llama.cpp/examples/server/tests/utils.py

407 lines
13 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# type: ignore[reportUnusedImport]
import subprocess
import os
import re
import json
import sys
import requests
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import (
Any,
Callable,
ContextManager,
Iterable,
Iterator,
List,
Literal,
Tuple,
Set,
)
from re import RegexFlag
import wget
class ServerResponse:
headers: dict
status_code: int
body: dict | Any
class ServerProcess:
# default options
debug: bool = False
server_port: int = 8080
server_host: str = "127.0.0.1"
model_hf_repo: str = "ggml-org/models"
model_hf_file: str = "tinyllamas/stories260K.gguf"
model_alias: str = "tinyllama-2"
temperature: float = 0.8
seed: int = 42
# custom options
model_alias: str | None = None
model_url: str | None = None
model_file: str | None = None
model_draft: str | None = None
n_threads: int | None = None
n_gpu_layer: int | None = None
n_batch: int | None = None
n_ubatch: int | None = None
n_ctx: int | None = None
n_ga: int | None = None
n_ga_w: int | None = None
n_predict: int | None = None
n_prompts: int | None = 0
slot_save_path: str | None = None
id_slot: int | None = None
cache_prompt: bool | None = None
n_slots: int | None = None
server_continuous_batching: bool | None = False
server_embeddings: bool | None = False
server_reranking: bool | None = False
server_metrics: bool | None = False
server_slots: bool | None = False
pooling: str | None = None
draft: int | None = None
api_key: str | None = None
response_format: str | None = None
lora_files: List[str] | None = None
disable_ctx_shift: int | None = False
draft_min: int | None = None
draft_max: int | None = None
no_webui: bool | None = None
chat_template: str | None = None
# session variables
process: subprocess.Popen | None = None
def __init__(self):
if "N_GPU_LAYERS" in os.environ:
self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
if "DEBUG" in os.environ:
self.debug = True
if "PORT" in os.environ:
self.server_port = int(os.environ["PORT"])
def start(self, timeout_seconds: int = 10) -> None:
if "LLAMA_SERVER_BIN_PATH" in os.environ:
server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
elif os.name == "nt":
server_path = "../../../build/bin/Release/llama-server.exe"
else:
server_path = "../../../build/bin/llama-server"
server_args = [
"--host",
self.server_host,
"--port",
self.server_port,
"--temp",
self.temperature,
"--seed",
self.seed,
]
if self.model_file:
server_args.extend(["--model", self.model_file])
if self.model_url:
server_args.extend(["--model-url", self.model_url])
if self.model_draft:
server_args.extend(["--model-draft", self.model_draft])
if self.model_hf_repo:
server_args.extend(["--hf-repo", self.model_hf_repo])
if self.model_hf_file:
server_args.extend(["--hf-file", self.model_hf_file])
if self.n_batch:
server_args.extend(["--batch-size", self.n_batch])
if self.n_ubatch:
server_args.extend(["--ubatch-size", self.n_ubatch])
if self.n_threads:
server_args.extend(["--threads", self.n_threads])
if self.n_gpu_layer:
server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
if self.draft is not None:
server_args.extend(["--draft", self.draft])
if self.server_continuous_batching:
server_args.append("--cont-batching")
if self.server_embeddings:
server_args.append("--embedding")
if self.server_reranking:
server_args.append("--reranking")
if self.server_metrics:
server_args.append("--metrics")
if self.server_slots:
server_args.append("--slots")
if self.pooling:
server_args.extend(["--pooling", self.pooling])
if self.model_alias:
server_args.extend(["--alias", self.model_alias])
if self.n_ctx:
server_args.extend(["--ctx-size", self.n_ctx])
if self.n_slots:
server_args.extend(["--parallel", self.n_slots])
if self.n_predict:
server_args.extend(["--n-predict", self.n_predict])
if self.slot_save_path:
server_args.extend(["--slot-save-path", self.slot_save_path])
if self.n_ga:
server_args.extend(["--grp-attn-n", self.n_ga])
if self.n_ga_w:
server_args.extend(["--grp-attn-w", self.n_ga_w])
if self.debug:
server_args.append("--verbose")
if self.lora_files:
for lora_file in self.lora_files:
server_args.extend(["--lora", lora_file])
if self.disable_ctx_shift:
server_args.extend(["--no-context-shift"])
if self.api_key:
server_args.extend(["--api-key", self.api_key])
if self.draft_max:
server_args.extend(["--draft-max", self.draft_max])
if self.draft_min:
server_args.extend(["--draft-min", self.draft_min])
if self.no_webui:
server_args.append("--no-webui")
if self.chat_template:
server_args.extend(["--chat-template", self.chat_template])
args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")
flags = 0
if "nt" == os.name:
flags |= subprocess.DETACHED_PROCESS
flags |= subprocess.CREATE_NEW_PROCESS_GROUP
flags |= subprocess.CREATE_NO_WINDOW
self.process = subprocess.Popen(
[str(arg) for arg in [server_path, *server_args]],
creationflags=flags,
stdout=sys.stdout,
stderr=sys.stdout,
env={**os.environ, "LLAMA_CACHE": "tmp"},
)
server_instances.add(self)
print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
# wait for server to start
start_time = time.time()
while time.time() - start_time < timeout_seconds:
try:
response = self.make_request("GET", "/health", headers={
"Authorization": f"Bearer {self.api_key}" if self.api_key else None
})
if response.status_code == 200:
self.ready = True
return # server is ready
except Exception as e:
pass
print(f"Waiting for server to start...")
time.sleep(0.5)
raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
def stop(self) -> None:
if self in server_instances:
server_instances.remove(self)
if self.process:
print(f"Stopping server with pid={self.process.pid}")
self.process.kill()
self.process = None
def make_request(
self,
method: str,
path: str,
data: dict | Any | None = None,
headers: dict | None = None,
) -> ServerResponse:
url = f"http://{self.server_host}:{self.server_port}{path}"
parse_body = False
if method == "GET":
response = requests.get(url, headers=headers)
parse_body = True
elif method == "POST":
response = requests.post(url, headers=headers, json=data)
parse_body = True
elif method == "OPTIONS":
response = requests.options(url, headers=headers)
else:
raise ValueError(f"Unimplemented method: {method}")
result = ServerResponse()
result.headers = dict(response.headers)
result.status_code = response.status_code
result.body = response.json() if parse_body else None
print("Response from server", json.dumps(result.body, indent=2))
return result
def make_stream_request(
self,
method: str,
path: str,
data: dict | None = None,
headers: dict | None = None,
) -> Iterator[dict]:
url = f"http://{self.server_host}:{self.server_port}{path}"
if method == "POST":
response = requests.post(url, headers=headers, json=data, stream=True)
else:
raise ValueError(f"Unimplemented method: {method}")
for line_bytes in response.iter_lines():
line = line_bytes.decode("utf-8")
if '[DONE]' in line:
break
elif line.startswith('data: '):
data = json.loads(line[6:])
print("Partial response from server", json.dumps(data, indent=2))
yield data
server_instances: Set[ServerProcess] = set()
class ServerPreset:
@staticmethod
def tinyllama2() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "tinyllamas/stories260K.gguf"
server.model_alias = "tinyllama-2"
server.n_ctx = 256
server.n_batch = 32
server.n_slots = 2
server.n_predict = 64
server.seed = 42
return server
@staticmethod
def bert_bge_small() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
server.model_alias = "bert-bge-small"
server.n_ctx = 512
server.n_batch = 128
server.n_ubatch = 128
server.n_slots = 2
server.seed = 42
server.server_embeddings = True
return server
@staticmethod
def tinyllama_infill() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
server.model_alias = "tinyllama-infill"
server.n_ctx = 2048
server.n_batch = 1024
server.n_slots = 1
server.n_predict = 64
server.temperature = 0.0
server.seed = 42
return server
@staticmethod
def stories15m_moe() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/stories15M_MOE"
server.model_hf_file = "stories15M_MOE-F16.gguf"
server.model_alias = "stories15m-moe"
server.n_ctx = 2048
server.n_batch = 1024
server.n_slots = 1
server.n_predict = 64
server.temperature = 0.0
server.seed = 42
return server
@staticmethod
def jina_reranker_tiny() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
server.model_alias = "jina-reranker"
server.n_ctx = 512
server.n_batch = 512
server.n_slots = 1
server.seed = 42
server.server_reranking = True
return server
def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
"""
Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
Example usage:
results = parallel_function_calls([
(func1, (arg1, arg2)),
(func2, (arg3, arg4)),
])
"""
results = [None] * len(function_list)
exceptions = []
def worker(index, func, args):
try:
result = func(*args)
results[index] = result
except Exception as e:
exceptions.append((index, str(e)))
with ThreadPoolExecutor() as executor:
futures = []
for i, (func, args) in enumerate(function_list):
future = executor.submit(worker, i, func, args)
futures.append(future)
# Wait for all futures to complete
for future in as_completed(futures):
pass
# Check if there were any exceptions
if exceptions:
print("Exceptions occurred:")
for index, error in exceptions:
print(f"Function at index {index}: {error}")
return results
def match_regex(regex: str, text: str) -> bool:
return (
re.compile(
regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
).search(text)
is not None
)
def download_file(url: str, output_file_path: str | None = None) -> str:
"""
Download a file from a URL to a local path. If the file already exists, it will not be downloaded again.
output_file_path is the local path to save the downloaded file. If not provided, the file will be saved in the root directory.
Returns the local path of the downloaded file.
"""
file_name = url.split('/').pop()
output_file = f'./tmp/{file_name}' if output_file_path is None else output_file_path
if not os.path.exists(output_file):
print(f"Downloading {url} to {output_file}")
wget.download(url, out=output_file)
print(f"Done downloading to {output_file}")
else:
print(f"File already exists at {output_file}")
return output_file
def is_slow_test_allowed():
return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"