llama.cpp/ggml/src/ggml-quants.c

5239 lines
209 KiB
C
Raw Normal View History

#define GGML_COMMON_IMPL_C
#include "ggml-common.h"
#include "ggml-quants.h"
#include "ggml-impl.h"
#include "ggml-cpu/ggml-cpu-impl.h"
#include "ggml-cpu.h"
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
#include <math.h>
#include <string.h>
#include <assert.h>
#include <float.h>
#include <stdlib.h> // for qsort
#include <stdio.h> // for GGML_ASSERT
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
#define GROUP_MAX_EPS 1e-15f
#define GROUP_MAX_EPS_IQ3_XXS 1e-8f
#define GROUP_MAX_EPS_IQ2_S 1e-8f
#define GROUP_MAX_EPS_IQ1_M 1e-7f
#define GROUP_MAX_EPS_IQ1_S 1e-12f
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid warnings for hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
#endif
#define UNUSED GGML_UNUSED
// reference implementation for deterministic creation of model files
void quantize_row_q4_0_ref(const float * restrict x, block_q4_0 * restrict y, int64_t k) {
static const int qk = QK4_0;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
float max = 0.0f;
for (int j = 0; j < qk; j++) {
const float v = x[i*qk + j];
if (amax < fabsf(v)) {
amax = fabsf(v);
max = v;
}
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
const float d = max / -8;
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
for (int j = 0; j < qk/2; ++j) {
const float x0 = x[i*qk + 0 + j]*id;
const float x1 = x[i*qk + qk/2 + j]*id;
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
y[i].qs[j] = xi0;
y[i].qs[j] |= xi1 << 4;
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
}
}
void quantize_row_q4_1_ref(const float * restrict x, block_q4_1 * restrict y, int64_t k) {
const int qk = QK4_1;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
float min = FLT_MAX;
float max = -FLT_MAX;
for (int j = 0; j < qk; j++) {
const float v = x[i*qk + j];
if (v < min) min = v;
if (v > max) max = v;
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
const float d = (max - min) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
y[i].m = GGML_FP32_TO_FP16(min);
for (int j = 0; j < qk/2; ++j) {
const float x0 = (x[i*qk + 0 + j] - min)*id;
const float x1 = (x[i*qk + qk/2 + j] - min)*id;
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
y[i].qs[j] = xi0;
y[i].qs[j] |= xi1 << 4;
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
}
}
void quantize_row_q5_0_ref(const float * restrict x, block_q5_0 * restrict y, int64_t k) {
static const int qk = QK5_0;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
float max = 0.0f;
for (int j = 0; j < qk; j++) {
const float v = x[i*qk + j];
if (amax < fabsf(v)) {
amax = fabsf(v);
max = v;
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
}
const float d = max / -16;
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
uint32_t qh = 0;
for (int j = 0; j < qk/2; ++j) {
const float x0 = x[i*qk + 0 + j]*id;
const float x1 = x[i*qk + qk/2 + j]*id;
const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
// get the 5-th bit and store it in qh at the right position
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
memcpy(&y[i].qh, &qh, sizeof(qh));
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
}
void quantize_row_q5_1_ref(const float * restrict x, block_q5_1 * restrict y, int64_t k) {
const int qk = QK5_1;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
float min = FLT_MAX;
float max = -FLT_MAX;
for (int j = 0; j < qk; j++) {
const float v = x[i*qk + j];
if (v < min) min = v;
if (v > max) max = v;
}
const float d = (max - min) / ((1 << 5) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
y[i].m = GGML_FP32_TO_FP16(min);
uint32_t qh = 0;
for (int j = 0; j < qk/2; ++j) {
const float x0 = (x[i*qk + 0 + j] - min)*id;
const float x1 = (x[i*qk + qk/2 + j] - min)*id;
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
// get the 5-th bit and store it in qh at the right position
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
}
memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
}
// reference implementation for deterministic creation of model files
void quantize_row_q8_0_ref(const float * restrict x, block_q8_0 * restrict y, int64_t k) {
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = x[i*QK8_0 + j];
amax = MAX(amax, fabsf(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
for (int j = 0; j < QK8_0; ++j) {
const float x0 = x[i*QK8_0 + j]*id;
y[i].qs[j] = roundf(x0);
}
}
}
// reference implementation for deterministic creation of model files
void quantize_row_q8_1_ref(const float * restrict x, block_q8_1 * restrict y, int64_t k) {
assert(QK8_1 == 32);
assert(k % QK8_1 == 0);
const int nb = k / QK8_1;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_1; j++) {
const float v = x[i*QK8_1 + j];
amax = MAX(amax, fabsf(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
int sum = 0;
for (int j = 0; j < QK8_1/2; ++j) {
const float v0 = x[i*QK8_1 + j]*id;
const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
y[i].qs[ j] = roundf(v0);
y[i].qs[QK8_1/2 + j] = roundf(v1);
sum += y[i].qs[ j];
sum += y[i].qs[QK8_1/2 + j];
}
y[i].s = GGML_FP32_TO_FP16(sum*d);
}
}
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int64_t k) {
static const int qk = QK4_0;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0x0F) - 8;
const int x1 = (x[i].qs[j] >> 4) - 8;
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
}
}
void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int64_t k) {
static const int qk = QK4_1;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
const float m = GGML_FP16_TO_FP32(x[i].m);
for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0x0F);
const int x1 = (x[i].qs[j] >> 4);
y[i*qk + j + 0 ] = x0*d + m;
y[i*qk + j + qk/2] = x1*d + m;
}
}
}
void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int64_t k) {
static const int qk = QK5_0;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
uint32_t qh;
memcpy(&qh, x[i].qh, sizeof(qh));
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
}
}
void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int64_t k) {
static const int qk = QK5_1;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
const float m = GGML_FP16_TO_FP32(x[i].m);
uint32_t qh;
memcpy(&qh, x[i].qh, sizeof(qh));
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
const int x1 = (x[i].qs[j] >> 4) | xh_1;
y[i*qk + j + 0 ] = x0*d + m;
y[i*qk + j + qk/2] = x1*d + m;
}
}
}
void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int64_t k) {
static const int qk = QK8_0;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
for (int j = 0; j < qk; ++j) {
y[i*qk + j] = x[i].qs[j]*d;
}
}
}
//
// 2-6 bit quantization in super-blocks
//
//
// ===================== Helper functions
//
static inline int nearest_int(float fval) {
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151) * ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b * ggml-quants : faster 1.625 bpw AVX2 vec_dot Not using a lookup table anymore makes it match q4_0 speed. * gguf-py : fix formatting * llama : remove spaces on empty line * ggml-quants : subtract 1 when back in epi8 This makes the 1.625 bpw type go faster than q4_0. Still not the fastest. * ggml-quants : Q2_2 now faster than Q4_K on with AVX2 * ggml-quants : cleanup Q1_3 code formatting * ggml-quants : ARM NEON vec_dot for q2_2 and q1_3 * ggml-quants : use ceiling division when quantizing q1_3 * convert-hf : simplify BitNet pre-quantization This still results in the exact same tensor weights and scales, but it reveals some weirdness in the current algorithm. * convert-hf : allow converting the weird BitNet 1.3B Its FFN size is 5460 which is not convenient. The offending tensors are kept in F16, which makes the final model 5.01 bpw. * bitnet : replace 1.58b with b1.58, as in the paper * ggml-quants : fix build failure on Windows * ggml-quants : attempt to fix Arm 32-bit support * ggml : add some informative comments in q1_3 vec_dot * ggml : add TQ1_0 and TQ2_0 ternary quantization types * ggml : even faster TQ2_0 * ggml : also faster TQ1_0 Same optimization as for TQ2_0 by offsetting the sum instead of the weights. This makes TQ1_0 almost as fast as Q8_0 on AVX2. * ggml : fix build issues in certain environments * ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0 * ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat The compiler seems smart enough to use the same instruction even when using vget_high_s8 instead. * ggml : remove q1_3 and q2_2 No more 1.625 bpw and 2.000 bpw, now instead using 1.6875 bpw and 2.0625 bpw with TQ1_0 and TQ2_0, respectively. * llama : remove the separate scale tensors of BitNet b1.58 They won't be needed, since the remaining ternary quant types have built-in scales. * ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency * ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot Not yet tested on hardware which supports it, might not work or might not even compile. But also it might. It should make the performance better on recent ARM CPUs. * ggml-quants : remove comment about possible format change of TQ2_0 Making it slightly more convenient for AVX512 but less convenient for everything else is not worth the trouble. * gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0 * ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0 This does not change anything for ternary models, since their values should never end up being in halfway cases anyway. * convert : allow direct conversion to TQ1_0 and TQ2_0 The token embeddings and output tensors are kept in F16 to allow quantizing them to Q4_K and Q6_K with llama-quantize. * llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0 Q4_0 is not completely symmetric (so not lossless for ternary models), but it should be good enough. * ggml-quants : allow using ARM dot product instructions for TQ1_0 * ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support * ggml : remove unused ggml_mul special case It would otherwise conflict with the more general optimization coming with Mamba-2. * ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators * test-backend-ops : add TQ1_0 and TQ2_0 comments for later Not yet adding uncommented, because some backends like SYCL and Metal do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT. (and Metal also doesn't handle it with GGML_OP_GET_ROWS) Support for TQ1_0 and TQ2_0 for other backends than CPU will be added in follow-up pull requests.
2024-09-06 01:48:47 +00:00
assert(fabsf(fval) <= 4194303.f);
float val = fval + 12582912.f;
int i; memcpy(&i, &val, sizeof(int));
return (i & 0x007fffff) - 0x00400000;
}
static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
const float * restrict qw) {
float max = 0;
float amax = 0;
for (int i = 0; i < n; ++i) {
float ax = fabsf(x[i]);
if (ax > amax) { amax = ax; max = x[i]; }
}
if (amax < GROUP_MAX_EPS) { // all zero
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
for (int i = 0; i < n; ++i) {
L[i] = 0;
}
return 0.f;
}
float iscale = -nmax / max;
if (rmse_type == 0) {
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
}
return 1/iscale;
}
bool return_early = false;
if (rmse_type < 0) {
rmse_type = -rmse_type;
return_early = true;
}
float sumlx = 0;
float suml2 = 0;
#ifdef HAVE_BUGGY_APPLE_LINKER
// use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
for (volatile int i = 0; i < n; ++i) {
#else
for (int i = 0; i < n; ++i) {
#endif
int l = nearest_int(iscale * x[i]);
l = MAX(-nmax, MIN(nmax-1, l));
L[i] = l + nmax;
float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
sumlx += w*x[i]*l;
suml2 += w*l*l;
}
float scale = suml2 ? sumlx/suml2 : 0.0f;
if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
float best = scale * sumlx;
for (int is = -9; is <= 9; ++is) {
if (is == 0) {
continue;
}
iscale = -(nmax + 0.1f*is) / max;
sumlx = suml2 = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
l = MAX(-nmax, MIN(nmax-1, l));
float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
sumlx += w*x[i]*l;
suml2 += w*l*l;
}
if (suml2 > 0 && sumlx*sumlx > best*suml2) {
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
}
scale = sumlx/suml2; best = scale*sumlx;
}
}
return scale;
}
static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
float max = 0;
float amax = 0;
for (int i = 0; i < n; ++i) {
float ax = fabsf(x[i]);
if (ax > amax) { amax = ax; max = x[i]; }
}
if (amax < GROUP_MAX_EPS) { // all zero
for (int i = 0; i < n; ++i) { L[i] = 0; }
return 0.f;
}
float iscale = -nmax / max;
if (do_rmse) {
float sumlx = 0;
float suml2 = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
l = MAX(-nmax, MIN(nmax-1, l));
L[i] = l;
float w = x[i]*x[i];
sumlx += w*x[i]*l;
suml2 += w*l*l;
}
for (int itry = 0; itry < 5; ++itry) {
int n_changed = 0;
for (int i = 0; i < n; ++i) {
float w = x[i]*x[i];
float slx = sumlx - w*x[i]*L[i];
if (slx > 0) {
float sl2 = suml2 - w*L[i]*L[i];
int new_l = nearest_int(x[i] * sl2 / slx);
new_l = MAX(-nmax, MIN(nmax-1, new_l));
if (new_l != L[i]) {
slx += w*x[i]*new_l;
sl2 += w*new_l*new_l;
if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
L[i] = new_l; sumlx = slx; suml2 = sl2;
++n_changed;
}
}
}
}
if (!n_changed) {
break;
}
}
for (int i = 0; i < n; ++i) {
L[i] += nmax;
}
return sumlx / suml2;
}
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
l = MAX(-nmax, MIN(nmax-1, l));
L[i] = l + nmax;
}
return 1/iscale;
}
static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
int ntry, float alpha) {
float min = x[0];
float max = x[0];
for (int i = 1; i < n; ++i) {
if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i];
}
if (max == min) {
for (int i = 0; i < n; ++i) L[i] = 0;
*the_min = 0;
return 0.f;
}
if (min > 0) min = 0;
float iscale = nmax/(max - min);
float scale = 1/iscale;
for (int itry = 0; itry < ntry; ++itry) {
float sumlx = 0; int suml2 = 0;
bool did_change = false;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale*(x[i] - min));
l = MAX(0, MIN(nmax, l));
if (l != L[i]) {
L[i] = l;
did_change = true;
}
sumlx += (x[i] - min)*l;
suml2 += l*l;
}
scale = sumlx/suml2;
float sum = 0;
for (int i = 0; i < n; ++i) {
sum += x[i] - scale*L[i];
}
min = alpha*min + (1 - alpha)*sum/n;
if (min > 0) min = 0;
iscale = 1/scale;
if (!did_change) break;
}
*the_min = -min;
return scale;
}
static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
float rmin, float rdelta, int nstep, bool use_mad) {
float min = x[0];
float max = x[0];
float sum_w = weights[0];
float sum_x = sum_w * x[0];
#ifdef HAVE_BUGGY_APPLE_LINKER
// use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
for (volatile int i = 1; i < n; ++i) {
#else
for (int i = 1; i < n; ++i) {
#endif
if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i];
float w = weights[i];
sum_w += w;
sum_x += w * x[i];
}
if (min > 0) min = 0;
if (max == min) {
for (int i = 0; i < n; ++i) L[i] = 0;
*the_min = -min;
return 0.f;
}
float iscale = nmax/(max - min);
float scale = 1/iscale;
float best_mad = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale*(x[i] - min));
L[i] = MAX(0, MIN(nmax, l));
float diff = scale * L[i] + min - x[i];
diff = use_mad ? fabsf(diff) : diff * diff;
float w = weights[i];
best_mad += w * diff;
}
if (nstep < 1) {
*the_min = -min;
return scale;
}
for (int is = 0; is <= nstep; ++is) {
iscale = (rmin + rdelta*is + nmax)/(max - min);
float sum_l = 0, sum_l2 = 0, sum_xl = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale*(x[i] - min));
l = MAX(0, MIN(nmax, l));
Laux[i] = l;
float w = weights[i];
sum_l += w*l;
sum_l2 += w*l*l;
sum_xl += w*l*x[i];
}
float D = sum_w * sum_l2 - sum_l * sum_l;
if (D > 0) {
float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
if (this_min > 0) {
this_min = 0;
this_scale = sum_xl / sum_l2;
}
float mad = 0;
for (int i = 0; i < n; ++i) {
float diff = this_scale * Laux[i] + this_min - x[i];
diff = use_mad ? fabsf(diff) : diff * diff;
float w = weights[i];
mad += w * diff;
}
if (mad < best_mad) {
for (int i = 0; i < n; ++i) {
L[i] = Laux[i];
}
best_mad = mad;
scale = this_scale;
min = this_min;
}
}
}
*the_min = -min;
return scale;
}
static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
if (j < 4) {
*d = q[j] & 63; *m = q[j + 4] & 63;
} else {
*d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
*m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
}
}
//========================- 2-bit (de)-quantization
void quantize_row_q2_K_ref(const float * restrict x, block_q2_K * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
uint8_t L[QK_K];
uint8_t Laux[16];
float weights[16];
float mins[QK_K/16];
float scales[QK_K/16];
const float q4scale = 15.f;
for (int i = 0; i < nb; i++) {
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/16; ++j) {
for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;
}
float min = mins[j];
if (min > max_min) {
max_min = min;
}
}
if (max_scale > 0) {
float iscale = q4scale/max_scale;
for (int j = 0; j < QK_K/16; ++j) {
int l = nearest_int(iscale*scales[j]);
y[i].scales[j] = l;
}
y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
} else {
for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
y[i].d = GGML_FP32_TO_FP16(0.f);
}
if (max_min > 0) {
float iscale = q4scale/max_min;
for (int j = 0; j < QK_K/16; ++j) {
int l = nearest_int(iscale*mins[j]);
y[i].scales[j] |= (l << 4);
}
y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
} else {
y[i].dmin = GGML_FP32_TO_FP16(0.f);
}
for (int j = 0; j < QK_K/16; ++j) {
const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
if (!d) continue;
const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
for (int ii = 0; ii < 16; ++ii) {
int l = nearest_int((x[16*j + ii] + dm)/d);
l = MAX(0, MIN(3, l));
L[16*j + ii] = l;
}
}
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
}
}
x += QK_K;
}
}
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
const float min = GGML_FP16_TO_FP32(x[i].dmin);
const uint8_t * q = x[i].qs;
int is = 0;
float dl, ml;
for (int n = 0; n < QK_K; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
uint8_t sc = x[i].scales[is++];
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
sc = x[i].scales[is++];
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
shift += 2;
}
q += 32;
}
}
}
static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
float rmin, float rdelta, int nstep, bool use_mad) {
float min = x[0];
float max = x[0];
float sum_w = weights ? weights[0] : x[0]*x[0];
float sum_x = sum_w * x[0];
#ifdef HAVE_BUGGY_APPLE_LINKER
// use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
for (volatile int i = 1; i < n; ++i) {
#else
for (int i = 1; i < n; ++i) {
#endif
if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i];
float w = weights ? weights[i] : x[i]*x[i];
sum_w += w;
sum_x += w * x[i];
}
if (min > 0) {
min = 0;
}
if (max <= min) {
memset(L, 0, n);
*the_min = -min;
return 0.f;
}
float iscale = nmax/(max - min);
float scale = 1/iscale;
float best_mad = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale*(x[i] - min));
L[i] = MAX(0, MIN(nmax, l));
float diff = scale * L[i] + min - x[i];
diff = use_mad ? fabsf(diff) : diff*diff;
float w = weights ? weights[i] : x[i]*x[i];
best_mad += w * diff;
}
if (nstep < 1) {
*the_min = -min;
return scale;
}
for (int is = 0; is <= nstep; ++is) {
iscale = (rmin + rdelta*is + nmax)/(max - min);
float sum_l = 0, sum_l2 = 0, sum_xl = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale*(x[i] - min));
l = MAX(0, MIN(nmax, l));
Laux[i] = l;
float w = weights ? weights[i] : x[i]*x[i];
sum_l += w*l;
sum_l2 += w*l*l;
sum_xl += w*l*x[i];
}
float D = sum_w * sum_l2 - sum_l * sum_l;
if (D > 0) {
float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
if (this_min > 0) {
this_min = 0;
this_scale = sum_xl / sum_l2;
}
float mad = 0;
for (int i = 0; i < n; ++i) {
float diff = this_scale * Laux[i] + this_min - x[i];
diff = use_mad ? fabsf(diff) : diff*diff;
float w = weights ? weights[i] : x[i]*x[i];
mad += w * diff;
}
if (mad < best_mad) {
for (int i = 0; i < n; ++i) {
L[i] = Laux[i];
}
best_mad = mad;
scale = this_scale;
min = this_min;
}
}
}
*the_min = -min;
return scale;
}
static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
float max = 0;
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
}
if (!max) { // all zero
for (int i = 0; i < n; ++i) { L[i] = 0; }
return 0.f;
}
float iscale = nmax / max;
for (int i = 0; i < n; ++i) {
L[i] = nearest_int(iscale * x[i]);
}
float scale = 1/iscale;
float best_mse = 0;
for (int i = 0; i < n; ++i) {
float diff = x[i] - scale*L[i];
float w = quant_weights[i];
best_mse += w*diff*diff;
}
for (int is = -4; is <= 4; ++is) {
if (is == 0) continue;
float iscale_is = (0.1f*is + nmax)/max;
float scale_is = 1/iscale_is;
float mse = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale_is*x[i]);
l = MIN(nmax, l);
float diff = x[i] - scale_is*l;
float w = quant_weights[i];
mse += w*diff*diff;
}
if (mse < best_mse) {
best_mse = mse;
iscale = iscale_is;
}
}
float sumlx = 0;
float suml2 = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
l = MIN(nmax, l);
L[i] = l;
float w = quant_weights[i];
sumlx += w*x[i]*l;
suml2 += w*l*l;
}
for (int itry = 0; itry < 5; ++itry) {
int n_changed = 0;
for (int i = 0; i < n; ++i) {
float w = quant_weights[i];
float slx = sumlx - w*x[i]*L[i];
float sl2 = suml2 - w*L[i]*L[i];
if (slx > 0 && sl2 > 0) {
int new_l = nearest_int(x[i] * sl2 / slx);
new_l = MIN(nmax, new_l);
if (new_l != L[i]) {
slx += w*x[i]*new_l;
sl2 += w*new_l*new_l;
if (slx*slx*suml2 > sumlx*sumlx*sl2) {
L[i] = new_l; sumlx = slx; suml2 = sl2;
++n_changed;
}
}
}
}
if (!n_changed) {
break;
}
}
return sumlx/suml2;
}
static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
GGML_ASSERT(quant_weights);
assert(k % QK_K == 0);
const int nb = k / QK_K;
const bool requantize = true;
uint8_t L[QK_K];
uint8_t Laux[16];
float mins[QK_K/16];
float scales[QK_K/16];
float sw[QK_K/16];
float weight[16];
uint8_t Ls[QK_K/16], Lm[QK_K/16];
for (int i = 0; i < nb; i++) {
memset(sw, 0, QK_K/16*sizeof(float));
float sumx2 = 0;
for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
float sigma2 = sumx2/QK_K;
for (int j = 0; j < QK_K/16; ++j) {
const float * restrict qw = quant_weights + QK_K * i + 16*j;
for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
}
float dm, mm;
dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
y[i].d = GGML_FP32_TO_FP16(dm);
y[i].dmin = GGML_FP32_TO_FP16(mm);
dm = GGML_FP16_TO_FP32(y[i].d);
mm = GGML_FP16_TO_FP32(y[i].dmin);
for (int j = 0; j < QK_K/16; ++j) {
y[i].scales[j] = Ls[j] | (Lm[j] << 4);
}
if (requantize) {
for (int j = 0; j < QK_K/16; ++j) {
const float d = dm * (y[i].scales[j] & 0xF);
if (!d) continue;
const float m = mm * (y[i].scales[j] >> 4);
for (int ii = 0; ii < 16; ++ii) {
int l = nearest_int((x[16*j + ii] + m)/d);
l = MAX(0, MIN(3, l));
L[16*j + ii] = l;
}
}
}
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
}
}
x += QK_K;
}
}
size_t quantize_q2_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
if (!quant_weights) {
quantize_row_q2_K_ref(src, dst, (int64_t)nrow*n_per_row);
}
else {
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += row_size;
}
}
return nrow * row_size;
}
//========================= 3-bit (de)-quantization
void quantize_row_q3_K_ref(const float * restrict x, block_q3_K * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
int8_t L[QK_K];
float scales[QK_K / 16];
for (int i = 0; i < nb; i++) {
float max_scale = 0;
float amax = 0;
for (int j = 0; j < QK_K/16; ++j) {
scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
float scale = fabsf(scales[j]);
if (scale > amax) {
amax = scale; max_scale = scales[j];
}
}
memset(y[i].scales, 0, 12);
if (max_scale) {
float iscale = -32.f/max_scale;
for (int j = 0; j < QK_K/16; ++j) {
int8_t l = nearest_int(iscale*scales[j]);
l = MAX(-32, MIN(31, l)) + 32;
if (j < 8) {
y[i].scales[j] = l & 0xF;
} else {
y[i].scales[j-8] |= ((l & 0xF) << 4);
}
l >>= 4;
y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
}
y[i].d = GGML_FP32_TO_FP16(1/iscale);
} else {
y[i].d = GGML_FP32_TO_FP16(0.f);
}
int8_t sc;
for (int j = 0; j < QK_K/16; ++j) {
sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
float d = GGML_FP16_TO_FP32(y[i].d) * sc;
if (!d) {
continue;
}
for (int ii = 0; ii < 16; ++ii) {
int l = nearest_int(x[16*j + ii]/d);
l = MAX(-4, MIN(3, l));
L[16*j + ii] = l + 4;
}
}
memset(y[i].hmask, 0, QK_K/8);
// We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
int m = 0;
uint8_t hm = 1;
for (int j = 0; j < QK_K; ++j) {
if (L[j] > 3) {
y[i].hmask[m] |= hm;
L[j] -= 4;
}
if (++m == QK_K/8) {
m = 0; hm <<= 1;
}
}
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
}
}
x += QK_K;
}
}
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
uint32_t aux[4];
const int8_t * scales = (const int8_t*)aux;
for (int i = 0; i < nb; i++) {
const float d_all = GGML_FP16_TO_FP32(x[i].d);
const uint8_t * restrict q = x[i].qs;
const uint8_t * restrict hm = x[i].hmask;
uint8_t m = 1;
memcpy(aux, x[i].scales, 12);
uint32_t tmp = aux[2];
aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
int is = 0;
float dl;
for (int n = 0; n < QK_K; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
}
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
}
shift += 2;
m <<= 1;
}
q += 32;
}
}
}
static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) {
assert(n_per_row % QK_K == 0);
const int nb = n_per_row / QK_K;
int8_t L[QK_K];
float scales[QK_K / 16];
float weight[16];
float sw[QK_K / 16];
int8_t Ls[QK_K / 16];
for (int i = 0; i < nb; i++) {
float sumx2 = 0;
for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
float sigma2 = 2*sumx2/QK_K;
for (int j = 0; j < QK_K/16; ++j) {
if (quant_weights) {
const float * qw = quant_weights + QK_K * i + 16*j;
for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
} else {
for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
}
float sumw = 0;
for (int l = 0; l < 16; ++l) sumw += weight[l];
sw[j] = sumw;
scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
}
memset(y[i].scales, 0, 12);
float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
for (int j = 0; j < QK_K/16; ++j) {
int l = Ls[j];
if (j < 8) {
y[i].scales[j] = l & 0xF;
} else {
y[i].scales[j-8] |= ((l & 0xF) << 4);
}
l >>= 4;
y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
}
y[i].d = GGML_FP32_TO_FP16(d_block);
int8_t sc;
for (int j = 0; j < QK_K/16; ++j) {
sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
float d = GGML_FP16_TO_FP32(y[i].d) * sc;
if (!d) {
continue;
}
for (int ii = 0; ii < 16; ++ii) {
int l = nearest_int(x[16*j + ii]/d);
l = MAX(-4, MIN(3, l));
L[16*j + ii] = l + 4;
}
}
memset(y[i].hmask, 0, QK_K/8);
// We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
int m = 0;
uint8_t hm = 1;
for (int j = 0; j < QK_K; ++j) {
if (L[j] > 3) {
y[i].hmask[m] |= hm;
L[j] -= 4;
}
if (++m == QK_K/8) {
m = 0; hm <<= 1;
}
}
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
}
}
x += QK_K;
}
}
size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
if (!quant_weights) {
quantize_row_q3_K_ref(src, dst, (int64_t)nrow*n_per_row);
}
else {
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += row_size;
}
}
return nrow * row_size;
}
// ====================== 4-bit (de)-quantization
void quantize_row_q4_K_ref(const float * restrict x, block_q4_K * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
uint8_t L[QK_K];
uint8_t Laux[32];
float weights[32];
float mins[QK_K/32];
float scales[QK_K/32];
for (int i = 0; i < nb; i++) {
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/32; ++j) {
//scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
float sum_x2 = 0;
for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
float av_x = sqrtf(sum_x2/32);
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;
}
float min = mins[j];
if (min > max_min) {
max_min = min;
}
}
float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
for (int j = 0; j < QK_K/32; ++j) {
uint8_t ls = nearest_int(inv_scale*scales[j]);
uint8_t lm = nearest_int(inv_min*mins[j]);
ls = MIN(63, ls);
lm = MIN(63, lm);
if (j < 4) {
y[i].scales[j] = ls;
y[i].scales[j+4] = lm;
} else {
y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
y[i].scales[j-4] |= ((ls >> 4) << 6);
y[i].scales[j-0] |= ((lm >> 4) << 6);
}
}
y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {
get_scale_min_k4(j, y[i].scales, &sc, &m);
const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
if (!d) continue;
const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
for (int ii = 0; ii < 32; ++ii) {
int l = nearest_int((x[32*j + ii] + dm)/d);
l = MAX(0, MIN(15, l));
L[32*j + ii] = l;
}
}
uint8_t * q = y[i].qs;
for (int j = 0; j < QK_K; j += 64) {
for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
q += 32;
}
x += QK_K;
}
}
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const uint8_t * q = x[i].qs;
const float d = GGML_FP16_TO_FP32(x[i].d);
const float min = GGML_FP16_TO_FP32(x[i].dmin);
int is = 0;
uint8_t sc, m;
for (int j = 0; j < QK_K; j += 64) {
get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
const float d1 = d * sc; const float m1 = min * m;
get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
const float d2 = d * sc; const float m2 = min * m;
for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
q += 32; is += 2;
}
}
}
static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) {
assert(n_per_row % QK_K == 0);
const int64_t nb = n_per_row / QK_K;
uint8_t L[QK_K];
uint8_t Laux[32];
uint8_t Ls[QK_K/32];
uint8_t Lm[QK_K/32];
float weights[32];
float sw[QK_K/32];
float mins[QK_K/32];
float scales[QK_K/32];
for (int i = 0; i < nb; i++) {
float sum_x2 = 0;
for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
float sigma2 = 2*sum_x2/QK_K;
float av_x = sqrtf(sigma2);
for (int j = 0; j < QK_K/32; ++j) {
if (quant_weights) {
const float * qw = quant_weights + QK_K*i + 32*j;
for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
} else {
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
}
float sumw = 0;
for (int l = 0; l < 32; ++l) sumw += weights[l];
sw[j] = sumw;
scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
}
float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
for (int j = 0; j < QK_K/32; ++j) {
uint8_t ls = Ls[j];
uint8_t lm = Lm[j];
if (j < 4) {
y[i].scales[j] = ls;
y[i].scales[j+4] = lm;
} else {
y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
y[i].scales[j-4] |= ((ls >> 4) << 6);
y[i].scales[j-0] |= ((lm >> 4) << 6);
}
}
y[i].d = GGML_FP32_TO_FP16(d_block);
y[i].dmin = GGML_FP32_TO_FP16(m_block);
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {
get_scale_min_k4(j, y[i].scales, &sc, &m);
const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
if (!d) continue;
const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
for (int ii = 0; ii < 32; ++ii) {
int l = nearest_int((x[32*j + ii] + dm)/d);
l = MAX(0, MIN(15, l));
L[32*j + ii] = l;
}
}
uint8_t * q = y[i].qs;
for (int j = 0; j < QK_K; j += 64) {
for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
q += 32;
}
x += QK_K;
}
}
size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
if (!quant_weights) {
quantize_row_q4_K_ref(src, dst, (int64_t)nrow*n_per_row);
}
else {
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += row_size;
}
}
return nrow * row_size;
}
// ====================== 5-bit (de)-quantization
void quantize_row_q5_K_ref(const float * restrict x, block_q5_K * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
uint8_t L[QK_K];
float mins[QK_K/32];
float scales[QK_K/32];
float weights[32];
uint8_t Laux[32];
for (int i = 0; i < nb; i++) {
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/32; ++j) {
//scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
float sum_x2 = 0;
for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
float av_x = sqrtf(sum_x2/32);
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;
}
float min = mins[j];
if (min > max_min) {
max_min = min;
}
}
float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
for (int j = 0; j < QK_K/32; ++j) {
uint8_t ls = nearest_int(inv_scale*scales[j]);
uint8_t lm = nearest_int(inv_min*mins[j]);
ls = MIN(63, ls);
lm = MIN(63, lm);
if (j < 4) {
y[i].scales[j] = ls;
y[i].scales[j+4] = lm;
} else {
y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
y[i].scales[j-4] |= ((ls >> 4) << 6);
y[i].scales[j-0] |= ((lm >> 4) << 6);
}
}
y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {
get_scale_min_k4(j, y[i].scales, &sc, &m);
const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
if (!d) continue;
const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
for (int ii = 0; ii < 32; ++ii) {
int l = nearest_int((x[32*j + ii] + dm)/d);
l = MAX(0, MIN(31, l));
L[32*j + ii] = l;
}
}
uint8_t * restrict qh = y[i].qh;
uint8_t * restrict ql = y[i].qs;
memset(qh, 0, QK_K/8);
uint8_t m1 = 1, m2 = 2;
for (int n = 0; n < QK_K; n += 64) {
for (int j = 0; j < 32; ++j) {
int l1 = L[n + j];
if (l1 > 15) {
l1 -= 16; qh[j] |= m1;
}
int l2 = L[n + j + 32];
if (l2 > 15) {
l2 -= 16; qh[j] |= m2;
}
ql[j] = l1 | (l2 << 4);
}
m1 <<= 2; m2 <<= 2;
ql += 32;
}
x += QK_K;
}
}
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const uint8_t * ql = x[i].qs;
const uint8_t * qh = x[i].qh;
const float d = GGML_FP16_TO_FP32(x[i].d);
const float min = GGML_FP16_TO_FP32(x[i].dmin);
int is = 0;
uint8_t sc, m;
uint8_t u1 = 1, u2 = 2;
for (int j = 0; j < QK_K; j += 64) {
get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
const float d1 = d * sc; const float m1 = min * m;
get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
const float d2 = d * sc; const float m2 = min * m;
for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
ql += 32; is += 2;
u1 <<= 2; u2 <<= 2;
}
}
}
static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) {
assert(n_per_row % QK_K == 0);
const int64_t nb = n_per_row / QK_K;
uint8_t L[QK_K];
uint8_t Laux[32];
uint8_t Ls[QK_K/32];
uint8_t Lm[QK_K/32];
float mins[QK_K/32];
float scales[QK_K/32];
float sw[QK_K/32];
float weights[32];
for (int i = 0; i < nb; i++) {
float sum_x2 = 0;
for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
float sigma2 = 2*sum_x2/QK_K;
float av_x = sqrtf(sigma2);
for (int j = 0; j < QK_K/32; ++j) {
if (quant_weights) {
const float * qw = quant_weights + QK_K*i + 32*j;
for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
} else {
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
}
float sumw = 0;
for (int l = 0; l < 32; ++l) sumw += weights[l];
sw[j] = sumw;
scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
}
float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
for (int j = 0; j < QK_K/32; ++j) {
uint8_t ls = Ls[j];
uint8_t lm = Lm[j];
ls = MIN(63, ls);
lm = MIN(63, lm);
if (j < 4) {
y[i].scales[j] = ls;
y[i].scales[j+4] = lm;
} else {
y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
y[i].scales[j-4] |= ((ls >> 4) << 6);
y[i].scales[j-0] |= ((lm >> 4) << 6);
}
}
y[i].d = GGML_FP32_TO_FP16(d_block);
y[i].dmin = GGML_FP32_TO_FP16(m_block);
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {
get_scale_min_k4(j, y[i].scales, &sc, &m);
const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
if (!d) continue;
const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
for (int ii = 0; ii < 32; ++ii) {
int l = nearest_int((x[32*j + ii] + dm)/d);
l = MAX(0, MIN(31, l));
L[32*j + ii] = l;
}
}
uint8_t * restrict qh = y[i].qh;
uint8_t * restrict ql = y[i].qs;
memset(qh, 0, QK_K/8);
uint8_t m1 = 1, m2 = 2;
for (int n = 0; n < QK_K; n += 64) {
for (int j = 0; j < 32; ++j) {
int l1 = L[n + j];
if (l1 > 15) {
l1 -= 16; qh[j] |= m1;
}
int l2 = L[n + j + 32];
if (l2 > 15) {
l2 -= 16; qh[j] |= m2;
}
ql[j] = l1 | (l2 << 4);
}
m1 <<= 2; m2 <<= 2;
ql += 32;
}
x += QK_K;
}
}
size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
if (!quant_weights) {
quantize_row_q5_K_ref(src, dst, (int64_t)nrow*n_per_row);
}
else {
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += row_size;
}
}
return nrow * row_size;
}
// ====================== 6-bit (de)-quantization
void quantize_row_q6_K_ref(const float * restrict x, block_q6_K * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
int8_t L[QK_K];
float scales[QK_K/16];
for (int i = 0; i < nb; i++) {
float max_scale = 0;
float max_abs_scale = 0;
for (int ib = 0; ib < QK_K/16; ++ib) {
const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
scales[ib] = scale;
const float abs_scale = fabsf(scale);
if (abs_scale > max_abs_scale) {
max_abs_scale = abs_scale;
max_scale = scale;
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
if (max_abs_scale < GROUP_MAX_EPS) {
memset(&y[i], 0, sizeof(block_q6_K));
y[i].d = GGML_FP32_TO_FP16(0.f);
x += QK_K;
continue;
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
float iscale = -128.f/max_scale;
y[i].d = GGML_FP32_TO_FP16(1/iscale);
for (int ib = 0; ib < QK_K/16; ++ib) {
y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
2023-08-22 16:14:09 +00:00
}
for (int j = 0; j < QK_K/16; ++j) {
float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
if (!d) {
continue;
2023-08-22 16:14:09 +00:00
}
for (int ii = 0; ii < 16; ++ii) {
int l = nearest_int(x[16*j + ii]/d);
l = MAX(-32, MIN(31, l));
L[16*j + ii] = l + 32;
2023-08-22 16:14:09 +00:00
}
}
uint8_t * restrict ql = y[i].ql;
uint8_t * restrict qh = y[i].qh;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
const uint8_t q1 = L[j + l + 0] & 0xF;
const uint8_t q2 = L[j + l + 32] & 0xF;
const uint8_t q3 = L[j + l + 64] & 0xF;
const uint8_t q4 = L[j + l + 96] & 0xF;
ql[l+ 0] = q1 | (q3 << 4);
ql[l+32] = q2 | (q4 << 4);
qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
2023-08-22 16:14:09 +00:00
}
ql += 64;
qh += 32;
}
x += QK_K;
2023-08-22 16:14:09 +00:00
}
}
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
const uint8_t * restrict ql = x[i].ql;
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict sc = x[i].scales;
for (int n = 0; n < QK_K; n += 128) {
for (int l = 0; l < 32; ++l) {
int is = l/16;
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
y[l + 0] = d * sc[is + 0] * q1;
y[l + 32] = d * sc[is + 2] * q2;
y[l + 64] = d * sc[is + 4] * q3;
y[l + 96] = d * sc[is + 6] * q4;
}
y += 128;
ql += 64;
qh += 32;
sc += 8;
}
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 19:56:18 +00:00
}
}
static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) {
assert(n_per_row % QK_K == 0);
const int64_t nb = n_per_row / QK_K;
int8_t L[QK_K];
float scales[QK_K/16];
//float weights[16];
for (int i = 0; i < nb; i++) {
//float sum_x2 = 0;
//for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
//float sigma2 = sum_x2/QK_K;
float max_scale = 0;
float max_abs_scale = 0;
for (int ib = 0; ib < QK_K/16; ++ib) {
float scale;
if (quant_weights) {
const float * qw = quant_weights + QK_K*i + 16*ib;
//for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
//scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
} else {
scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
}
scales[ib] = scale;
const float abs_scale = fabsf(scale);
if (abs_scale > max_abs_scale) {
max_abs_scale = abs_scale;
max_scale = scale;
}
}
if (max_abs_scale < GROUP_MAX_EPS) {
memset(&y[i], 0, sizeof(block_q6_K));
y[i].d = GGML_FP32_TO_FP16(0.f);
x += QK_K;
continue;
}
float iscale = -128.f/max_scale;
y[i].d = GGML_FP32_TO_FP16(1/iscale);
for (int ib = 0; ib < QK_K/16; ++ib) {
y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
}
for (int j = 0; j < QK_K/16; ++j) {
float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
if (!d) {
continue;
}
for (int ii = 0; ii < 16; ++ii) {
int l = nearest_int(x[16*j + ii]/d);
l = MAX(-32, MIN(31, l));
L[16*j + ii] = l + 32;
}
}
uint8_t * restrict ql = y[i].ql;
uint8_t * restrict qh = y[i].qh;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
const uint8_t q1 = L[j + l + 0] & 0xF;
const uint8_t q2 = L[j + l + 32] & 0xF;
const uint8_t q3 = L[j + l + 64] & 0xF;
const uint8_t q4 = L[j + l + 96] & 0xF;
ql[l+ 0] = q1 | (q3 << 4);
ql[l+32] = q2 | (q4 << 4);
qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
}
ql += 64;
qh += 32;
}
x += QK_K;
}
}
size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
if (!quant_weights) {
quantize_row_q6_K_ref(src, dst, (int64_t)nrow*n_per_row);
}
else {
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += row_size;
}
}
return nrow * row_size;
}
static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
static_assert(QK4_0 == 32, "QK4_0 must be 32");
if (!quant_weights) {
quantize_row_q4_0_ref(x, y, n_per_row);
return;
}
float weight[QK4_0];
int8_t L[QK4_0];
float sum_x2 = 0;
for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
float sigma2 = sum_x2/n_per_row;
const int64_t nb = n_per_row/QK4_0;
for (int ib = 0; ib < nb; ++ib) {
const float * xb = x + QK4_0 * ib;
const float * qw = quant_weights + QK4_0 * ib;
for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
y[ib].d = GGML_FP32_TO_FP16(d);
for (int j = 0; j < 16; ++j) {
y[ib].qs[j] = L[j] | (L[j+16] << 4);
}
}
}
size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) {
quantize_row_q4_0_ref(src, dst, (int64_t)nrow*n_per_row);
return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
}
size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += row_size;
}
return nrow * row_size;
}
static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
static_assert(QK4_1 == 32, "QK4_1 must be 32");
if (!quant_weights) {
quantize_row_q4_1_ref(x, y, n_per_row);
return;
}
float weight[QK4_1];
uint8_t L[QK4_1], Laux[QK4_1];
float sum_x2 = 0;
for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
float sigma2 = sum_x2/n_per_row;
const int64_t nb = n_per_row/QK4_1;
for (int ib = 0; ib < nb; ++ib) {
const float * xb = x + QK4_1 * ib;
const float * qw = quant_weights + QK4_1 * ib;
for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
float min;
float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
y[ib].d = GGML_FP32_TO_FP16(d);
y[ib].m = GGML_FP32_TO_FP16(-min);
for (int j = 0; j < 16; ++j) {
y[ib].qs[j] = L[j] | (L[j+16] << 4);
}
}
}
size_t quantize_q4_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) {
quantize_row_q4_1_ref(src, dst, (int64_t)nrow*n_per_row);
return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
}
size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += row_size;
}
return nrow * row_size;
}
static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
static_assert(QK5_0 == 32, "QK5_0 must be 32");
if (!quant_weights) {
quantize_row_q5_0_ref(x, y, n_per_row);
return;
}
float weight[QK5_0];
int8_t L[QK5_0];
float sum_x2 = 0;
for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
float sigma2 = sum_x2/n_per_row;
const int64_t nb = n_per_row/QK5_0;
for (int ib = 0; ib < nb; ++ib) {
const float * xb = x + QK5_0 * ib;
const float * qw = quant_weights + QK5_0 * ib;
for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
y[ib].d = GGML_FP32_TO_FP16(d);
uint32_t qh = 0;
for (int j = 0; j < 16; ++j) {
const uint8_t xi0 = L[j];
const uint8_t xi1 = L[j+16];
y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
// get the 5-th bit and store it in qh at the right position
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
}
memcpy(&y[ib].qh, &qh, sizeof(qh));
}
}
size_t quantize_q5_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) {
quantize_row_q5_0_ref(src, dst, (int64_t)nrow*n_per_row);
return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
}
size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += row_size;
}
return nrow * row_size;
}
static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
static_assert(QK5_1 == 32, "QK5_1 must be 32");
if (!quant_weights) {
quantize_row_q5_1_ref(x, y, n_per_row);
return;
}
float weight[QK5_1];
uint8_t L[QK5_1], Laux[QK5_1];
float sum_x2 = 0;
for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
float sigma2 = sum_x2/n_per_row;
const int64_t nb = n_per_row/QK5_1;
for (int ib = 0; ib < nb; ++ib) {
const float * xb = x + QK5_1 * ib;
const float * qw = quant_weights + QK5_1 * ib;
for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
float min;
float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
y[ib].d = GGML_FP32_TO_FP16(d);
y[ib].m = GGML_FP32_TO_FP16(-min);
uint32_t qh = 0;
for (int j = 0; j < 16; ++j) {
const uint8_t xi0 = L[j];
const uint8_t xi1 = L[j+16];
y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
// get the 5-th bit and store it in qh at the right position
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
}
memcpy(&y[ib].qh, &qh, sizeof(qh));
}
}
size_t quantize_q5_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) {
quantize_row_q5_1_ref(src, dst, (int64_t)nrow*n_per_row);
return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
}
size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += row_size;
}
return nrow * row_size;
}
size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
(void)quant_weights; // not used
const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
quantize_row_q8_0_ref(src, dst, (int64_t)nrow*n_per_row);
return nrow * row_size;
}
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151) * ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b * ggml-quants : faster 1.625 bpw AVX2 vec_dot Not using a lookup table anymore makes it match q4_0 speed. * gguf-py : fix formatting * llama : remove spaces on empty line * ggml-quants : subtract 1 when back in epi8 This makes the 1.625 bpw type go faster than q4_0. Still not the fastest. * ggml-quants : Q2_2 now faster than Q4_K on with AVX2 * ggml-quants : cleanup Q1_3 code formatting * ggml-quants : ARM NEON vec_dot for q2_2 and q1_3 * ggml-quants : use ceiling division when quantizing q1_3 * convert-hf : simplify BitNet pre-quantization This still results in the exact same tensor weights and scales, but it reveals some weirdness in the current algorithm. * convert-hf : allow converting the weird BitNet 1.3B Its FFN size is 5460 which is not convenient. The offending tensors are kept in F16, which makes the final model 5.01 bpw. * bitnet : replace 1.58b with b1.58, as in the paper * ggml-quants : fix build failure on Windows * ggml-quants : attempt to fix Arm 32-bit support * ggml : add some informative comments in q1_3 vec_dot * ggml : add TQ1_0 and TQ2_0 ternary quantization types * ggml : even faster TQ2_0 * ggml : also faster TQ1_0 Same optimization as for TQ2_0 by offsetting the sum instead of the weights. This makes TQ1_0 almost as fast as Q8_0 on AVX2. * ggml : fix build issues in certain environments * ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0 * ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat The compiler seems smart enough to use the same instruction even when using vget_high_s8 instead. * ggml : remove q1_3 and q2_2 No more 1.625 bpw and 2.000 bpw, now instead using 1.6875 bpw and 2.0625 bpw with TQ1_0 and TQ2_0, respectively. * llama : remove the separate scale tensors of BitNet b1.58 They won't be needed, since the remaining ternary quant types have built-in scales. * ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency * ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot Not yet tested on hardware which supports it, might not work or might not even compile. But also it might. It should make the performance better on recent ARM CPUs. * ggml-quants : remove comment about possible format change of TQ2_0 Making it slightly more convenient for AVX512 but less convenient for everything else is not worth the trouble. * gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0 * ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0 This does not change anything for ternary models, since their values should never end up being in halfway cases anyway. * convert : allow direct conversion to TQ1_0 and TQ2_0 The token embeddings and output tensors are kept in F16 to allow quantizing them to Q4_K and Q6_K with llama-quantize. * llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0 Q4_0 is not completely symmetric (so not lossless for ternary models), but it should be good enough. * ggml-quants : allow using ARM dot product instructions for TQ1_0 * ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support * ggml : remove unused ggml_mul special case It would otherwise conflict with the more general optimization coming with Mamba-2. * ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators * test-backend-ops : add TQ1_0 and TQ2_0 comments for later Not yet adding uncommented, because some backends like SYCL and Metal do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT. (and Metal also doesn't handle it with GGML_OP_GET_ROWS) Support for TQ1_0 and TQ2_0 for other backends than CPU will be added in follow-up pull requests.
2024-09-06 01:48:47 +00:00
// ====================== Ternary (de)-quantization (BitNet b1.58 and TriLMs)
void quantize_row_tq1_0_ref(const float * restrict x, block_tq1_0 * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
for (int64_t i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK_K; j++) {
const float v = x[j];
amax = MAX(amax, fabsf(v));
}
const float d = amax;
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
// 5 elements per byte, along 32 bytes
for (size_t j = 0; j < sizeof(y->qs) - sizeof(y->qs) % 32; j += 32) {
for (size_t m = 0; m < 32; ++m) {
uint8_t q = 0;
for (size_t n = 0; n < 5; ++n) {
int xi = lroundf(x[m + n*32] * id) + 1; // -1, 0, 1 -> 0, 1, 2
q *= 3;
q += xi;
}
// ceiling division (243 == pow(3, 5))
q = ((uint16_t)q * 256 + (243 - 1)) / 243;
y[i].qs[j + m] = q;
}
x += 5*32;
}
// along 16 bytes
for (size_t j = sizeof(y->qs) - sizeof(y->qs) % 32; j < sizeof(y->qs); j += 16) {
for (size_t m = 0; m < 16; ++m) {
uint8_t q = 0;
for (size_t n = 0; n < 5; ++n) {
int xi = lroundf(x[m + n*16] * id) + 1; // -1, 0, 1 -> 0, 1, 2
q *= 3;
q += xi;
}
// ceiling division (243 == pow(3, 5))
q = ((uint16_t)q * 256 + (243 - 1)) / 243;
y[i].qs[j + m] = q;
}
x += 5*16;
}
// 4 elements per byte
for (size_t j = 0; j < sizeof(y->qh); ++j) {
uint8_t q = 0;
for (size_t m = 0; m < 4; ++m) {
// -1, 0, 1 -> 0, 1, 2
int xi = lroundf(x[j + m*sizeof(y->qh)] * id) + 1;
q *= 3;
q += xi;
}
// shift the first value to the most significant trit
q *= 3;
// ceiling division (243 == pow(3, 5))
q = ((uint16_t)q * 256 + (243 - 1)) / 243;
y[i].qh[j] = q;
}
x += 4*sizeof(y->qh);
}
}
void quantize_row_tq2_0_ref(const float * restrict x, block_tq2_0 * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
for (int64_t i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK_K; j++) {
const float v = x[j];
amax = MAX(amax, fabsf(v));
}
const float d = amax;
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
for (size_t j = 0; j < sizeof(y->qs); j += 32) {
for (size_t m = 0; m < 32; ++m) {
uint8_t q = 0;
for (size_t n = 0; n < 4; ++n) {
// -1, 0, 1 -> 0, 1, 2
int xi = lroundf(x[m + n*32] * id) + 1;
q += (xi & 3) << (2*n);
}
y[i].qs[j + m] = q;
}
x += 4*32;
}
}
}
size_t quantize_tq1_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
(void)quant_weights; // not used
const size_t row_size = ggml_row_size(GGML_TYPE_TQ1_0, n_per_row);
quantize_row_tq1_0_ref(src, dst, (int64_t)nrow*n_per_row);
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151) * ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b * ggml-quants : faster 1.625 bpw AVX2 vec_dot Not using a lookup table anymore makes it match q4_0 speed. * gguf-py : fix formatting * llama : remove spaces on empty line * ggml-quants : subtract 1 when back in epi8 This makes the 1.625 bpw type go faster than q4_0. Still not the fastest. * ggml-quants : Q2_2 now faster than Q4_K on with AVX2 * ggml-quants : cleanup Q1_3 code formatting * ggml-quants : ARM NEON vec_dot for q2_2 and q1_3 * ggml-quants : use ceiling division when quantizing q1_3 * convert-hf : simplify BitNet pre-quantization This still results in the exact same tensor weights and scales, but it reveals some weirdness in the current algorithm. * convert-hf : allow converting the weird BitNet 1.3B Its FFN size is 5460 which is not convenient. The offending tensors are kept in F16, which makes the final model 5.01 bpw. * bitnet : replace 1.58b with b1.58, as in the paper * ggml-quants : fix build failure on Windows * ggml-quants : attempt to fix Arm 32-bit support * ggml : add some informative comments in q1_3 vec_dot * ggml : add TQ1_0 and TQ2_0 ternary quantization types * ggml : even faster TQ2_0 * ggml : also faster TQ1_0 Same optimization as for TQ2_0 by offsetting the sum instead of the weights. This makes TQ1_0 almost as fast as Q8_0 on AVX2. * ggml : fix build issues in certain environments * ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0 * ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat The compiler seems smart enough to use the same instruction even when using vget_high_s8 instead. * ggml : remove q1_3 and q2_2 No more 1.625 bpw and 2.000 bpw, now instead using 1.6875 bpw and 2.0625 bpw with TQ1_0 and TQ2_0, respectively. * llama : remove the separate scale tensors of BitNet b1.58 They won't be needed, since the remaining ternary quant types have built-in scales. * ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency * ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot Not yet tested on hardware which supports it, might not work or might not even compile. But also it might. It should make the performance better on recent ARM CPUs. * ggml-quants : remove comment about possible format change of TQ2_0 Making it slightly more convenient for AVX512 but less convenient for everything else is not worth the trouble. * gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0 * ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0 This does not change anything for ternary models, since their values should never end up being in halfway cases anyway. * convert : allow direct conversion to TQ1_0 and TQ2_0 The token embeddings and output tensors are kept in F16 to allow quantizing them to Q4_K and Q6_K with llama-quantize. * llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0 Q4_0 is not completely symmetric (so not lossless for ternary models), but it should be good enough. * ggml-quants : allow using ARM dot product instructions for TQ1_0 * ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support * ggml : remove unused ggml_mul special case It would otherwise conflict with the more general optimization coming with Mamba-2. * ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators * test-backend-ops : add TQ1_0 and TQ2_0 comments for later Not yet adding uncommented, because some backends like SYCL and Metal do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT. (and Metal also doesn't handle it with GGML_OP_GET_ROWS) Support for TQ1_0 and TQ2_0 for other backends than CPU will be added in follow-up pull requests.
2024-09-06 01:48:47 +00:00
return nrow * row_size;
}
size_t quantize_tq2_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
(void)quant_weights; // not used
const size_t row_size = ggml_row_size(GGML_TYPE_TQ2_0, n_per_row);
quantize_row_tq2_0_ref(src, dst, (int64_t)nrow*n_per_row);
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151) * ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b * ggml-quants : faster 1.625 bpw AVX2 vec_dot Not using a lookup table anymore makes it match q4_0 speed. * gguf-py : fix formatting * llama : remove spaces on empty line * ggml-quants : subtract 1 when back in epi8 This makes the 1.625 bpw type go faster than q4_0. Still not the fastest. * ggml-quants : Q2_2 now faster than Q4_K on with AVX2 * ggml-quants : cleanup Q1_3 code formatting * ggml-quants : ARM NEON vec_dot for q2_2 and q1_3 * ggml-quants : use ceiling division when quantizing q1_3 * convert-hf : simplify BitNet pre-quantization This still results in the exact same tensor weights and scales, but it reveals some weirdness in the current algorithm. * convert-hf : allow converting the weird BitNet 1.3B Its FFN size is 5460 which is not convenient. The offending tensors are kept in F16, which makes the final model 5.01 bpw. * bitnet : replace 1.58b with b1.58, as in the paper * ggml-quants : fix build failure on Windows * ggml-quants : attempt to fix Arm 32-bit support * ggml : add some informative comments in q1_3 vec_dot * ggml : add TQ1_0 and TQ2_0 ternary quantization types * ggml : even faster TQ2_0 * ggml : also faster TQ1_0 Same optimization as for TQ2_0 by offsetting the sum instead of the weights. This makes TQ1_0 almost as fast as Q8_0 on AVX2. * ggml : fix build issues in certain environments * ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0 * ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat The compiler seems smart enough to use the same instruction even when using vget_high_s8 instead. * ggml : remove q1_3 and q2_2 No more 1.625 bpw and 2.000 bpw, now instead using 1.6875 bpw and 2.0625 bpw with TQ1_0 and TQ2_0, respectively. * llama : remove the separate scale tensors of BitNet b1.58 They won't be needed, since the remaining ternary quant types have built-in scales. * ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency * ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot Not yet tested on hardware which supports it, might not work or might not even compile. But also it might. It should make the performance better on recent ARM CPUs. * ggml-quants : remove comment about possible format change of TQ2_0 Making it slightly more convenient for AVX512 but less convenient for everything else is not worth the trouble. * gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0 * ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0 This does not change anything for ternary models, since their values should never end up being in halfway cases anyway. * convert : allow direct conversion to TQ1_0 and TQ2_0 The token embeddings and output tensors are kept in F16 to allow quantizing them to Q4_K and Q6_K with llama-quantize. * llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0 Q4_0 is not completely symmetric (so not lossless for ternary models), but it should be good enough. * ggml-quants : allow using ARM dot product instructions for TQ1_0 * ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support * ggml : remove unused ggml_mul special case It would otherwise conflict with the more general optimization coming with Mamba-2. * ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators * test-backend-ops : add TQ1_0 and TQ2_0 comments for later Not yet adding uncommented, because some backends like SYCL and Metal do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT. (and Metal also doesn't handle it with GGML_OP_GET_ROWS) Support for TQ1_0 and TQ2_0 for other backends than CPU will be added in follow-up pull requests.
2024-09-06 01:48:47 +00:00
return nrow * row_size;
}
void dequantize_row_tq1_0(const block_tq1_0 * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
for (int64_t i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d);
for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
for (size_t n = 0; n < 5; ++n) {
for (size_t m = 0; m < 32; ++m) {
uint8_t q = x[i].qs[j + m] * pow3[n];
int16_t xi = ((uint16_t) q * 3) >> 8;
*y++ = (float) (xi - 1) * d;
}
}
}
for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
for (size_t n = 0; n < 5; ++n) {
for (size_t m = 0; m < 16; ++m) {
uint8_t q = x[i].qs[j + m] * pow3[n];
int16_t xi = ((uint16_t) q * 3) >> 8;
*y++ = (float) (xi - 1) * d;
}
}
}
for (size_t n = 0; n < 4; ++n) {
for (size_t j = 0; j < sizeof(x->qh); ++j) {
uint8_t q = x[i].qh[j] * pow3[n];
int16_t xi = ((uint16_t) q * 3) >> 8;
*y++ = (float) (xi - 1) * d;
}
}
}
}
void dequantize_row_tq2_0(const block_tq2_0 * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
for (int64_t i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d);
for (size_t j = 0; j < sizeof(x->qs); j += 32) {
for (size_t l = 0; l < 4; ++l) {
for (size_t m = 0; m < 32; ++m) {
int8_t q = (x[i].qs[j + m] >> (l*2)) & 3;
*y++ = (float) (q - 1) * d;
}
}
}
}
}
2024-01-08 15:02:32 +00:00
// ====================== "True" 2-bit (de)-quantization
void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) {
2024-01-08 15:02:32 +00:00
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
2024-01-08 15:02:32 +00:00
uint32_t aux32[2];
const uint8_t * aux8 = (const uint8_t *)aux32;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
for (int j = 0; j < 8; ++j) {
y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}
y += 8;
}
}
}
}
// ====================== 2.3125 bpw (de)-quantization
void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
float db[2];
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
for (int j = 0; j < 8; ++j) {
y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}
y += 8;
}
}
}
}
// ====================== 2.5625 bpw (de)-quantization
void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
float db[2];
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
const uint8_t * signs = qs + QK_K/8;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
for (int l = 0; l < 4; ++l) {
const float dl = db[l/2];
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
for (int j = 0; j < 8; ++j) {
y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
}
y += 8;
}
qs += 4;
signs += 4;
}
}
}
// ====================== 3.0625 bpw (de)-quantization
void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
uint32_t aux32;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
const uint8_t * qs = x[i].qs;
const uint8_t * scales_and_signs = qs + QK_K/4;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
for (int l = 0; l < 4; ++l) {
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
for (int j = 0; j < 4; ++j) {
y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
y += 8;
}
qs += 8;
}
}
}
// ====================== 3.3125 bpw (de)-quantization
void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
const uint8_t * signs = x[i].signs;
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
y += 8;
}
qs += 8;
signs += 4;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
y += 8;
}
qh += 2;
qs += 8;
signs += 4;
}
}
}
// ====================== 1.5625 bpw (de)-quantization
void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
const uint8_t * qs = x[i].qs;
const uint16_t * qh = x[i].qh;
for (int ib = 0; ib < QK_K/32; ++ib) {
const float dl = d * (2*((qh[ib] >> 12) & 7) + 1);
const float delta = qh[ib] & 0x8000 ? -IQ1S_DELTA : IQ1S_DELTA;
for (int l = 0; l < 4; ++l) {
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
for (int j = 0; j < 8; ++j) {
y[j] = dl * (grid[j] + delta);
}
y += 8;
}
qs += 4;
}
}
}
void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
float delta[4];
uint16_t idx[4];
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
iq1m_scale_t scale;
for (int i = 0; i < nb; i++) {
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
const uint16_t * sc = (const uint16_t *)x[i].scales;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
const float d = GGML_FP16_TO_FP32(scale.f16);
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int ib = 0; ib < QK_K/32; ++ib) {
const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
for (int l = 0; l < 2; ++l) {
const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
for (int j = 0; j < 8; ++j) {
y[j] = dl1 * (grid[j] + delta[l]);
}
y += 8;
}
for (int l = 2; l < 4; ++l) {
const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
for (int j = 0; j < 8; ++j) {
y[j] = dl2 * (grid[j] + delta[l]);
}
y += 8;
}
qs += 4;
qh += 2;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
}
}
}
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int64_t k) {
assert(k % QK4_NL == 0);
const int64_t nb = k / QK4_NL;
for (int i = 0; i < nb; i++) {
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
const uint8_t * qs = x[i].qs;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
const float d = GGML_FP16_TO_FP32(x[i].d);
for (int j = 0; j < QK4_NL/2; ++j) {
y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
}
y += QK4_NL;
qs += QK4_NL/2;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
}
}
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int i = 0; i < nb; i++) {
const uint8_t * qs = x[i].qs;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
const float d = GGML_FP16_TO_FP32(x[i].d);
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int ib = 0; ib < QK_K/32; ++ib) {
const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
const float dl = d * (ls - 32);
for (int j = 0; j < 16; ++j) {
y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4];
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
}
y += 32;
qs += 16;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
}
}
}
//===================================== Q8_K ==============================================
void quantize_row_q8_K_ref(const float * restrict x, block_q8_K * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
for (int i = 0; i < nb; i++) {
float max = 0;
float amax = 0;
for (int j = 0; j < QK_K; ++j) {
float ax = fabsf(x[j]);
if (ax > amax) {
amax = ax; max = x[j];
}
}
if (!amax) {
y[i].d = 0;
memset(y[i].qs, 0, QK_K);
x += QK_K;
continue;
}
//const float iscale = -128.f/max;
// We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
const float iscale = -127.f/max;
for (int j = 0; j < QK_K; ++j) {
int v = nearest_int(iscale*x[j]);
y[i].qs[j] = MIN(127, v);
}
for (int j = 0; j < QK_K/16; ++j) {
int sum = 0;
for (int ii = 0; ii < 16; ++ii) {
sum += y[i].qs[j*16 + ii];
}
y[i].bsums[j] = sum;
}
y[i].d = 1/iscale;
x += QK_K;
}
}
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int64_t k) {
assert(k % QK_K == 0);
const int64_t nb = k / QK_K;
for (int i = 0; i < nb; i++) {
for (int j = 0; j < QK_K; ++j) {
*y++ = x[i].d * x[i].qs[j];
}
}
}
// ================================ IQ2 quantization =============================================
typedef struct {
uint64_t * grid;
int * map;
uint16_t * neighbours;
} iq2_entry_t;
static iq2_entry_t iq2_data[4] = {
{NULL, NULL, NULL},
{NULL, NULL, NULL},
{NULL, NULL, NULL},
{NULL, NULL, NULL},
};
static inline int iq2_data_index(enum ggml_type type) {
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
return type == GGML_TYPE_IQ2_XXS ? 0 :
type == GGML_TYPE_IQ2_XS ? 1 :
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
}
static inline int iq2_grid_size(enum ggml_type type) {
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
return type == GGML_TYPE_IQ2_XXS ? 256 :
type == GGML_TYPE_IQ2_XS ? 512 :
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
}
static int iq2_compare_func(const void * left, const void * right) {
const int * l = (const int *)left;
const int * r = (const int *)right;
return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
}
void iq2xs_init_impl(enum ggml_type type) {
const int gindex = iq2_data_index(type);
const int grid_size = iq2_grid_size(type);
if (iq2_data[gindex].grid) {
return;
}
static const uint16_t kgrid_2bit_256[256] = {
0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
};
static const uint16_t kgrid_2bit_512[512] = {
0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
};
static const uint16_t kgrid_1bit_2048[NGRID_IQ1S] = {
0, 2, 5, 8, 10, 17, 21, 32, 34, 40, 42, 69, 81, 84, 86, 101,
128, 130, 136, 138, 149, 160, 162, 168, 170, 260, 261, 273, 276, 278, 281, 282,
293, 321, 326, 329, 338, 341, 346, 353, 356, 358, 360, 389, 401, 404, 406, 421,
512, 514, 520, 522, 533, 544, 546, 552, 554, 581, 593, 601, 612, 617, 640, 642,
648, 650, 657, 661, 665, 672, 674, 680, 682, 1041, 1044, 1046, 1061, 1089, 1097, 1109,
1114, 1124, 1125, 1169, 1177, 1189, 1281, 1284, 1285, 1286, 1301, 1304, 1306, 1321, 1344, 1349,
1354, 1360, 1361, 1364, 1365, 1366, 1369, 1376, 1378, 1381, 1384, 1386, 1409, 1425, 1429, 1432,
1434, 1441, 1444, 1445, 1446, 1449, 1556, 1561, 1601, 1604, 1616, 1618, 1621, 1624, 1632, 1633,
1638, 1641, 1669, 1681, 1684, 1689, 2048, 2050, 2056, 2058, 2069, 2080, 2082, 2088, 2090, 2117,
2129, 2134, 2149, 2176, 2178, 2184, 2186, 2197, 2208, 2210, 2216, 2218, 2309, 2321, 2324, 2329,
2340, 2341, 2369, 2384, 2385, 2389, 2401, 2404, 2409, 2449, 2452, 2454, 2457, 2469, 2560, 2562,
2568, 2570, 2581, 2592, 2594, 2600, 2602, 2629, 2641, 2649, 2657, 2661, 2688, 2690, 2693, 2696,
2698, 2709, 2720, 2722, 2728, 2730, 4112, 4113, 4116, 4121, 4132, 4133, 4161, 4164, 4176, 4181,
4184, 4193, 4196, 4197, 4201, 4241, 4244, 4246, 4257, 4261, 4353, 4356, 4358, 4361, 4368, 4370,
4373, 4376, 4385, 4388, 4393, 4421, 4426, 4432, 4433, 4434, 4436, 4437, 4438, 4441, 4448, 4453,
4484, 4498, 4501, 4513, 4516, 4625, 4628, 4630, 4645, 4672, 4678, 4681, 4690, 4693, 4696, 4698,
4708, 4710, 4741, 4753, 4756, 4758, 4773, 5121, 5126, 5129, 5140, 5141, 5144, 5145, 5153, 5158,
5185, 5189, 5190, 5192, 5194, 5201, 5204, 5205, 5206, 5209, 5218, 5221, 5224, 5252, 5257, 5264,
5268, 5269, 5272, 5273, 5274, 5281, 5284, 5285, 5289, 5378, 5381, 5386, 5393, 5396, 5397, 5398,
5401, 5408, 5410, 5413, 5416, 5418, 5441, 5444, 5445, 5446, 5457, 5458, 5460, 5461, 5462, 5465,
5466, 5473, 5476, 5477, 5478, 5481, 5504, 5506, 5508, 5509, 5512, 5514, 5520, 5521, 5524, 5525,
5526, 5529, 5530, 5536, 5538, 5541, 5633, 5636, 5637, 5638, 5653, 5654, 5656, 5658, 5665, 5670,
5696, 5698, 5700, 5701, 5704, 5706, 5713, 5717, 5718, 5720, 5721, 5729, 5732, 5733, 5736, 5737,
5738, 5766, 5770, 5778, 5781, 5796, 5801, 6161, 6166, 6181, 6209, 6212, 6214, 6217, 6224, 6229,
6232, 6234, 6240, 6241, 6244, 6246, 6249, 6277, 6289, 6292, 6309, 6416, 6418, 6421, 6426, 6433,
6437, 6466, 6468, 6469, 6472, 6481, 6484, 6485, 6486, 6489, 6490, 6496, 6501, 6506, 6537, 6545,
6546, 6549, 6552, 6561, 6566, 6569, 6665, 6678, 6692, 6694, 6724, 6726, 6729, 6736, 6738, 6741,
6744, 6753, 6758, 6761, 6789, 6801, 6806, 6810, 8192, 8194, 8200, 8202, 8213, 8224, 8226, 8229,
8232, 8234, 8261, 8273, 8281, 8289, 8293, 8320, 8322, 8328, 8330, 8341, 8352, 8354, 8357, 8360,
8362, 8453, 8465, 8468, 8473, 8485, 8514, 8516, 8521, 8533, 8536, 8538, 8545, 8548, 8549, 8550,
8581, 8592, 8598, 8601, 8613, 8705, 8712, 8714, 8721, 8725, 8736, 8738, 8744, 8746, 8773, 8785,
8790, 8793, 8805, 8833, 8840, 8842, 8849, 8853, 8864, 8866, 8872, 8874, 9221, 9236, 9238, 9241,
9253, 9284, 9285, 9286, 9289, 9298, 9301, 9304, 9306, 9318, 9349, 9361, 9364, 9369, 9377, 9381,
9481, 9493, 9505, 9513, 9536, 9541, 9544, 9553, 9556, 9557, 9561, 9570, 9573, 9576, 9609, 9616,
9620, 9621, 9624, 9626, 9633, 9636, 9638, 9641, 9733, 9744, 9746, 9753, 9765, 9793, 9801, 9813,
9824, 9825, 9833, 9860, 9862, 9872, 9882, 10240, 10242, 10248, 10250, 10261, 10272, 10274, 10280, 10282,
10309, 10321, 10324, 10341, 10368, 10370, 10376, 10378, 10400, 10402, 10408, 10410, 10505, 10513, 10516, 10521,
10533, 10566, 10569, 10578, 10581, 10593, 10596, 10598, 10601, 10629, 10640, 10646, 10649, 10660, 10661, 10752,
10754, 10760, 10762, 10784, 10786, 10792, 10794, 10821, 10833, 10838, 10841, 10853, 10880, 10882, 10888, 10890,
10901, 10912, 10914, 10920, 10922, 16389, 16401, 16406, 16421, 16457, 16466, 16469, 16472, 16474, 16481, 16484,
16486, 16532, 16537, 16545, 16550, 16640, 16641, 16644, 16646, 16649, 16658, 16661, 16662, 16664, 16666, 16673,
16678, 16681, 16709, 16712, 16714, 16721, 16724, 16725, 16726, 16729, 16730, 16741, 16744, 16746, 16769, 16772,
16774, 16784, 16786, 16789, 16800, 16801, 16802, 16901, 16913, 16916, 16918, 16933, 16961, 16978, 16981, 16986,
16996, 17001, 17033, 17044, 17061, 17409, 17429, 17433, 17449, 17477, 17480, 17482, 17489, 17492, 17493, 17494,
17505, 17506, 17509, 17512, 17514, 17537, 17542, 17545, 17552, 17554, 17557, 17568, 17569, 17577, 17665, 17666,
17669, 17674, 17681, 17684, 17685, 17686, 17689, 17696, 17701, 17706, 17729, 17732, 17733, 17734, 17737, 17744,
17745, 17748, 17749, 17750, 17752, 17753, 17761, 17764, 17765, 17766, 17769, 17794, 17796, 17797, 17800, 17809,
17812, 17813, 17814, 17817, 17818, 17829, 17832, 17834, 17921, 17925, 17929, 17940, 17941, 17944, 17946, 17953,
17956, 17961, 17984, 17986, 17989, 17992, 18000, 18001, 18002, 18005, 18006, 18009, 18018, 18021, 18024, 18049,
18053, 18058, 18068, 18069, 18081, 18084, 18086, 18437, 18449, 18453, 18458, 18469, 18498, 18505, 18512, 18517,
18520, 18529, 18532, 18534, 18537, 18565, 18577, 18580, 18582, 18585, 18597, 18689, 18693, 18694, 18698, 18704,
18708, 18709, 18712, 18721, 18724, 18726, 18752, 18757, 18762, 18769, 18770, 18772, 18773, 18774, 18777, 18784,
18786, 18789, 18790, 18794, 18822, 18825, 18834, 18837, 18838, 18840, 18849, 18852, 18854, 18857, 18966, 19012,
19014, 19017, 19029, 19032, 19034, 19044, 19049, 19092, 19109, 20481, 20484, 20485, 20486, 20489, 20498, 20501,
20506, 20513, 20516, 20521, 20544, 20549, 20552, 20561, 20564, 20565, 20566, 20569, 20581, 20584, 20614, 20617,
20629, 20632, 20640, 20641, 20646, 20649, 20741, 20744, 20745, 20746, 20753, 20756, 20757, 20758, 20760, 20761,
20768, 20773, 20774, 20776, 20778, 20801, 20804, 20805, 20806, 20809, 20816, 20817, 20818, 20820, 20821, 20822,
20824, 20825, 20826, 20833, 20836, 20837, 20838, 20841, 20866, 20869, 20881, 20884, 20885, 20886, 20889, 20896,
20901, 20906, 20993, 20998, 21010, 21013, 21018, 21025, 21028, 21058, 21061, 21066, 21073, 21076, 21077, 21078,
21081, 21090, 21093, 21125, 21136, 21138, 21141, 21145, 21146, 21156, 21508, 21509, 21521, 21524, 21525, 21526,
21528, 21529, 21537, 21541, 21544, 21546, 21569, 21572, 21573, 21574, 21577, 21578, 21584, 21585, 21588, 21589,
21590, 21592, 21593, 21594, 21601, 21602, 21604, 21605, 21606, 21609, 21632, 21640, 21642, 21649, 21652, 21653,
21654, 21657, 21665, 21668, 21669, 21674, 21761, 21762, 21764, 21765, 21766, 21769, 21776, 21777, 21778, 21780,
21781, 21782, 21785, 21786, 21793, 21796, 21797, 21798, 21801, 21824, 21825, 21826, 21828, 21829, 21830, 21832,
21833, 21840, 21841, 21842, 21844, 21845, 21846, 21848, 21849, 21850, 21856, 21857, 21860, 21861, 21862, 21864,
21865, 21866, 21889, 21892, 21893, 21897, 21898, 21904, 21905, 21908, 21909, 21910, 21912, 21913, 21921, 21924,
21925, 21926, 21929, 22016, 22017, 22018, 22020, 22022, 22024, 22025, 22033, 22036, 22037, 22040, 22041, 22048,
22049, 22050, 22052, 22053, 22054, 22056, 22057, 22081, 22085, 22086, 22088, 22089, 22090, 22096, 22097, 22098,
22100, 22101, 22102, 22104, 22105, 22106, 22113, 22116, 22117, 22121, 22146, 22149, 22150, 22152, 22153, 22154,
22161, 22165, 22170, 22178, 22181, 22182, 22184, 22185, 22532, 22533, 22534, 22537, 22544, 22549, 22552, 22561,
22570, 22597, 22600, 22602, 22609, 22612, 22613, 22614, 22616, 22617, 22624, 22626, 22628, 22629, 22658, 22665,
22672, 22674, 22677, 22680, 22689, 22697, 22785, 22786, 22789, 22794, 22801, 22804, 22805, 22806, 22809, 22821,
22849, 22852, 22853, 22854, 22857, 22864, 22865, 22866, 22868, 22869, 22870, 22872, 22873, 22874, 22881, 22884,
22885, 22886, 22889, 22913, 22917, 22921, 22929, 22932, 22933, 22934, 22936, 22937, 22949, 23044, 23048, 23061,
23066, 23072, 23077, 23078, 23081, 23109, 23112, 23113, 23121, 23125, 23126, 23128, 23129, 23138, 23141, 23144,
23146, 23169, 23178, 23186, 23189, 23190, 23192, 23194, 23201, 24581, 24596, 24598, 24601, 24613, 24644, 24656,
24661, 24662, 24664, 24666, 24673, 24676, 24678, 24681, 24705, 24726, 24741, 24833, 24836, 24838, 24841, 24850,
24853, 24865, 24866, 24870, 24873, 24901, 24905, 24913, 24917, 24918, 24921, 24933, 24934, 24938, 24964, 24970,
24978, 24981, 24993, 24998, 25001, 25105, 25110, 25113, 25152, 25153, 25158, 25173, 25174, 25176, 25184, 25221,
25233, 25238, 25253, 25617, 25618, 25621, 25622, 25626, 25633, 25638, 25641, 25664, 25666, 25669, 25672, 25674,
25681, 25684, 25685, 25686, 25689, 25690, 25696, 25698, 25701, 25732, 25733, 25737, 25744, 25746, 25748, 25749,
25750, 25752, 25754, 25761, 25764, 25769, 25861, 25864, 25866, 25873, 25877, 25878, 25881, 25924, 25925, 25926,
25929, 25936, 25937, 25940, 25941, 25942, 25945, 25953, 25956, 25957, 25958, 25961, 25990, 25993, 25994, 26001,
26005, 26006, 26009, 26010, 26018, 26021, 26022, 26024, 26114, 26121, 26133, 26144, 26150, 26152, 26153, 26176,
26181, 26184, 26186, 26193, 26196, 26197, 26198, 26200, 26202, 26208, 26213, 26216, 26240, 26242, 26245, 26250,
26260, 26262, 26264, 26265, 26272, 26276, 26278, 26282, 26646, 26649, 26661, 26689, 26706, 26709, 26714, 26721,
26729, 26757, 26769, 26776, 26790, 26881, 26884, 26896, 26901, 26913, 26916, 26918, 26921, 26944, 26945, 26949,
26950, 26952, 26961, 26964, 26965, 26966, 26969, 26976, 26981, 26986, 27010, 27012, 27018, 27029, 27041, 27044,
27045, 27049, 27153, 27158, 27160, 27201, 27204, 27209, 27216, 27221, 27224, 27226, 27236, 27237, 27241, 27270,
27284, 27288, 27290, 27302, 32768, 32770, 32776, 32778, 32800, 32802, 32808, 32810, 32837, 32848, 32849, 32852,
32854, 32857, 32869, 32896, 32898, 32904, 32906, 32917, 32928, 32930, 32936, 32938, 33029, 33041, 33044, 33046,
33049, 33061, 33089, 33092, 33097, 33104, 33106, 33109, 33110, 33112, 33113, 33124, 33126, 33129, 33157, 33161,
33172, 33174, 33177, 33189, 33280, 33282, 33288, 33290, 33301, 33312, 33314, 33320, 33322, 33361, 33364, 33369,
33381, 33408, 33410, 33416, 33418, 33429, 33440, 33442, 33448, 33450, 33812, 33817, 33857, 33860, 33873, 33877,
33882, 33889, 33892, 33897, 33940, 33945, 34049, 34057, 34066, 34069, 34074, 34086, 34089, 34112, 34113, 34117,
34120, 34129, 34132, 34133, 34134, 34137, 34138, 34149, 34150, 34152, 34154, 34177, 34180, 34182, 34185, 34192,
34194, 34197, 34200, 34214, 34321, 34326, 34329, 34341, 34369, 34372, 34377, 34378, 34384, 34389, 34393, 34394,
34401, 34406, 34410, 34437, 34449, 34458, 34468, 34816, 34818, 34824, 34826, 34837, 34848, 34850, 34856, 34858,
34881, 34885, 34897, 34900, 34905, 34917, 34921, 34944, 34946, 34952, 34954, 34965, 34976, 34978, 34984, 34986,
35077, 35078, 35089, 35092, 35094, 35109, 35137, 35140, 35142, 35145, 35152, 35154, 35157, 35162, 35169, 35172,
35205, 35222, 35225, 35237, 35328, 35330, 35336, 35338, 35349, 35360, 35362, 35368, 35370, 35397, 35409, 35412,
35414, 35456, 35458, 35464, 35466, 35477, 35488, 35490, 35496, 35498, 36869, 36881, 36886, 36888, 36889, 36901,
36929, 36934, 36937, 36949, 36952, 36954, 36969, 36970, 36997, 37009, 37012, 37014, 37017, 37029, 37121, 37124,
37126, 37129, 37136, 37141, 37144, 37146, 37153, 37156, 37158, 37161, 37184, 37189, 37200, 37201, 37204, 37205,
37206, 37209, 37218, 37221, 37252, 37254, 37266, 37269, 37272, 37281, 37284, 37286, 37289, 37381, 37393, 37396,
37401, 37413, 37444, 37446, 37449, 37456, 37458, 37461, 37464, 37478, 37481, 37509, 37524, 37526, 37545, 37889,
37892, 37894, 37904, 37909, 37912, 37926, 37952, 37962, 37969, 37972, 37973, 37974, 37976, 37977, 37984, 37985,
37986, 37989, 38020, 38022, 38034, 38036, 38037, 38040, 38049, 38057, 38144, 38149, 38152, 38154, 38160, 38161,
38164, 38165, 38166, 38169, 38177, 38181, 38185, 38186, 38209, 38212, 38213, 38214, 38217, 38224, 38225, 38226,
38228, 38229, 38230, 38232, 38233, 38234, 38241, 38244, 38245, 38246, 38249, 38273, 38277, 38280, 38289, 38290,
38292, 38293, 38294, 38297, 38298, 38304, 38306, 38309, 38312, 38314, 38401, 38404, 38416, 38421, 38425, 38432,
38438, 38441, 38469, 38472, 38473, 38481, 38482, 38485, 38486, 38489, 38501, 38504, 38530, 38532, 38537, 38538,
38546, 38548, 38549, 38564, 38566, 38569, 38917, 38934, 38937, 38949, 38977, 38982, 38992, 38994, 38997, 38998,
39002, 39012, 39013, 39045, 39057, 39062, 39065, 39077, 39172, 39174, 39177, 39184, 39186, 39189, 39192, 39194,
39200, 39201, 39204, 39206, 39232, 39234, 39237, 39240, 39242, 39249, 39252, 39253, 39254, 39257, 39266, 39269,
39270, 39274, 39297, 39300, 39312, 39314, 39317, 39322, 39329, 39334, 39429, 39445, 39461, 39492, 39494, 39497,
39504, 39509, 39512, 39521, 39557, 39569, 39572, 39573, 39574, 40960, 40962, 40968, 40970, 40981, 40992, 40994,
41000, 41002, 41029, 41041, 41044, 41046, 41049, 41088, 41090, 41096, 41098, 41109, 41120, 41122, 41128, 41130,
41221, 41225, 41233, 41236, 41238, 41241, 41242, 41286, 41289, 41297, 41301, 41304, 41306, 41313, 41316, 41349,
41360, 41362, 41366, 41369, 41474, 41480, 41482, 41488, 41497, 41506, 41512, 41514, 41541, 41553, 41558, 41561,
41573, 41600, 41602, 41608, 41610, 41621, 41632, 41634, 41640, 41642, 42009, 42021, 42049, 42052, 42064, 42068,
42069, 42072, 42074, 42081, 42085, 42086, 42088, 42089, 42117, 42246, 42249, 42256, 42258, 42261, 42264, 42278,
42281, 42306, 42309, 42321, 42324, 42325, 42326, 42329, 42341, 42346, 42369, 42372, 42373, 42374, 42377, 42386,
42389, 42392, 42501, 42513, 42518, 42522, 42529, 42533, 42564, 42566, 42570, 42578, 42581, 42582, 42584, 42592,
42594, 42630, 42640, 42645, 42646, 42649, 42657, 42660, 42662, 43008, 43010, 43016, 43018, 43040, 43042, 43048,
43050, 43089, 43092, 43094, 43097, 43136, 43138, 43144, 43146, 43157, 43168, 43170, 43176, 43178, 43269, 43284,
43289, 43297, 43301, 43329, 43344, 43349, 43354, 43361, 43366, 43369, 43408, 43414, 43520, 43522, 43528, 43530,
43552, 43554, 43560, 43562, 43601, 43604, 43606, 43648, 43650, 43656, 43658, 43669, 43680, 43682, 43688, 43690,
};
static const uint16_t kgrid_2bit_1024[1024] = {
0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
};
const int kmap_size = 43692;
//const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
uint64_t * kgrid_q2xs;
int * kmap_q2xs;
uint16_t * kneighbors_q2xs;
//printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
for (int k = 0; k < grid_size; ++k) {
int8_t * pos = (int8_t *)(the_grid + k);
for (int i = 0; i < 8; ++i) {
int l = (kgrid[k] >> 2*i) & 0x3;
pos[i] = 2*l + 1;
}
}
kgrid_q2xs = the_grid;
iq2_data[gindex].grid = the_grid;
kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
iq2_data[gindex].map = kmap_q2xs;
for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
uint64_t aux64;
uint8_t * aux8 = (uint8_t *)&aux64;
for (int i = 0; i < grid_size; ++i) {
aux64 = kgrid_q2xs[i];
uint16_t index = 0;
for (int k=0; k<8; ++k) {
uint16_t q = (aux8[k] - 1)/2;
index |= (q << 2*k);
}
kmap_q2xs[index] = i;
}
int8_t pos[8];
int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
int num_neighbors = 0, num_not_in_map = 0;
for (int i = 0; i < kmap_size; ++i) {
if (kmap_q2xs[i] >= 0) continue;
++num_not_in_map;
for (int k = 0; k < 8; ++k) {
int l = (i >> 2*k) & 0x3;
pos[k] = 2*l + 1;
}
for (int j = 0; j < grid_size; ++j) {
const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
int d2 = 0;
for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
dist2[2*j+0] = d2;
dist2[2*j+1] = j;
}
qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
int n = 0; int d2 = dist2[0];
int nhave = 1;
for (int j = 0; j < grid_size; ++j) {
if (dist2[2*j] > d2) {
if (nhave == nwant) break;
d2 = dist2[2*j];
++nhave;
}
++n;
}
num_neighbors += n;
}
//printf("%s: %d neighbours in total\n", __func__, num_neighbors);
kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
iq2_data[gindex].neighbours = kneighbors_q2xs;
int counter = 0;
for (int i = 0; i < kmap_size; ++i) {
if (kmap_q2xs[i] >= 0) continue;
for (int k = 0; k < 8; ++k) {
int l = (i >> 2*k) & 0x3;
pos[k] = 2*l + 1;
}
for (int j = 0; j < grid_size; ++j) {
const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
int d2 = 0;
for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
dist2[2*j+0] = d2;
dist2[2*j+1] = j;
}
qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
kmap_q2xs[i] = -(counter + 1);
int d2 = dist2[0];
uint16_t * start = &kneighbors_q2xs[counter++];
int n = 0, nhave = 1;
for (int j = 0; j < grid_size; ++j) {
if (dist2[2*j] > d2) {
if (nhave == nwant) break;
d2 = dist2[2*j];
++nhave;
}
kneighbors_q2xs[counter++] = dist2[2*j+1];
++n;
}
*start = n;
}
free(dist2);
}
void iq2xs_free_impl(enum ggml_type type) {
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
const int gindex = iq2_data_index(type);
if (iq2_data[gindex].grid) {
free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
}
}
static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
int num_neighbors = neighbours[0];
GGML_ASSERT(num_neighbors > 0);
float best_d2 = FLT_MAX;
int grid_index = -1;
for (int j = 1; j <= num_neighbors; ++j) {
const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
float d2 = 0;
for (int i = 0; i < 8; ++i) {
float q = pg[i];
float diff = scale*q - xval[i];
d2 += weight[i]*diff*diff;
}
if (d2 < best_d2) {
best_d2 = d2; grid_index = neighbours[j];
}
}
GGML_ASSERT(grid_index >= 0);
const int8_t * pg = (const int8_t *)(grid + grid_index);
for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
return grid_index;
}
static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
const int * kmap_q2xs = iq2_data[gindex].map;
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
GGML_ASSERT(quant_weights && "missing quantization weights");
GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(n%QK_K == 0);
const int kMaxQ = 3;
const int64_t nbl = n/QK_K;
block_iq2_xxs * y = vy;
float scales[QK_K/32];
float weight[32];
float xval[32];
int8_t L[32];
int8_t Laux[32];
float waux[32];
uint8_t block_signs[4];
uint32_t q2[2*(QK_K/32)];
for (int ibl = 0; ibl < nbl; ++ibl) {
y[ibl].d = GGML_FP32_TO_FP16(0.f);
memset(q2, 0, QK_K/4);
float max_scale = 0;
const float * xbl = x + QK_K*ibl;
float sumx2 = 0;
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
float sigma2 = sumx2/QK_K;
for (int ib = 0; ib < QK_K/32; ++ib) {
const float * xb = xbl + 32*ib;
const float * qw = quant_weights + QK_K*ibl + 32*ib;
for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
for (int k = 0; k < 4; ++k) {
int nflip = 0;
uint8_t s = 0;
for (int i = 0; i < 8; ++i) {
if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
else {
xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
}
}
if (nflip%2) {
int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
for (int i = 1; i < 8; ++i) {
float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
if (ax < min) {
min = ax; imin = i;
}
}
xval[8*k+imin] = -xval[8*k+imin];
s ^= (1 << imin);
}
block_signs[k] = s & 127;
}
float max = xval[0];
for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
if (max < GROUP_MAX_EPS) {
scales[ib] = 0;
memset(L, 0, 32);
continue;
}
float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
float eff_max = scale*kMaxQ;
float best = 0;
for (int is = -6; is <= 6; ++is) {
float id = (2*kMaxQ-1+is*0.1f)/eff_max;
float this_scale = 1/id;
for (int k = 0; k < 4; ++k) {
for (int i = 0; i < 8; ++i) {
int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
}
uint16_t u = 0;
for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
int grid_index = kmap_q2xs[u];
if (grid_index < 0) {
const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
}
}
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 32; ++i) {
float w = weight[i];
float q = 2*Laux[i] + 1;
sumqx += w*xval[i]*q;
sumq2 += w*q*q;
}
if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
scale = sumqx/sumq2; best = scale*sumqx;
memcpy(L, Laux, 32);
}
}
if (scale > 0) {
float id = 1/scale;
for (int k = 0; k < 4; ++k) {
uint16_t u = 0;
for (int i = 0; i < 8; ++i) {
int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
l = MAX(0, MIN(kMaxQ-1, l));
u |= (l << 2*i);
}
int grid_index = kmap_q2xs[u];
if (grid_index < 0) {
const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
}
const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
}
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 32; ++i) {
float w = weight[i];
float q = 2*L[i] + 1;
sumqx += w*xval[i]*q;
sumq2 += w*q*q;
}
if (sumq2 > 0) scale = sumqx/sumq2;
}
if (scale < 0) {
// This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
// and correspondingly flip quant signs.
scale = -scale;
for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
}
for (int k = 0; k < 4; ++k) {
uint16_t u = 0;
for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
int grid_index = kmap_q2xs[u];
if (grid_index < 0) {
printf("Oops: found point %u not on grid:", u);
for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
printf("\n");
GGML_ABORT("fatal error");
}
q2[2*ib+0] |= ((uint32_t) grid_index << 8*k);
q2[2*ib+1] |= (block_signs[k] << 7*k);
}
GGML_ASSERT(scale >= 0);
scales[ib] = scale;
max_scale = MAX(max_scale, scale);
}
if (!max_scale) {
memset(y[ibl].qs, 0, QK_K/4);
continue;
}
float d = max_scale/31;
y[ibl].d = GGML_FP32_TO_FP16(d);
float id = 1/d;
for (int ib = 0; ib < QK_K/32; ++ib) {
int l = nearest_int(0.5f*(id*scales[ib]-1));
l = MAX(0, MIN(15, l));
q2[2*ib+1] |= ((uint32_t)l << 28);
}
memcpy(y[ibl].qs, q2, QK_K/4);
}
}
static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
const int * kmap_q2xs = iq2_data[gindex].map;
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
GGML_ASSERT(quant_weights && "missing quantization weights");
GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(n%QK_K == 0);
const int kMaxQ = 3;
const int64_t nbl = n/QK_K;
block_iq2_xs * y = vy;
float scales[QK_K/16];
float weight[16];
float xval[16];
int8_t L[16];
int8_t Laux[16];
float waux[16];
bool is_on_grid[2];
bool is_on_grid_aux[2];
uint8_t block_signs[2];
uint16_t q2[2*(QK_K/16)];
for (int ibl = 0; ibl < nbl; ++ibl) {
y[ibl].d = GGML_FP32_TO_FP16(0.f);
memset(q2, 0, QK_K/4);
memset(y[ibl].scales, 0, QK_K/32);
float max_scale = 0;
const float * xbl = x + QK_K*ibl;
float sumx2 = 0;
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
float sigma2 = sumx2/QK_K;
for (int ib = 0; ib < QK_K/16; ++ib) {
const float * xb = xbl + 16*ib;
const float * qw = quant_weights + QK_K*ibl + 16*ib;
for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
for (int k = 0; k < 2; ++k) {
int nflip = 0;
uint8_t s = 0;
for (int i = 0; i < 8; ++i) {
if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
else {
xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
}
}
if (nflip%2) {
int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
for (int i = 1; i < 8; ++i) {
float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
if (ax < min) {
min = ax; imin = i;
}
}
xval[8*k+imin] = -xval[8*k+imin];
s ^= (1 << imin);
}
block_signs[k] = s & 127;
}
float max = xval[0];
for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
if (max < GROUP_MAX_EPS) {
scales[ib] = 0;
memset(L, 0, 16);
continue;
}
float best = 0;
float scale = max/(2*kMaxQ-1);
is_on_grid[0] = is_on_grid[1] = true;
for (int is = -9; is <= 9; ++is) {
float id = (2*kMaxQ-1+is*0.1f)/max;
float this_scale = 1/id;
for (int k = 0; k < 2; ++k) {
for (int i = 0; i < 8; ++i) {
int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
}
uint16_t u = 0;
for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
int grid_index = kmap_q2xs[u];
is_on_grid_aux[k] = true;
if (grid_index < 0) {
is_on_grid_aux[k] = false;
const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
}
}
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 16; ++i) {
float w = weight[i];
float q = 2*Laux[i] + 1;
sumqx += w*xval[i]*q;
sumq2 += w*q*q;
}
if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
scale = sumqx/sumq2; best = scale*sumqx;
for (int i = 0; i < 16; ++i) L[i] = Laux[i];
for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
}
}
int n_not_ongrid = 0;
for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
if (n_not_ongrid > 0 && scale > 0) {
float id = 1/scale;
for (int k = 0; k < 2; ++k) {
if (is_on_grid[k]) continue;
uint16_t u = 0;
for (int i = 0; i < 8; ++i) {
int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
l = MAX(0, MIN(kMaxQ-1, l));
u |= (l << 2*i);
L[8*k + i] = l;
}
int grid_index = kmap_q2xs[u];
if (grid_index < 0) {
const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
}
}
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 16; ++i) {
float w = weight[i];
float q = 2*L[i] + 1;
sumqx += w*xval[i]*q;
sumq2 += w*q*q;
}
if (sumq2 > 0) scale = sumqx/sumq2;
}
if (scale < 0) {
scale = -scale;
for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
}
for (int k = 0; k < 2; ++k) {
uint16_t u = 0;
for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
int grid_index = kmap_q2xs[u];
if (grid_index < 0) {
printf("Oops: found point %u not on grid:", u);
for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
printf("\n");
GGML_ABORT("fatal error");
}
q2[2*ib+k] = grid_index | (block_signs[k] << 9);
}
GGML_ASSERT(scale >= 0);
scales[ib] = scale;
max_scale = MAX(max_scale, scale);
}
if (!max_scale) {
memset(y[ibl].qs, 0, QK_K/4);
continue;
}
float d = max_scale/31;
y[ibl].d = GGML_FP32_TO_FP16(d);
float id = 1/d;
for (int ib = 0; ib < QK_K/16; ++ib) {
int l = nearest_int(0.5f*(id*scales[ib]-1));
l = MAX(0, MIN(15, l));
if (ib%2 == 0) y[ibl].scales[ib/2] = l;
else y[ibl].scales[ib/2] |= (l << 4);
}
memcpy(y[ibl].qs, q2, QK_K/4);
}
}
size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
GGML_ASSERT(n_per_row%QK_K == 0);
int64_t nblock = n_per_row/QK_K;
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += nblock*sizeof(block_iq2_xxs);
}
return nrow * nblock * sizeof(block_iq2_xxs);
}
size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
GGML_ASSERT(n_per_row%QK_K == 0);
int64_t nblock = n_per_row/QK_K;
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += nblock*sizeof(block_iq2_xs);
}
return nrow * nblock * sizeof(block_iq2_xs);
}
//
// ============================================= 3-bit using D4 lattice
//
typedef struct {
uint32_t * grid;
int * map;
uint16_t * neighbours;
} iq3_entry_t;
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
static iq3_entry_t iq3_data[2] = {
{NULL, NULL, NULL},
{NULL, NULL, NULL},
};
static inline int iq3_data_index(int grid_size) {
(void)grid_size;
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
GGML_ASSERT(grid_size == 256 || grid_size == 512);
return grid_size == 256 ? 0 : 1;
}
static int iq3_compare_func(const void * left, const void * right) {
const int * l = (const int *)left;
const int * r = (const int *)right;
return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
}
void iq3xs_init_impl(int grid_size) {
const int gindex = iq3_data_index(grid_size);
if (iq3_data[gindex].grid) {
return;
}
static const uint16_t kgrid_256[256] = {
0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
};
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
static const uint16_t kgrid_512[512] = {
0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
};
const int kmap_size = 4096;
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
const int nwant = grid_size == 256 ? 2 : 3;
const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
uint32_t * kgrid_q3xs;
int * kmap_q3xs;
uint16_t * kneighbors_q3xs;
//printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
for (int k = 0; k < grid_size; ++k) {
int8_t * pos = (int8_t *)(the_grid + k);
for (int i = 0; i < 4; ++i) {
int l = (kgrid[k] >> 3*i) & 0x7;
pos[i] = 2*l + 1;
}
}
kgrid_q3xs = the_grid;
iq3_data[gindex].grid = the_grid;
kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
iq3_data[gindex].map = kmap_q3xs;
for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
uint32_t aux32;
uint8_t * aux8 = (uint8_t *)&aux32;
for (int i = 0; i < grid_size; ++i) {
aux32 = kgrid_q3xs[i];
uint16_t index = 0;
for (int k=0; k<4; ++k) {
uint16_t q = (aux8[k] - 1)/2;
index |= (q << 3*k);
}
kmap_q3xs[index] = i;
}
int8_t pos[4];
int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
int num_neighbors = 0, num_not_in_map = 0;
for (int i = 0; i < kmap_size; ++i) {
if (kmap_q3xs[i] >= 0) continue;
++num_not_in_map;
for (int k = 0; k < 4; ++k) {
int l = (i >> 3*k) & 0x7;
pos[k] = 2*l + 1;
}
for (int j = 0; j < grid_size; ++j) {
const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
int d2 = 0;
for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
dist2[2*j+0] = d2;
dist2[2*j+1] = j;
}
qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
int n = 0; int d2 = dist2[0];
int nhave = 1;
for (int j = 0; j < grid_size; ++j) {
if (dist2[2*j] > d2) {
if (nhave == nwant) break;
d2 = dist2[2*j];
++nhave;
}
++n;
}
num_neighbors += n;
}
//printf("%s: %d neighbours in total\n", __func__, num_neighbors);
kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
iq3_data[gindex].neighbours = kneighbors_q3xs;
int counter = 0;
for (int i = 0; i < kmap_size; ++i) {
if (kmap_q3xs[i] >= 0) continue;
for (int k = 0; k < 4; ++k) {
int l = (i >> 3*k) & 0x7;
pos[k] = 2*l + 1;
}
for (int j = 0; j < grid_size; ++j) {
const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
int d2 = 0;
for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
dist2[2*j+0] = d2;
dist2[2*j+1] = j;
}
qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
kmap_q3xs[i] = -(counter + 1);
int d2 = dist2[0];
uint16_t * start = &kneighbors_q3xs[counter++];
int n = 0, nhave = 1;
for (int j = 0; j < grid_size; ++j) {
if (dist2[2*j] > d2) {
if (nhave == nwant) break;
d2 = dist2[2*j];
++nhave;
}
kneighbors_q3xs[counter++] = dist2[2*j+1];
++n;
}
*start = n;
}
free(dist2);
}
void iq3xs_free_impl(int grid_size) {
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
GGML_ASSERT(grid_size == 256 || grid_size == 512);
const int gindex = iq3_data_index(grid_size);
if (iq3_data[gindex].grid) {
free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
}
}
static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
int num_neighbors = neighbours[0];
GGML_ASSERT(num_neighbors > 0);
float best_d2 = FLT_MAX;
int grid_index = -1;
for (int j = 1; j <= num_neighbors; ++j) {
const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
float d2 = 0;
for (int i = 0; i < 4; ++i) {
float q = pg[i];
float diff = scale*q - xval[i];
d2 += weight[i]*diff*diff;
}
if (d2 < best_d2) {
best_d2 = d2; grid_index = neighbours[j];
}
}
GGML_ASSERT(grid_index >= 0);
const int8_t * pg = (const int8_t *)(grid + grid_index);
for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
return grid_index;
}
static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int64_t n,
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
const float * restrict quant_weights) {
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
const int gindex = iq3_data_index(grid_size);
const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
const int * kmap_q3xs = iq3_data[gindex].map;
const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
//GGML_ASSERT(quant_weights && "missing quantization weights");
GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(n%QK_K == 0);
const int kMaxQ = 8;
const int64_t nbl = n/QK_K;
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
ggml_fp16_t * dh;
uint8_t * qs;
int block_size;
if (grid_size == 256) {
block_iq3_xxs * y = vy;
dh = &y->d;
qs = y->qs;
block_size = sizeof(block_iq3_xxs);
} else {
block_iq3_s * y = vy;
dh = &y->d;
qs = y->qs;
block_size = sizeof(block_iq3_s);
}
int quant_size = block_size - sizeof(ggml_fp16_t);
float scales[QK_K/32];
float weight[32];
float xval[32];
int8_t L[32];
int8_t Laux[32];
float waux[32];
bool is_on_grid[8];
bool is_on_grid_aux[8];
uint8_t block_signs[8];
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
uint8_t q3[3*(QK_K/8)+QK_K/32];
uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
uint8_t * qh = q3 + 3*(QK_K/8);
for (int ibl = 0; ibl < nbl; ++ibl) {
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
dh[0] = GGML_FP32_TO_FP16(0.f);
memset(q3, 0, 3*QK_K/8+QK_K/32);
float max_scale = 0;
const float * xbl = x + QK_K*ibl;
float sumx2 = 0;
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
float sigma2 = 2*sumx2/QK_K;
for (int ib = 0; ib < QK_K/32; ++ib) {
const float * xb = xbl + 32*ib;
if (quant_weights) {
const float * qw = quant_weights + QK_K*ibl + 32*ib;
for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
} else {
for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
}
for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
for (int k = 0; k < 4; ++k) {
int nflip = 0;
uint8_t s = 0;
for (int i = 0; i < 8; ++i) {
if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
else {
xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
}
}
if (nflip%2) {
int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
for (int i = 1; i < 8; ++i) {
float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
if (ax < min) {
min = ax; imin = i;
}
}
xval[8*k+imin] = -xval[8*k+imin];
s ^= (1 << imin);
}
block_signs[k] = s & 127;
}
float max = xval[0];
for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
if (max < GROUP_MAX_EPS_IQ3_XXS) {
scales[ib] = 0;
memset(L, 0, 32);
continue;
}
float best = 0;
float scale = max/(2*kMaxQ-1);
for (int is = -15; is <= 15; ++is) {
float id = (2*kMaxQ-1+is*0.2f)/max;
float this_scale = 1/id;
for (int k = 0; k < 8; ++k) {
for (int i = 0; i < 4; ++i) {
int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
}
uint16_t u = 0;
for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
int grid_index = kmap_q3xs[u];
is_on_grid_aux[k] = true;
if (grid_index < 0) {
is_on_grid_aux[k] = false;
const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
}
}
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 32; ++i) {
float w = weight[i];
float q = 2*Laux[i] + 1;
sumqx += w*xval[i]*q;
sumq2 += w*q*q;
}
if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
scale = sumqx/sumq2; best = scale*sumqx;
for (int i = 0; i < 32; ++i) L[i] = Laux[i];
for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
}
}
int n_not_ongrid = 0;
for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
if (n_not_ongrid > 0 && scale > 0) {
float id = 1/scale;
for (int k = 0; k < 8; ++k) {
if (is_on_grid[k]) continue;
uint16_t u = 0;
for (int i = 0; i < 4; ++i) {
int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
l = MAX(0, MIN(kMaxQ-1, l));
u |= (l << 3*i);
}
int grid_index = kmap_q3xs[u];
if (grid_index < 0) {
const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
}
const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
}
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 32; ++i) {
float w = weight[i];
float q = 2*L[i] + 1;
sumqx += w*xval[i]*q;
sumq2 += w*q*q;
}
if (sumq2 > 0) scale = sumqx/sumq2;
}
if (scale < 0) {
// This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
// and correspondingly flip quant signs.
scale = -scale;
for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
}
for (int k = 0; k < 8; ++k) {
uint16_t u = 0;
for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
int grid_index = kmap_q3xs[u];
if (grid_index < 0) {
printf("Oops: found point %u not on grid:", u);
for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
printf("\n");
GGML_ABORT("fatal error");
}
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
if (grid_size == 256) {
q3[8*ib+k] = grid_index;
} else {
q3[8*ib+k] = grid_index & 255;
qh[ib] |= ((grid_index >> 8) << k);
}
}
scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
GGML_ASSERT(scale >= 0);
scales[ib] = scale;
max_scale = MAX(max_scale, scale);
}
if (!max_scale) {
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
memset(qs, 0, quant_size);
dh += block_size/sizeof(ggml_fp16_t);
qs += block_size;
continue;
}
float d = max_scale/31;
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
float id = 1/d;
for (int ib = 0; ib < QK_K/32; ++ib) {
int l = nearest_int(0.5f*(id*scales[ib]-1));
l = MAX(0, MIN(15, l));
scales_and_signs[ib] |= ((uint32_t)l << 28);
}
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
memcpy(qs, q3, quant_size);
dh += block_size/sizeof(ggml_fp16_t);
qs += block_size;
}
}
size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
GGML_ASSERT(n_per_row%QK_K == 0);
int64_t nblock = n_per_row/QK_K;
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += nblock*sizeof(block_iq3_xxs);
}
return nrow * nblock * sizeof(block_iq3_xxs);
}
void quantize_row_iq3_xxs_ref(const float * restrict x, block_iq3_xxs * restrict y, int64_t k) {
assert(k % QK_K == 0);
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
}
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
const float * restrict quant_weights,
float * scales,
float * weight,
float * xval,
int8_t * L,
int8_t * Laux,
float * waux,
bool * is_on_grid,
bool * is_on_grid_aux,
uint8_t * block_signs) {
const int gindex = iq3_data_index(512);
const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
const int * kmap_q3xs = iq3_data[gindex].map;
const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
//GGML_ASSERT(quant_weights && "missing quantization weights");
GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(n%QK_K == 0);
const int kMaxQ = 8;
const int64_t nbl = n/QK_K;
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
block_iq3_s * y = vy;
const int bs4 = block_size/4;
const int bs8 = block_size/8;
for (int ibl = 0; ibl < nbl; ++ibl) {
memset(&y[ibl], 0, sizeof(block_iq3_s));
y[ibl].d = GGML_FP32_TO_FP16(0.f);
uint8_t * qs = y[ibl].qs;
uint8_t * qh = y[ibl].qh;
uint8_t * signs = y[ibl].signs;
float max_scale = 0;
const float * xbl = x + QK_K*ibl;
float sumx2 = 0;
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
float sigma2 = 2*sumx2/QK_K;
for (int ib = 0; ib < QK_K/block_size; ++ib) {
const float * xb = xbl + block_size*ib;
if (quant_weights) {
const float * qw = quant_weights + QK_K*ibl + block_size*ib;
for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
} else {
for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
}
for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
for (int k = 0; k < bs8; ++k) {
uint8_t s = 0;
for (int i = 0; i < 8; ++i) {
if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
else {
xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
}
}
block_signs[k] = s;
}
float max = xval[0];
for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
if (!max) {
scales[ib] = 0;
continue;
}
float best = 0;
float scale = max/(2*kMaxQ-1);
for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
for (int is = -9; is <= 9; ++is) {
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
float id = (2*kMaxQ-1+is*0.2f)/max;
float this_scale = 1/id;
for (int k = 0; k < bs4; ++k) {
for (int i = 0; i < 4; ++i) {
int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
}
uint16_t u = 0;
for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
int grid_index = kmap_q3xs[u];
is_on_grid_aux[k] = true;
if (grid_index < 0) {
is_on_grid_aux[k] = false;
const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
}
}
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < block_size; ++i) {
float w = weight[i];
float q = 2*Laux[i] + 1;
sumqx += w*xval[i]*q;
sumq2 += w*q*q;
}
if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
scale = sumqx/sumq2; best = scale*sumqx;
for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
}
}
int n_not_ongrid = 0;
for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
if (n_not_ongrid > 0 && scale > 0) {
float id = 1/scale;
for (int k = 0; k < bs4; ++k) {
//if (is_on_grid[k]) continue;
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
uint16_t u = 0;
for (int i = 0; i < 4; ++i) {
int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
l = MAX(0, MIN(kMaxQ-1, l));
u |= (l << 3*i);
}
int grid_index = kmap_q3xs[u];
if (grid_index < 0) {
const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
}
const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
}
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < block_size; ++i) {
float w = weight[i];
float q = 2*L[i] + 1;
sumqx += w*xval[i]*q;
sumq2 += w*q*q;
}
if (sumq2 > 0) scale = sumqx/sumq2;
}
if (scale < 0) {
// This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
// and correspondingly flip quant signs.
scale = -scale;
for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
}
for (int k = 0; k < bs4; ++k) {
uint16_t u = 0;
for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
int grid_index = kmap_q3xs[u];
if (grid_index < 0) {
printf("Oops: found point %u not on grid:", u);
for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
printf("\n");
GGML_ABORT("fatal error");
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
}
qs[k] = grid_index & 255;
qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
}
qs += bs4;
for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
signs += bs8;
GGML_ASSERT(scale >= 0);
scales[ib] = scale;
max_scale = MAX(max_scale, scale);
}
if (!max_scale) {
continue;
}
float d = max_scale/31;
y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
float id = 1/d;
for (int ib = 0; ib < QK_K/block_size; ib += 2) {
int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
l1 = MAX(0, MIN(15, l1));
int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
l2 = MAX(0, MIN(15, l2));
y[ibl].scales[ib/2] = l1 | (l2 << 4);
}
}
}
#define IQ3S_BLOCK_SIZE 32
size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
GGML_ASSERT(n_per_row%QK_K == 0);
int64_t nblock = n_per_row/QK_K;
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
float scales[QK_K/IQ3S_BLOCK_SIZE];
float weight[IQ3S_BLOCK_SIZE];
float xval[IQ3S_BLOCK_SIZE];
int8_t L[IQ3S_BLOCK_SIZE];
int8_t Laux[IQ3S_BLOCK_SIZE];
float waux[IQ3S_BLOCK_SIZE];
bool is_on_grid[IQ3S_BLOCK_SIZE/4];
bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
src += n_per_row;
qrow += nblock*sizeof(block_iq3_s);
}
return nrow * nblock * sizeof(block_iq3_s);
}
void quantize_row_iq3_s_ref(const float * restrict x, block_iq3_s * restrict y, int64_t k) {
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
assert(k % QK_K == 0);
quantize_iq3_s(x, y, 1, k, NULL);
IQ3_S: a much better alternative to Q3_K (#5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
}
// =================================== 1.5 bpw ===================================================
static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
int num_neighbors = neighbours[0];
GGML_ASSERT(num_neighbors > 0);
float best_score = -FLT_MAX;
int grid_index = -1;
for (int j = 1; j <= num_neighbors; ++j) {
const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 8; ++i) {
float q = (pg[i] - 3)/2;
float w = weight[i];
sumqx += w*q*xval[i];
sumq2 += w*q*q;
}
if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
*scale = sumqx/sumq2; best_score = *scale * sumqx;
grid_index = neighbours[j];
}
}
if (grid_index < 0) {
for (int i = 0; i < ngrid; ++i) {
const int8_t * grid_i = (const int8_t *)(grid + i);
float sumqx = 0, sumq2 = 0;
for (int j = 0; j < 8; ++j) {
float w = weight[j];
float q = (grid_i[j] - 3)/2;
sumqx += w*q*xval[j];
sumq2 += w*q*q;
}
if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
*scale = sumqx/sumq2; best_score = *scale*sumqx;
grid_index = i;
}
}
}
if (grid_index < 0) {
printf("Oops, did not find grid point\n");
printf("Have %d neighbours\n", num_neighbors);
for (int j = 1; j <= num_neighbors; ++j) {
const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 8; ++i) {
float q = (pg[i] - 3)/2;
float w = weight[i];
sumqx += w*q*xval[i];
sumq2 += w*q*q;
}
printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
}
}
GGML_ASSERT(grid_index >= 0);
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
const int8_t * pg = (const int8_t *)(grid + grid_index);
for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
return grid_index;
}
static int iq1_find_best_neighbour2(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
const float * restrict xval, const float * restrict weight, float scale, const float * restrict xg, int8_t * restrict L, int ngrid) {
int num_neighbors = neighbours[0];
GGML_ASSERT(num_neighbors > 0);
float best_score = FLT_MAX;
int grid_index = -1;
for (int j = 1; j <= num_neighbors; ++j) {
const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
float d2 = 0;
for (int i = 0; i < 8; ++i) {
float q = xg[(pg[i] - 1)/2];
float w = weight[i];
float diff = scale*q - xval[i];
d2 += w*diff*diff;
}
if (d2 < best_score) {
best_score = d2;
grid_index = neighbours[j];
}
}
if (grid_index < 0) {
for (int i = 0; i < ngrid; ++i) {
const int8_t * grid_i = (const int8_t *)(grid + i);
float d2 = 0;
for (int j = 0; j < 8; ++j) {
float w = weight[j];
float q = xg[(grid_i[j] - 1)/2];
float diff = scale*q - xval[i];
d2 += w*diff*diff;
}
if (d2 < best_score) {
best_score = d2;
grid_index = i;
}
}
}
if (grid_index < 0) {
printf("Oops, did not find grid point\n");
printf("Have %d neighbours\n", num_neighbors);
for (int j = 1; j <= num_neighbors; ++j) {
const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 8; ++i) {
float q = xg[(pg[i] - 1)/2];
float w = weight[i];
sumqx += w*q*xval[i];
sumq2 += w*q*q;
}
printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
}
}
GGML_ASSERT(grid_index >= 0);
const int8_t * pg = (const int8_t *)(grid + grid_index);
for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
return grid_index;
}
static int iq1_sort_helper(const void * left, const void * right) {
const float * l = left;
const float * r = right;
return *l < *r ? -1 : *l > *r ? 1 : 0;
}
#define IQ1S_BLOCK_SIZE 32
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
#define IQ1M_BLOCK_SIZE 16
static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
float * scales,
float * weight,
float * sumx,
float * sumw,
float * pairs,
int8_t * L,
uint16_t * index,
int8_t * shifts) {
const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
const int * kmap_q2xs = iq2_data[gindex].map;
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
GGML_ASSERT(quant_weights && "missing quantization weights");
GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(n%QK_K == 0);
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
block_iq1_s * y = vy;
const int64_t nbl = n/QK_K;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
const int block_size = IQ1S_BLOCK_SIZE;
const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
int * idx = (int *)(pairs + 1);
for (int ibl = 0; ibl < nbl; ++ibl) {
y[ibl].d = GGML_FP32_TO_FP16(0.f);
memset(y[ibl].qs, 0, QK_K/8);
memset(y[ibl].qh, 0, QK_K/16);
float max_scale = 0;
const float * xbl = x + QK_K*ibl;
float sumx2 = 0;
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
float sigma2 = 2*sumx2/QK_K;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int ib = 0; ib < QK_K/block_size; ++ib) {
const float * xb = xbl + block_size*ib;
const float * qw = quant_weights + QK_K*ibl + block_size*ib;
for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
float max = fabsf(xb[0]);
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
if (max < GROUP_MAX_EPS_IQ1_S) {
scales[ib] = 0;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
memset(L, 1, block_size);
continue;
}
// Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
// With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
// boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
// in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
// Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
// for each possible and score for each split.
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int j = 0; j < block_size; ++j) {
pairs[2*j] = xb[j];
idx[2*j] = j;
}
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
{
sumx[0] = sumw[0] = 0;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int j = 0; j < block_size; ++j) {
int i = idx[2*j];
sumx[j+1] = sumx[j] + weight[i]*xb[i];
sumw[j+1] = sumw[j] + weight[i];
}
}
float best_score = -FLT_MIN, scale = max;
int besti1 = -1, besti2 = -1, best_shift = 0;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int i1 = 0; i1 <= block_size; ++i1) {
for (int i2 = i1; i2 <= block_size; ++i2) {
float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
scale = sumqx/sumq2; best_score = scale*sumqx;
besti1 = i1; besti2 = i2; best_shift = 1;
}
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
scale = sumqx/sumq2; best_score = scale*sumqx;
besti1 = i1; besti2 = i2; best_shift = -1;
}
}
}
GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
if (scale < 0) {
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
scale = -scale; best_shift = -best_shift;
}
bool all_on_grid = true;
const float * xx = best_shift == 1 ? x_p : x_m;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int k = 0; k < block_size/8; ++k) {
uint16_t u = 0;
for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
int grid_index = kmap_q2xs[u];
if (grid_index < 0) {
all_on_grid = false;
const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
GGML_ASSERT(grid_index >= 0);
}
index[k] = grid_index;
}
if (!all_on_grid) {
float sumqx = 0, sumq2 = 0;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int k = 0; k < block_size/8; ++k) {
const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
for (int j = 0; j < 8; ++j) {
float w = weight[8*k + j];
float q = xx[(pg[j] - 1)/2];
sumqx += w*q*xb[8*k+j];
sumq2 += w*q*q;
}
}
if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
}
uint16_t h = 0;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int k = 0; k < block_size/8; ++k) {
y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
h |= (index[k] >> 8) << 3*k;
}
y[ibl].qh[ib] = h;
GGML_ASSERT(scale >= 0);
scales[ib] = scale;
shifts[ib] = best_shift;
max_scale = MAX(max_scale, scale);
}
if (!max_scale) {
continue;
}
float d = max_scale/15;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
float id = 1/d;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
for (int ib = 0; ib < QK_K/block_size; ++ib) {
int l = nearest_int(0.5f*(id*scales[ib]-1));
l = MAX(0, MIN(7, l));
if (shifts[ib] == -1) l |= 8;
y[ibl].qh[ib] |= (l << 12);
}
}
}
size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
GGML_ASSERT(n_per_row%QK_K == 0);
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
float scales[QK_K/IQ1S_BLOCK_SIZE];
float weight[IQ1S_BLOCK_SIZE];
int8_t L[IQ1S_BLOCK_SIZE];
float sumx[IQ1S_BLOCK_SIZE+1];
float sumw[IQ1S_BLOCK_SIZE+1];
float pairs[2*IQ1S_BLOCK_SIZE];
uint16_t index[IQ1S_BLOCK_SIZE/8];
int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
int64_t nblock = n_per_row/QK_K;
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
src += n_per_row;
qrow += nblock*sizeof(block_iq1_s);
}
return nrow * nblock * sizeof(block_iq1_s);
}
static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
float * scales,
float * weight,
float * pairs,
int8_t * L,
uint16_t * index,
int8_t * shifts) {
const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
const int * kmap_q2xs = iq2_data[gindex].map;
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
//GGML_ASSERT(quant_weights && "missing quantization weights");
GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(n%QK_K == 0);
block_iq1_m * y = vy;
const int64_t nbl = n/QK_K;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
const int block_size = IQ1M_BLOCK_SIZE;
const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA};
const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
int * idx = (int *)(pairs + 1);
float sumqx[4], sumq2[4];
iq1m_scale_t s;
const float * xx;
for (int ibl = 0; ibl < nbl; ++ibl) {
memset(y[ibl].qs, 0, QK_K/8);
memset(y[ibl].qh, 0, QK_K/16);
memset(y[ibl].scales, 0, QK_K/32);
float max_scale = 0;
const float * xbl = x + QK_K*ibl;
float sumx2 = 0;
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
float sigma2 = 2*sumx2/QK_K;
for (int ib = 0; ib < QK_K/block_size; ++ib) {
const float * xb = xbl + block_size*ib;
if (quant_weights) {
const float * qw = quant_weights + QK_K*ibl + block_size*ib;
for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
} else {
for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
}
float max = fabsf(xb[0]);
for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
if (max < GROUP_MAX_EPS_IQ1_M) {
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
scales[ib] = 0;
memset(L, 1, block_size);
continue;
}
// Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
// With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
// boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
// in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
// Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
// for each possible and score for each split.
for (int j = 0; j < block_size; ++j) {
pairs[2*j] = xb[j];
idx[2*j] = j;
}
qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
float best_score = -FLT_MIN, scale = max;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
int besti1 = -1, besti2 = -1, best_k = -1;
// 0: +, +
// 1: +, -
// 2: -, +
// 3: -, -
for (int i1 = 0; i1 <= block_size; ++i1) {
for (int i2 = i1; i2 <= block_size; ++i2) {
memset(sumqx, 0, 4*sizeof(float));
memset(sumq2, 0, 4*sizeof(float));
for (int j = 0; j < i1; ++j) {
int i = idx[2*j];
if (i < block_size/2) {
sumqx[0] += weight[i]*x_p[0]*xb[i];
sumqx[1] += weight[i]*x_p[0]*xb[i];
sumqx[2] += weight[i]*x_m[0]*xb[i];
sumqx[3] += weight[i]*x_m[0]*xb[i];
sumq2[0] += weight[i]*x_p[0]*x_p[0];
sumq2[1] += weight[i]*x_p[0]*x_p[0];
sumq2[2] += weight[i]*x_m[0]*x_m[0];
sumq2[3] += weight[i]*x_m[0]*x_m[0];
} else {
sumqx[0] += weight[i]*x_p[0]*xb[i];
sumqx[2] += weight[i]*x_p[0]*xb[i];
sumqx[1] += weight[i]*x_m[0]*xb[i];
sumqx[3] += weight[i]*x_m[0]*xb[i];
sumq2[0] += weight[i]*x_p[0]*x_p[0];
sumq2[2] += weight[i]*x_p[0]*x_p[0];
sumq2[1] += weight[i]*x_m[0]*x_m[0];
sumq2[3] += weight[i]*x_m[0]*x_m[0];
}
}
for (int j = i1; j < i2; ++j) {
int i = idx[2*j];
if (i < block_size/2) {
sumqx[0] += weight[i]*x_p[1]*xb[i];
sumqx[1] += weight[i]*x_p[1]*xb[i];
sumqx[2] += weight[i]*x_m[1]*xb[i];
sumqx[3] += weight[i]*x_m[1]*xb[i];
sumq2[0] += weight[i]*x_p[1]*x_p[1];
sumq2[1] += weight[i]*x_p[1]*x_p[1];
sumq2[2] += weight[i]*x_m[1]*x_m[1];
sumq2[3] += weight[i]*x_m[1]*x_m[1];
} else {
sumqx[0] += weight[i]*x_p[1]*xb[i];
sumqx[2] += weight[i]*x_p[1]*xb[i];
sumqx[1] += weight[i]*x_m[1]*xb[i];
sumqx[3] += weight[i]*x_m[1]*xb[i];
sumq2[0] += weight[i]*x_p[1]*x_p[1];
sumq2[2] += weight[i]*x_p[1]*x_p[1];
sumq2[1] += weight[i]*x_m[1]*x_m[1];
sumq2[3] += weight[i]*x_m[1]*x_m[1];
}
}
for (int j = i2; j < block_size; ++j) {
int i = idx[2*j];
if (i < block_size/2) {
sumqx[0] += weight[i]*x_p[2]*xb[i];
sumqx[1] += weight[i]*x_p[2]*xb[i];
sumqx[2] += weight[i]*x_m[2]*xb[i];
sumqx[3] += weight[i]*x_m[2]*xb[i];
sumq2[0] += weight[i]*x_p[2]*x_p[2];
sumq2[1] += weight[i]*x_p[2]*x_p[2];
sumq2[2] += weight[i]*x_m[2]*x_m[2];
sumq2[3] += weight[i]*x_m[2]*x_m[2];
} else {
sumqx[0] += weight[i]*x_p[2]*xb[i];
sumqx[2] += weight[i]*x_p[2]*xb[i];
sumqx[1] += weight[i]*x_m[2]*xb[i];
sumqx[3] += weight[i]*x_m[2]*xb[i];
sumq2[0] += weight[i]*x_p[2]*x_p[2];
sumq2[2] += weight[i]*x_p[2]*x_p[2];
sumq2[1] += weight[i]*x_m[2]*x_m[2];
sumq2[3] += weight[i]*x_m[2]*x_m[2];
}
}
for (int k = 0; k < 4; ++k) {
if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
besti1 = i1; besti2 = i2; best_k = k;
}
}
}
}
GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
if (scale < 0) {
for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
scale = -scale;
best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
}
bool all_on_grid = true;
for (int k = 0; k < block_size/8; ++k) {
if (k == 0) xx = best_k < 2 ? x_p : x_m;
else xx = best_k%2 == 0 ? x_p : x_m;
uint16_t u = 0;
for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
int grid_index = kmap_q2xs[u];
if (grid_index < 0) {
all_on_grid = false;
const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
GGML_ASSERT(grid_index >= 0);
}
index[k] = grid_index;
}
if (!all_on_grid) {
float sumqx_f = 0, sumq2_f = 0;
for (int k = 0; k < block_size/8; ++k) {
if (k == 0) xx = best_k < 2 ? x_p : x_m;
else xx = best_k%2 == 0 ? x_p : x_m;
const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
for (int j = 0; j < 8; ++j) {
float w = weight[8*k + j];
float q = xx[(pg[j] - 1)/2];
sumqx_f += w*q*xb[8*k+j];
sumq2_f += w*q*q;
}
}
if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
}
y[ibl].qs[2*ib + 0] = index[0] & 255;
y[ibl].qs[2*ib + 1] = index[1] & 255;
y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
GGML_ASSERT(scale >= 0);
scales[ib] = scale;
shifts[ib] = best_k;
max_scale = MAX(max_scale, scale);
}
if (!max_scale) {
continue;
}
uint16_t * sc = (uint16_t *)y[ibl].scales;
float d = max_scale/15;
float id = 1/d;
float sumqx_f = 0, sumq2_f = 0;
for (int ib = 0; ib < QK_K/block_size; ++ib) {
int l = nearest_int(0.5f*(id*scales[ib+0]-1));
l = MAX(0, MIN(7, l));
sc[ib/4] |= (l << 3*(ib%4));
y[ibl].qh[ib] |= masks[shifts[ib]];
const float * xb = xbl + block_size*ib;
if (quant_weights) {
const float * qw = quant_weights + QK_K*ibl + block_size*ib;
for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
} else {
for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
}
for (int k = 0; k < block_size/8; ++k) {
if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
else xx = shifts[ib]%2 == 0 ? x_p : x_m;
const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
for (int j = 0; j < 8; ++j) {
float w = weight[8*k + j];
float q = xx[(pg[j] - 1)/2]*(2*l+1);
sumqx_f += w*q*xb[8*k+j];
sumq2_f += w*q*q;
}
}
}
if (sumq2_f > 0) d = sumqx_f/sumq2_f;
s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
sc[0] |= ((s.u16 & 0x000f) << 12);
sc[1] |= ((s.u16 & 0x00f0) << 8);
sc[2] |= ((s.u16 & 0x0f00) << 4);
sc[3] |= ((s.u16 & 0xf000) << 0);
}
}
size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
GGML_ASSERT(n_per_row%QK_K == 0);
float scales[QK_K/IQ1M_BLOCK_SIZE];
float weight[IQ1M_BLOCK_SIZE];
int8_t L[IQ1M_BLOCK_SIZE];
float pairs[2*IQ1M_BLOCK_SIZE];
uint16_t index[IQ1M_BLOCK_SIZE/8];
int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
int64_t nblock = n_per_row/QK_K;
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
IQ1_M: 1.75 bpw quantization (#6302) * iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 14:21:27 +00:00
quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
src += n_per_row;
qrow += nblock*sizeof(block_iq1_m);
}
return nrow * nblock * sizeof(block_iq1_m);
}
// ============================ 4-bit non-linear quants
static inline int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
int ml = 0, mu = n-1;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < val[mav]) mu = mav; else ml = mav;
}
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
float * scales, float * weight, uint8_t * L,
const int8_t * values,
const float * quant_weights,
const int ntry) {
float sigma2 = 0;
for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
sigma2 *= 2.f/super_block_size;
memset(q4, 0, super_block_size/2);
dh[0] = GGML_FP32_TO_FP16(0.f);
float max_scale = 0, amax_scale = 0;
for (int ib = 0; ib < super_block_size/block_size; ++ib) {
const float * xb = x + ib*block_size;
uint8_t * Lb = L + ib*block_size;
if (quant_weights) {
const float * qw = quant_weights + ib*block_size;
for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
} else {
for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
}
float amax = 0, max = 0;
for (int j = 0; j < block_size; ++j) {
float ax = fabsf(xb[j]);
if (ax > amax) {
amax = ax; max = xb[j];
}
}
if (amax < GROUP_MAX_EPS) {
scales[ib] = 0;
continue;
}
float d = ntry > 0 ? -max/values[0] : max/values[0];
float id = 1/d;
float sumqx = 0, sumq2 = 0;
for (int j = 0; j < block_size; ++j) {
float al = id*xb[j];
int l = best_index_int8(16, values, al);
Lb[j] = l;
float q = values[l];
float w = weight[j];
sumqx += w*q*xb[j];
sumq2 += w*q*q;
}
d = sumqx/sumq2;
float best = d*sumqx;
for (int itry = -ntry; itry <= ntry; ++itry) {
id = (itry + values[0])/max;
sumqx = sumq2 = 0;
for (int j = 0; j < block_size; ++j) {
float al = id*xb[j];
int l = best_index_int8(16, values, al);
float q = values[l];
float w = weight[j];
sumqx += w*q*xb[j];
sumq2 += w*q*q;
}
if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
d = sumqx/sumq2; best = d * sumqx;
}
}
scales[ib] = d;
float abs_d = fabsf(d);
if (abs_d > amax_scale) {
amax_scale = abs_d; max_scale = d;
}
}
if (super_block_size/block_size > 1) {
int nb = super_block_size/block_size;
memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
float d = -max_scale/32;
dh[0] = GGML_FP32_TO_FP16(d);
float id = d ? 1/d : 0.f;
for (int ib = 0; ib < super_block_size/block_size; ++ib) {
int l = nearest_int(id*scales[ib]);
l = MAX(-32, MIN(31, l));
float dl = d * l;
float idl = dl ? 1/dl : 0.f;
uint8_t * Lb = L + ib*block_size;
const float * xb = x + ib*block_size;
for (int j = 0; j < block_size; ++j) {
Lb[j] = best_index_int8(16, values, idl*xb[j]);
}
l += 32;
uint8_t l_l = l & 0xf;
uint8_t l_h = l >> 4;
if (ib%2 == 0) scales_l[ib/2] = l_l;
else scales_l[ib/2] |= (l_l << 4);
scales_h[ib/8] |= (l_h << 2*(ib%8));
}
} else {
dh[0] = GGML_FP32_TO_FP16(scales[0]);
if (ntry > 0) {
float id = scales[0] ? 1/scales[0] : 0;
for (int j = 0; j < super_block_size; ++j) {
L[j] = best_index_int8(16, values, id*x[j]);
}
}
}
for (int i = 0; i < super_block_size/32; ++i) {
for (int j = 0; j < 16; ++j) {
q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
}
}
}
size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
GGML_ASSERT(n_per_row%QK4_NL == 0);
int64_t nblock = n_per_row/QK4_NL;
char * qrow = (char *)dst;
uint8_t L[QK4_NL];
float weight[QK4_NL];
uint16_t unused_h;
uint8_t * unused_l = NULL;
float scale;
for (int64_t row = 0; row < nrow; ++row) {
block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
for (int ibl = 0; ibl < nblock; ++ibl) {
const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
&scale, weight, L, kvalues_iq4nl, qw, 7);
}
src += n_per_row;
qrow += nblock*sizeof(block_iq4_nl);
}
return nrow * nblock * sizeof(block_iq4_nl);
}
//void quantize_row_iq4_nl_ref(const float * restrict x, void * restrict vy, int64_t k) {
void quantize_row_iq4_nl_ref(const float * restrict x, block_iq4_nl * restrict y, int64_t k) {
GGML_ASSERT(k%QK4_NL == 0);
int64_t nblock = k/QK4_NL;
uint8_t L[QK4_NL];
float weight[QK4_NL];
uint16_t unused_h;
uint8_t * unused_l = NULL;
float scale;
block_iq4_nl * iq4 = y;
for (int ibl = 0; ibl < nblock; ++ibl) {
quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
&scale, weight, L, kvalues_iq4nl, NULL, -1);
}
}
size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
GGML_ASSERT(n_per_row%QK_K == 0);
int64_t nblock = n_per_row/QK_K;
char * qrow = (char *)dst;
uint8_t L[QK_K];
float weight[32];
float scales[QK_K/32];
for (int64_t row = 0; row < nrow; ++row) {
block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
for (int ibl = 0; ibl < nblock; ++ibl) {
const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
scales, weight, L, kvalues_iq4nl, qw, 7);
}
src += n_per_row;
qrow += nblock*sizeof(block_iq4_xs);
}
return nrow * nblock * sizeof(block_iq4_xs);
}
void quantize_row_iq4_xs_ref(const float * restrict x, block_iq4_xs * restrict y, int64_t k) {
assert(k % QK_K == 0);
quantize_iq4_xs(x, y, 1, k, NULL);
}
// =============================== 2.5625 bpw
static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
const int * kmap_q2xs = iq2_data[gindex].map;
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(n%QK_K == 0);
const int kMaxQ = 3;
const int64_t nbl = n/QK_K;
block_iq2_s * y = vy;
float scales[QK_K/16];
float weight[16];
float xval[16];
int8_t L[16];
int8_t Laux[16];
float waux[16];
bool is_on_grid[2];
bool is_on_grid_aux[2];
uint8_t block_signs[2];
for (int ibl = 0; ibl < nbl; ++ibl) {
memset(&y[ibl], 0, sizeof(block_iq2_s));
y[ibl].d = GGML_FP32_TO_FP16(0.f);
float max_scale = 0;
const float * xbl = x + QK_K*ibl;
float sumx2 = 0;
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
float sigma2 = 2*sumx2/QK_K;
for (int ib = 0; ib < QK_K/16; ++ib) {
const float * xb = xbl + 16*ib;
if (quant_weights) {
const float * qw = quant_weights + QK_K*ibl + 16*ib;
for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
} else {
for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
}
for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
for (int k = 0; k < 2; ++k) {
uint8_t s = 0;
for (int i = 0; i < 8; ++i) {
if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
else {
xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
}
}
block_signs[k] = s;
}
float max = xval[0];
for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
if (max < GROUP_MAX_EPS_IQ2_S) {
scales[ib] = 0;
continue;
}
float best = 0;
float scale = max/(2*kMaxQ-1);
is_on_grid[0] = is_on_grid[1] = true;
for (int is = -9; is <= 9; ++is) {
float id = (2*kMaxQ-1+is*0.1f)/max;
float this_scale = 1/id;
for (int k = 0; k < 2; ++k) {
for (int i = 0; i < 8; ++i) {
int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
}
uint16_t u = 0;
for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
int grid_index = kmap_q2xs[u];
is_on_grid_aux[k] = true;
if (grid_index < 0) {
is_on_grid_aux[k] = false;
const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
}
}
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 16; ++i) {
float w = weight[i];
float q = 2*Laux[i] + 1;
sumqx += w*xval[i]*q;
sumq2 += w*q*q;
}
if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
scale = sumqx/sumq2; best = scale*sumqx;
for (int i = 0; i < 16; ++i) L[i] = Laux[i];
for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
}
}
int n_not_ongrid = 0;
for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
if (n_not_ongrid > 0 && scale > 0) {
float id = 1/scale;
for (int k = 0; k < 2; ++k) {
if (is_on_grid[k]) continue;
uint16_t u = 0;
for (int i = 0; i < 8; ++i) {
int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
l = MAX(0, MIN(kMaxQ-1, l));
u |= (l << 2*i);
L[8*k + i] = l;
}
int grid_index = kmap_q2xs[u];
if (grid_index < 0) {
const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
}
}
float sumqx = 0, sumq2 = 0;
for (int i = 0; i < 16; ++i) {
float w = weight[i];
float q = 2*L[i] + 1;
sumqx += w*xval[i]*q;
sumq2 += w*q*q;
}
if (sumq2 > 0) scale = sumqx/sumq2;
}
if (scale < 0) {
scale = -scale;
for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
}
for (int k = 0; k < 2; ++k) {
uint16_t u = 0;
for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
int grid_index = kmap_q2xs[u];
if (grid_index < 0) {
printf("Oops: found point %u not on grid:", u);
for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
printf("\n");
GGML_ABORT("fatal error");
}
const int i8 = 2*ib + k;
y[ibl].qs[i8] = grid_index & 255;
y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
y[ibl].qs[QK_K/8 + i8] = block_signs[k];
}
GGML_ASSERT(scale >= 0);
scales[ib] = scale;
max_scale = MAX(max_scale, scale);
}
if (!max_scale) {
continue;
}
float d = max_scale/31;
y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
float id = 1/d;
for (int ib = 0; ib < QK_K/16; ++ib) {
int l = nearest_int(0.5f*(id*scales[ib]-1));
l = MAX(0, MIN(15, l));
if (ib%2 == 0) y[ibl].scales[ib/2] = l;
else y[ibl].scales[ib/2] |= (l << 4);
}
}
}
size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
GGML_ASSERT(n_per_row%QK_K == 0);
int64_t nblock = n_per_row/QK_K;
char * qrow = (char *)dst;
for (int64_t row = 0; row < nrow; ++row) {
quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
src += n_per_row;
qrow += nblock*sizeof(block_iq2_s);
}
return nrow * nblock * sizeof(block_iq2_s);
}
void quantize_row_iq2_s_ref(const float * restrict x, block_iq2_s * restrict y, int64_t k) {
assert(k % QK_K == 0);
quantize_iq2_s(x, y, 1, k, NULL);
}
// =============================== data validation
static bool validate_float(float f, size_t i) {
if (isinf(f)) {
fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
return false;
}
if (isnan(f)) {
fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
return false;
}
return true;
}
static bool isinf_fp16(ggml_fp16_t f) {
return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
}
static bool isnan_fp16(ggml_fp16_t f) {
return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
}
static bool validate_fp16(ggml_fp16_t f, size_t i) {
if (isinf_fp16(f)) {
fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
return false;
}
if (isnan_fp16(f)) {
fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
return false;
}
return true;
}
#define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
if (!validate_fp16(q[i].d, i)) { \
return false; \
} \
}
#define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
return false; \
} \
}
ggml : add AArch64 optimized GEMV and GEMM Q4 kernels (#5780) * Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files * Arm AArch64: minor code refactoring for rebase * Arm AArch64: minor code refactoring for resolving a build issue with cmake * Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: minor code change for resolving a build issue with server-windows * retrigger checks * Arm AArch64: minor code changes for rebase * Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits * Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig * Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: minor code refactoring * Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat * Arm AArch64: minimize changes in ggml_compute_forward_mul_mat * Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types * Arm AArch64: minor code refactoring * Arm AArch64: minor code refactoring * Arm AArch64: minor code refactoring * rebase on the latest master commit 3fd62a6 and adapt to the new directory structure * Arm AArch64: remove a redundant comment * Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off * Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels * Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type
2024-07-10 12:14:51 +00:00
#define VALIDATE_ROW_DATA_DVEC_F16_IMPL(type, data, nb, nr) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
for (size_t j = 0; j < (nr); ++j) { \
if (!validate_fp16(q[i].d[j], i)) { \
return false; \
} \
} \
}
bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
if (type < 0 || type >= GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid type %d\n", __func__, type);
return false;
}
if (nbytes % ggml_type_size(type) != 0) {
fprintf(stderr, "%s: invalid size %zu for type %s (type size = %zu)\n", __func__, nbytes, ggml_type_name(type), ggml_type_size(type));
return false;
}
const size_t nb = nbytes/ggml_type_size(type);
switch (type) {
ggml : introduce bfloat16 support (#6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
int nans = 0;
int infs = 0;
const unsigned short * f = (const unsigned short *) data;
for (size_t i = 0; i < nb; ++i) {
nans += (f[i] & 0x7fff) > 0x7f80;
infs += (f[i] & 0x7fff) == 0x7f80;
}
if (nans) {
fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
return false;
}
if (infs) {
fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
return false;
}
} break;
case GGML_TYPE_F16:
{
const ggml_fp16_t * f = (const ggml_fp16_t *) data;
size_t i = 0;
#if defined(__AVX2__)
for (; i + 15 < nb; i += 16) {
__m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
__m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
__m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
int mask = _mm256_movemask_epi8(cmp);
if (mask) {
for (size_t j = 0; j < 16; ++j) {
if (!validate_fp16(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#elif defined(__ARM_NEON)
for (; i + 7 < nb; i += 8) {
uint16x8_t v = vld1q_u16(f + i);
uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
if (mask) {
for (size_t j = 0; j < 8; ++j) {
if (!validate_fp16(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#endif
for (; i < nb; ++i) {
if (!validate_fp16(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_F32:
{
const float * f = (const float *) data;
size_t i = 0;
#if defined(__AVX2__)
for (; i + 7 < nb; i += 8) {
__m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
__m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
__m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
int mask = _mm256_movemask_epi8(cmp);
if (mask) {
for (size_t j = 0; j < 8; ++j) {
if (!validate_float(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#elif defined(__ARM_NEON)
for (; i + 3 < nb; i += 4) {
uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
if (mask) {
for (size_t j = 0; j < 4; ++j) {
if (!validate_float(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#endif
for (; i < nb; ++i) {
if (!validate_float(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_F64:
{
const double * f = (const double *) data;
for (size_t i = 0; i < nb; ++i) {
if (!validate_float(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_Q4_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
} break;
case GGML_TYPE_Q4_1:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
} break;
case GGML_TYPE_Q5_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
} break;
case GGML_TYPE_Q5_1:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
} break;
case GGML_TYPE_Q8_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
} break;
case GGML_TYPE_Q2_K:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
} break;
case GGML_TYPE_Q3_K:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
} break;
case GGML_TYPE_Q4_K:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
} break;
case GGML_TYPE_Q5_K:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
} break;
case GGML_TYPE_Q6_K:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
} break;
case GGML_TYPE_Q8_K:
{
const block_q8_K * q = (const block_q8_K *) data;
for (size_t i = 0; i < nb; ++i) {
if (!validate_float(q[i].d, i)) {
return false;
}
}
} break;
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151) * ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b * ggml-quants : faster 1.625 bpw AVX2 vec_dot Not using a lookup table anymore makes it match q4_0 speed. * gguf-py : fix formatting * llama : remove spaces on empty line * ggml-quants : subtract 1 when back in epi8 This makes the 1.625 bpw type go faster than q4_0. Still not the fastest. * ggml-quants : Q2_2 now faster than Q4_K on with AVX2 * ggml-quants : cleanup Q1_3 code formatting * ggml-quants : ARM NEON vec_dot for q2_2 and q1_3 * ggml-quants : use ceiling division when quantizing q1_3 * convert-hf : simplify BitNet pre-quantization This still results in the exact same tensor weights and scales, but it reveals some weirdness in the current algorithm. * convert-hf : allow converting the weird BitNet 1.3B Its FFN size is 5460 which is not convenient. The offending tensors are kept in F16, which makes the final model 5.01 bpw. * bitnet : replace 1.58b with b1.58, as in the paper * ggml-quants : fix build failure on Windows * ggml-quants : attempt to fix Arm 32-bit support * ggml : add some informative comments in q1_3 vec_dot * ggml : add TQ1_0 and TQ2_0 ternary quantization types * ggml : even faster TQ2_0 * ggml : also faster TQ1_0 Same optimization as for TQ2_0 by offsetting the sum instead of the weights. This makes TQ1_0 almost as fast as Q8_0 on AVX2. * ggml : fix build issues in certain environments * ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0 * ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat The compiler seems smart enough to use the same instruction even when using vget_high_s8 instead. * ggml : remove q1_3 and q2_2 No more 1.625 bpw and 2.000 bpw, now instead using 1.6875 bpw and 2.0625 bpw with TQ1_0 and TQ2_0, respectively. * llama : remove the separate scale tensors of BitNet b1.58 They won't be needed, since the remaining ternary quant types have built-in scales. * ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency * ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot Not yet tested on hardware which supports it, might not work or might not even compile. But also it might. It should make the performance better on recent ARM CPUs. * ggml-quants : remove comment about possible format change of TQ2_0 Making it slightly more convenient for AVX512 but less convenient for everything else is not worth the trouble. * gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0 * ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0 This does not change anything for ternary models, since their values should never end up being in halfway cases anyway. * convert : allow direct conversion to TQ1_0 and TQ2_0 The token embeddings and output tensors are kept in F16 to allow quantizing them to Q4_K and Q6_K with llama-quantize. * llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0 Q4_0 is not completely symmetric (so not lossless for ternary models), but it should be good enough. * ggml-quants : allow using ARM dot product instructions for TQ1_0 * ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support * ggml : remove unused ggml_mul special case It would otherwise conflict with the more general optimization coming with Mamba-2. * ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators * test-backend-ops : add TQ1_0 and TQ2_0 comments for later Not yet adding uncommented, because some backends like SYCL and Metal do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT. (and Metal also doesn't handle it with GGML_OP_GET_ROWS) Support for TQ1_0 and TQ2_0 for other backends than CPU will be added in follow-up pull requests.
2024-09-06 01:48:47 +00:00
case GGML_TYPE_TQ1_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_tq1_0, data, nb);
} break;
case GGML_TYPE_TQ2_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_tq2_0, data, nb);
} break;
case GGML_TYPE_IQ1_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
} break;
case GGML_TYPE_IQ1_M:
{
const block_iq1_m * q = (const block_iq1_m *) data;
for (size_t i = 0; i < nb; ++i) {
iq1m_scale_t scale;
const uint16_t * sc = (const uint16_t *)q[i].scales;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
if (!validate_fp16(scale.f16, i)) {
return false;
}
}
} break;
case GGML_TYPE_IQ2_XXS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
} break;
case GGML_TYPE_IQ2_XS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
} break;
case GGML_TYPE_IQ2_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
} break;
case GGML_TYPE_IQ3_XXS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
} break;
case GGML_TYPE_IQ3_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
} break;
case GGML_TYPE_IQ4_XS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
} break;
case GGML_TYPE_IQ4_NL:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
} break;
ggml : add AArch64 optimized GEMV and GEMM Q4 kernels (#5780) * Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files * Arm AArch64: minor code refactoring for rebase * Arm AArch64: minor code refactoring for resolving a build issue with cmake * Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: minor code change for resolving a build issue with server-windows * retrigger checks * Arm AArch64: minor code changes for rebase * Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits * Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig * Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: minor code refactoring * Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat * Arm AArch64: minimize changes in ggml_compute_forward_mul_mat * Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types * Arm AArch64: minor code refactoring * Arm AArch64: minor code refactoring * Arm AArch64: minor code refactoring * rebase on the latest master commit 3fd62a6 and adapt to the new directory structure * Arm AArch64: remove a redundant comment * Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off * Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels * Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type
2024-07-10 12:14:51 +00:00
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
// nothing to validate
break;
default:
{
fprintf(stderr, "%s: invalid type %d\n", __func__, type);
return false;
}
}
return true;
}