if (arg == "-t" || arg == "--threads") {
|
||
|
if (++i >= argc) {
|
||
|
invalid_param = true;
|
||
|
break;
|
||
|
}
|
||
|
params->n_threads = std::stoi(argv[i]);
|
||
|
if (params->n_threads <= 0) {
|
||
|
params->n_threads = std::thread::hardware_concurrency();
|
||
|
}
|
||
|
} else {
|
||
|
fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str());
|
||
|
export_lora_print_usage(argc, argv, &default_params);
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (params->fn_model_base == default_params.fn_model_base) {
|
||
|
fprintf(stderr, "error: please specify a filename for model-base.\n");
|
||
|
export_lora_print_usage(argc, argv, &default_params);
|
||
|
exit(1);
|
||
|
}
|
||
|
if (params->fn_model_out == default_params.fn_model_out) {
|
||
|
fprintf(stderr, "error: please specify a filename for model-out.\n");
|
||
|
export_lora_print_usage(argc, argv, &default_params);
|
||
|
exit(1);
|
||
|
}
|
||
|
if (invalid_param) {
|
||
|
fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str());
|
||
|
export_lora_print_usage(argc, argv, &default_params);
|
||
|
exit(1);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void free_lora(struct lora_data * lora) {
|
||
|
if (lora->ctx != NULL) {
|
||
|
ggml_free(lora->ctx);
|
||
|
}
|
||
|
delete lora;
|
||
|
}
|
||
|
|
||
|
static struct lora_data * load_lora(struct lora_info * info) {
|
||
|
struct lora_data * result = new struct lora_data;
|
||
|
result->info = *info;
|
||
|
result->ctx = NULL;
|
||
|
result->lora_r = 1;
|
||
|
result->lora_alpha = 1;
|
||
|
|
||
|
struct llama_file file(info->filename.c_str(), "rb");
|
||
|
if (file.fp == NULL) {
|
||
|
fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n",
|
||
|
info->filename.c_str());
|
||
|
free_lora(result);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
struct ggml_init_params params_ggml;
|
||
|
params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES;
|
||
|
params_ggml.mem_buffer = NULL;
|
||
|
params_ggml.no_alloc = true;
|
||
|
result->ctx = ggml_init(params_ggml);
|
||
|
|
||
|
uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla'
|
||
|
uint32_t magic = file.read_u32();
|
||
|
if (magic != LLAMA_FILE_MAGIC_LORA) {
|
||
|
die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
|
||
|
}
|
||
|
uint32_t version = file.read_u32();
|
||
|
if (version != 1) {
|
||
|
die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str());
|
||
|
}
|
||
|
result->lora_r = file.read_u32();
|
||
|
result->lora_alpha = file.read_u32();
|
||
|
// read tensor infos from file
|
||
|
std::vector<char> name_buf;
|
||
|
std::vector<struct ggml_tensor *> tensors;
|
||
|
std::vector<size_t> tensors_offset;
|
||
|
size_t total_nbytes_pad = 0;
|
||
|
while(!file.eof()) {
|
||
|
int64_t ne[4] = {1,1,1,1};
|
||
|
uint32_t n_dims = file.read_u32();
|
||
|
uint32_t namelen = file.read_u32();
|
||
|
uint32_t type = file.read_u32();
|
||
|
for (uint32_t k = 0; k < n_dims; ++k) {
|
||
|
ne[k] = (int64_t)file.read_u32();
|
||
|
}
|
||
|
name_buf.clear();
|
||
|
name_buf.resize(namelen + 1, '\0');
|
||
|
file.read_raw(name_buf.data(), namelen);
|
||
|
file.seek((0-file.tell()) & 31, SEEK_CUR);
|
||
|
size_t offset = file.tell();
|
||
|
struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne);
|
||
|
ggml_set_name(tensor, name_buf.data());
|
||
|
size_t nbytes = ggml_nbytes(tensor);
|
||
|
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
||
|
total_nbytes_pad += nbytes_pad;
|
||
|
tensors.push_back(tensor);
|
||
|
tensors_offset.push_back(offset);
|
||
|
file.seek(nbytes, SEEK_CUR);
|
||
|
}
|
||
|
// read tensor data
|
||
|
result->data.resize(total_nbytes_pad);
|
||
|
size_t data_offset = 0;
|
||
|
for (size_t i = 0; i < tensors.size(); ++i) {
|
||
|
struct ggml_tensor * tensor = tensors[i];
|
||
|
size_t offset = tensors_offset[i];
|
||
|
size_t nbytes = ggml_nbytes(tensor);
|
||
|
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
||
|
file.seek(offset, SEEK_SET);
|
||
|
tensor->data = result->data.data() + data_offset;
|
||
|
file.read_raw(tensor->data, nbytes);
|
||
|
data_offset += nbytes_pad;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
static struct ggml_cgraph * build_graph_lora(
|
||
|
struct ggml_context * ctx,
|
||
|
struct ggml_tensor * tensor,
|
||
|
struct ggml_tensor * lora_a,
|
||
|
struct ggml_tensor * lora_b,
|
||
|
float scaling
|
||
|
) {
|
||
|
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
|
||
|
if (scaling != 1.0f) {
|
||
|
ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling));
|
||
|
}
|
||
|
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
|
||
|
|
||
|
struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
||
|
ggml_build_forward_expand (gf, res);
|
||
|
return gf;
|
||
|
}
|
||
|
|
||
|
static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) {
|
||
|
if (lora->ctx == NULL) {
|
||
|
return false;
|
||
|
}
|
||
|
std::string name = ggml_get_name(tensor);
|
||
|
std::string name_a = name + std::string(".loraA");
|
||
|
std::string name_b = name + std::string(".loraB");
|
||
|
struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str());
|
||
|
struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str());
|
||
|
if (lora_a == NULL || lora_b == NULL) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
|
||
|
|
||
|
struct ggml_init_params params;
|
||
|
params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
|
||
|
params.mem_buffer = NULL;
|
||
|
params.no_alloc = true;
|
||
|
struct ggml_context * ctx = NULL;
|
||
|
struct ggml_allocr * alloc = NULL;
|
||
|
struct ggml_cgraph * gf = NULL;
|
||
|
|
||
|
ctx = ggml_init(params);
|
||
|
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||
|
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||
|
size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf);
|
||
|
ggml_allocr_free(alloc);
|
||
|
ggml_free(ctx);
|
||
|
|
||
|
static std::vector<uint8_t> data_compute;
|
||
|
data_compute.resize(alloc_size + tensor_alignment);
|
||
|
|
||
|
ctx = ggml_init(params);
|
||
|
alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment);
|
||
|
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||
|
ggml_allocr_alloc_graph(alloc, gf);
|
||
|
ggml_allocr_free(alloc);
|
||
|
|
||
|
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
|
||
|
static std::vector<uint8_t> data_work;
|
||
|
data_work.resize(cplan.work_size);
|
||
|
cplan.work_data = data_work.data();
|
||
|
|
||
|
ggml_graph_compute(gf, &cplan);
|
||
|
|
||
|
ggml_free(ctx);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void export_lora(struct export_lora_params * params) {
|
||
|
// load all loras
|
||
|
std::vector<struct lora_data *> loras;
|
||
|
for (size_t i = 0; i < params->lora.size(); ++i) {
|
||
|
struct lora_data * lora = load_lora(¶ms->lora[i]);
|
||
|
if (lora != NULL) {
|
||
|
loras.push_back(lora);
|
||
|
}
|
||
|
}
|
||
|
if (loras.size() == 0) {
|
||
|
fprintf(stderr, "warning: no lora adapters will be applied.\n");
|
||
|
}
|
||
|
|
||
|
// open input file
|
||
|
struct llama_file fin(params->fn_model_base.c_str(), "rb");
|
||
|
if (!fin.fp) {
|
||
|
die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str());
|
||
|
}
|
||
|
|
||
|
// open base model gguf, read tensors without their data
|
||
|
struct ggml_context * ctx_in;
|
||
|
struct gguf_init_params params_gguf;
|
||
|
params_gguf.no_alloc = true;
|
||
|
params_gguf.ctx = &ctx_in;
|
||
|
struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf);
|
||
|
|
||
|
// create new gguf
|
||
|
struct gguf_context * gguf_out = gguf_init_empty();
|
||
|
|
||
|
// copy meta data from base model: kv and tensors
|
||
|
gguf_set_kv(gguf_out, gguf_in);
|
||
|
int n_tensors = gguf_get_n_tensors(gguf_in);
|
||
|
for (int i=0; i < n_tensors; ++i) {
|
||
|
const char * name = gguf_get_tensor_name(gguf_in, i);
|
||
|
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
||
|
gguf_add_tensor(gguf_out, tensor);
|
||
|
}
|
||
|
|
||
|
// create output file
|
||
|
struct llama_file fout(params->fn_model_out.c_str(), "wb");
|
||
|
if (!fout.fp) {
|
||
|
die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str());
|
||
|
}
|
||
|
|
||
|
// write gguf meta data
|
||
|
std::vector<uint8_t> meta;
|
||
|
meta.resize(gguf_get_meta_size(gguf_out));
|
||
|
gguf_get_meta_data(gguf_out, meta.data());
|
||
|
fout.write_raw(meta.data(), meta.size());
|
||
|
|
||
|
std::vector<uint8_t> data;
|
||
|
std::vector<uint8_t> padding;
|
||
|
for (int i=0; i < n_tensors; ++i) {
|
||
|
const char * name = gguf_get_tensor_name(gguf_in, i);
|
||
|
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
||
|
|
||
|
// read tensor data
|
||
|
data.resize(ggml_nbytes(tensor));
|
||
|
tensor->data = data.data();
|
||
|
size_t offset = gguf_get_tensor_offset(gguf_in, i);
|
||
|
fin.seek(offset + meta.size(), SEEK_SET);
|
||
|
fin.read_raw(data.data(), data.size());
|
||
|
|
||
|
// apply all loras
|
||
|
for (size_t k = 0; k < loras.size(); ++k) {
|
||
|
apply_lora(tensor, loras[k], params->n_threads);
|
||
|
}
|
||
|
|
||
|
// write tensor data + padding
|
||
|
padding.clear();
|
||
|
padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0);
|
||
|
|
||
|
GGML_ASSERT(fout.tell() == offset + meta.size());
|
||
|
// fout.seek(offset + meta.size(), SEEK_SET);
|
||
|
fout.write_raw(data.data(), data.size());
|
||
|
fout.write_raw(padding.data(), padding.size());
|
||
|
|
||
|
if (i % 2 == 0) {
|
||
|
printf(".");
|
||
|
}
|
||
|
}
|
||
|
printf("\n");
|
||
|
|
||
|
// close gguf
|
||
|
gguf_free(gguf_out);
|
||
|
gguf_free(gguf_in);
|
||
|
|
||
|
// free loras
|
||
|
for (size_t i = 0; i < loras.size(); ++i) {
|
||
|
free_lora(loras[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, char ** argv) {
|
||
|
struct export_lora_params params = get_default_export_lora_params();
|
||
|
|
||
|
if (!export_lora_params_parse(argc, argv, ¶ms)) {
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
export_lora(¶ms);
|
||
|
|
||
|
return 0;
|
||
|
}
|