2024-01-08 09:14:04 +00:00
# include "common.h"
# include "llama.h"
# include <cmath>
# include <cstdio>
# include <string>
# include <vector>
2024-06-04 18:23:39 +00:00
static void print_usage ( int argc , char * * argv , const gpt_params & params ) {
gpt_params_print_usage ( argc , argv , params ) ;
2024-01-08 09:14:04 +00:00
2024-06-04 18:23:39 +00:00
LOG_TEE ( " \n example usage: \n " ) ;
LOG_TEE ( " \n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234] \n " , argv [ 0 ] ) ;
LOG_TEE ( " \n " ) ;
}
2024-01-08 09:14:04 +00:00
2024-06-04 18:23:39 +00:00
int main ( int argc , char * * argv ) {
gpt_params params ;
2024-01-08 09:14:04 +00:00
2024-06-04 18:23:39 +00:00
params . n_junk = 250 ;
params . n_keep = 32 ;
params . i_pos = - 1 ;
2024-01-08 09:14:04 +00:00
2024-06-04 18:23:39 +00:00
if ( ! gpt_params_parse ( argc , argv , params ) ) {
print_usage ( argc , argv , params ) ;
return 1 ;
2024-01-08 09:14:04 +00:00
}
2024-06-04 18:23:39 +00:00
srand ( params . seed = = LLAMA_DEFAULT_SEED ? time ( NULL ) : params . seed ) ;
2024-01-08 09:14:04 +00:00
2024-06-04 18:23:39 +00:00
int n_junk = params . n_junk ;
int n_keep = params . n_keep ;
int n_grp = params . grp_attn_n ;
int i_pos = params . i_pos ;
2024-01-08 09:14:04 +00:00
if ( i_pos = = - 1 ) {
i_pos = rand ( ) % n_junk ;
}
const std : : string prompt_prefix = " There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there. " ;
const std : : string prompt_suffix = " What is the pass key? The pass key is " ;
// generate junk text
params . prompt = prompt_prefix ;
const int passkey = rand ( ) % 50000 + 1 ;
for ( int i = 0 ; i < n_junk ; i + + ) {
if ( i % n_junk = = i_pos ) {
params . prompt + = " The pass key is " + std : : to_string ( passkey ) + " . Remember it. " + std : : to_string ( passkey ) + " is the pass key. " ;
}
params . prompt + = " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. " ;
}
params . prompt + = prompt_suffix ;
// init LLM
2024-02-16 09:31:07 +00:00
llama_backend_init ( ) ;
llama_numa_init ( params . numa ) ;
2024-01-08 09:14:04 +00:00
// initialize the model
2024-06-04 18:23:39 +00:00
llama_model_params model_params = llama_model_params_from_gpt_params ( params ) ;
2024-01-08 09:14:04 +00:00
llama_model * model = llama_load_model_from_file ( params . model . c_str ( ) , model_params ) ;
if ( model = = NULL ) {
fprintf ( stderr , " %s: error: unable to load model \n " , __func__ ) ;
return 1 ;
}
// initialize the context
2024-06-04 18:23:39 +00:00
llama_context_params ctx_params = llama_context_params_from_gpt_params ( params ) ;
2024-01-08 09:14:04 +00:00
2024-06-04 18:23:39 +00:00
ctx_params . n_ctx = llama_n_ctx_train ( model ) * n_grp + n_keep ;
2024-01-08 09:14:04 +00:00
GGML_ASSERT ( ctx_params . n_batch % n_grp = = 0 & & " n_batch must be divisible by n_grp " ) ;
llama_context * ctx = llama_new_context_with_model ( model , ctx_params ) ;
if ( ctx = = NULL ) {
fprintf ( stderr , " %s: error: failed to create the llama_context \n " , __func__ ) ;
return 1 ;
}
// tokenize the prompt
std : : vector < llama_token > tokens_list ;
tokens_list = : : llama_tokenize ( ctx , params . prompt , true ) ;
// tokenize the prefix and use it as a sink
const int n_tokens_prefix = : : llama_tokenize ( ctx , prompt_prefix , true ) . size ( ) ;
const int n_tokens_all = tokens_list . size ( ) ;
// we leave a margin of 16 tokens for the generated text - it should contain just the passkey
const int n_predict = 16 ;
// total length of the sequences including the prompt
const int n_len = n_tokens_all + n_predict ;
const int n_ctx = llama_n_ctx ( ctx ) - n_keep ;
const int n_kv_req = llama_n_ctx ( ctx ) ;
const int n_batch = ctx_params . n_batch ;
const int n_batch_grp = ctx_params . n_batch / n_grp ;
2024-02-25 20:12:24 +00:00
LOG_TEE ( " \n %s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d \n " , __func__ , n_len , n_ctx , n_kv_req , n_grp , n_batch , n_junk , i_pos ) ;
2024-01-08 09:14:04 +00:00
// print the prompt token-by-token
LOG_TEE ( " \n " ) ;
LOG_TEE ( " prefix tokens: %d \n " , n_tokens_prefix ) ;
LOG_TEE ( " prompt tokens: %d \n " , n_tokens_all ) ;
//LOG_TEE("prompt: %s\n", params.prompt.c_str());
2024-06-04 18:23:39 +00:00
llama_batch batch = llama_batch_init ( params . n_batch , 0 , 1 ) ;
2024-01-08 09:14:04 +00:00
int n_past = 0 ;
// fill the KV cache
for ( int i = 0 ; i < n_ctx ; i + = n_batch ) {
if ( i > 0 & & n_grp > 1 ) {
// if SelfExtend is enabled, we compress the position from the last batch by a factor of n_grp
const int ib = i / n_batch - 1 ;
const int bd = n_batch_grp * ( n_grp - 1 ) ;
2024-02-25 20:12:24 +00:00
llama_kv_cache_seq_add ( ctx , 0 , n_past - n_batch , n_past , ib * bd ) ;
llama_kv_cache_seq_div ( ctx , 0 , n_past - n_batch + ib * bd , n_past + ib * bd , n_grp ) ;
llama_kv_cache_update ( ctx ) ;
2024-01-08 09:14:04 +00:00
2024-02-25 20:12:24 +00:00
n_past = llama_kv_cache_seq_pos_max ( ctx , 0 ) + 1 ;
2024-01-08 09:14:04 +00:00
}
llama_batch_clear ( batch ) ;
for ( int j = 0 ; j < n_batch & & i + j < n_tokens_all ; j + + ) {
llama_batch_add ( batch , tokens_list [ i + j ] , n_past + + , { 0 } , false ) ;
}
if ( i + n_batch > = n_tokens_all ) {
batch . logits [ batch . n_tokens - 1 ] = true ;
}
if ( llama_decode ( ctx , batch ) ! = 0 ) {
LOG_TEE ( " %s: llama_decode() failed \n " , __func__ ) ;
return 1 ;
}
LOG_TEE ( " %s: processed: [%6d, %6d) \n " , __func__ , i , std : : min ( i + n_batch , n_tokens_all ) ) ;
if ( i + n_batch > = n_tokens_all ) {
break ;
}
}
for ( int i = n_ctx ; i < n_tokens_all ; i + = n_batch ) {
const int n_discard = n_batch ;
LOG_TEE ( " %s: shifting KV cache with %d \n " , __func__ , n_discard ) ;
2024-02-25 20:12:24 +00:00
llama_kv_cache_seq_rm ( ctx , 0 , n_keep , n_keep + n_discard ) ;
llama_kv_cache_seq_add ( ctx , 0 , n_keep + n_discard , n_ctx , - n_discard ) ;
2024-02-27 12:35:51 +00:00
//llama_kv_cache_defrag (ctx);
2024-02-25 20:12:24 +00:00
llama_kv_cache_update ( ctx ) ;
2024-01-08 09:14:04 +00:00
2024-02-25 20:12:24 +00:00
n_past = llama_kv_cache_seq_pos_max ( ctx , 0 ) + 1 ;
2024-01-08 09:14:04 +00:00
llama_batch_clear ( batch ) ;
for ( int j = 0 ; j < n_batch & & i + j < n_tokens_all ; j + + ) {
llama_batch_add ( batch , tokens_list [ i + j ] , n_past + + , { 0 } , false ) ;
}
if ( i + n_batch > = n_tokens_all ) {
batch . logits [ batch . n_tokens - 1 ] = true ;
}
if ( llama_decode ( ctx , batch ) ! = 0 ) {
LOG_TEE ( " %s: llama_decode() failed \n " , __func__ ) ;
return 1 ;
}
LOG_TEE ( " %s: processed: [%6d, %6d) \n " , __func__ , i , std : : min ( i + n_batch , n_tokens_all ) ) ;
}
{
const int n_discard = n_past - n_ctx + n_predict ;
if ( n_discard > 0 ) {
LOG_TEE ( " %s: shifting KV cache with %d to free space for the answer \n " , __func__ , n_discard ) ;
2024-02-25 20:12:24 +00:00
llama_kv_cache_seq_rm ( ctx , 0 , n_keep , n_keep + n_discard ) ;
llama_kv_cache_seq_add ( ctx , 0 , n_keep + n_discard , n_ctx , - n_discard ) ;
2024-02-27 12:35:51 +00:00
//llama_kv_cache_defrag (ctx);
2024-02-25 20:12:24 +00:00
llama_kv_cache_update ( ctx ) ;
2024-01-08 09:14:04 +00:00
2024-02-25 20:12:24 +00:00
n_past = llama_kv_cache_seq_pos_max ( ctx , 0 ) + 1 ;
2024-01-08 09:14:04 +00:00
}
}
LOG_TEE ( " \n " ) ;
LOG_TEE ( " %s: passkey = %d, inserted at position %d / %d (token pos: ~%d) \n " , __func__ , passkey , i_pos , n_junk , ( i_pos * n_tokens_all ) / n_junk ) ;
LOG_TEE ( " \n " ) ;
// main loop
int n_cur = n_tokens_all ;
int n_decode = 0 ;
LOG_TEE ( " %s " , prompt_suffix . c_str ( ) ) ;
fflush ( stdout ) ;
const auto t_main_start = ggml_time_us ( ) ;
while ( n_cur < = n_len ) {
// sample the next token
{
auto n_vocab = llama_n_vocab ( model ) ;
auto * logits = llama_get_logits_ith ( ctx , batch . n_tokens - 1 ) ;
std : : vector < llama_token_data > candidates ;
candidates . reserve ( n_vocab ) ;
for ( llama_token token_id = 0 ; token_id < n_vocab ; token_id + + ) {
candidates . emplace_back ( llama_token_data { token_id , logits [ token_id ] , 0.0f } ) ;
}
llama_token_data_array candidates_p = { candidates . data ( ) , candidates . size ( ) , false } ;
// sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy ( ctx , & candidates_p ) ;
2024-04-21 11:50:41 +00:00
// is it an end of generation?
if ( llama_token_is_eog ( model , new_token_id ) | | n_cur = = n_len ) {
2024-01-08 09:14:04 +00:00
LOG_TEE ( " \n " ) ;
break ;
}
LOG_TEE ( " %s " , llama_token_to_piece ( ctx , new_token_id ) . c_str ( ) ) ;
fflush ( stdout ) ;
n_decode + = 1 ;
// prepare the next batch
llama_batch_clear ( batch ) ;
// push this new token for next evaluation
llama_batch_add ( batch , new_token_id , n_past + + , { 0 } , true ) ;
}
n_cur + = 1 ;
// evaluate the current batch with the transformer model
if ( llama_decode ( ctx , batch ) ) {
fprintf ( stderr , " %s : failed to eval, return code %d \n " , __func__ , 1 ) ;
return 1 ;
}
}
LOG_TEE ( " \n " ) ;
const auto t_main_end = ggml_time_us ( ) ;
LOG_TEE ( " %s: decoded %d tokens in %.2f s, speed: %.2f t/s \n " ,
__func__ , n_decode , ( t_main_end - t_main_start ) / 1000000.0f , n_decode / ( ( t_main_end - t_main_start ) / 1000000.0f ) ) ;
llama_print_timings ( ctx ) ;
fprintf ( stderr , " \n " ) ;
llama_batch_free ( batch ) ;
llama_free ( ctx ) ;
llama_free_model ( model ) ;
llama_backend_free ( ) ;
return 0 ;
}