2024-07-23 10:10:17 +00:00
# include "llama-sampling.h"
# include <algorithm>
# include <cstring>
# include <ctime>
# include <cfloat>
# include <numeric>
# include <unordered_map>
static void llama_log_softmax ( float * array , size_t size ) {
float max_l = * std : : max_element ( array , array + size ) ;
float sum = 0.f ;
for ( size_t i = 0 ; i < size ; + + i ) {
float p = expf ( array [ i ] - max_l ) ;
sum + = p ;
array [ i ] = p ;
}
for ( size_t i = 0 ; i < size ; + + i ) {
array [ i ] = logf ( array [ i ] / sum ) ;
}
}
void llama_set_rng_seed_impl ( struct llama_sampling * smpl , uint32_t seed ) {
if ( seed = = LLAMA_DEFAULT_SEED ) {
seed = time ( NULL ) ;
}
smpl - > rng . seed ( seed ) ;
}
void llama_sample_softmax_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates ) {
GGML_ASSERT ( candidates - > size > 0 ) ;
const int64_t t_start_sample_us = ggml_time_us ( ) ;
// Sort the logits in descending order
if ( ! candidates - > sorted ) {
std : : sort ( candidates - > data , candidates - > data + candidates - > size , [ ] ( const llama_token_data & a , const llama_token_data & b ) {
return a . logit > b . logit ;
} ) ;
candidates - > sorted = true ;
}
float max_l = candidates - > data [ 0 ] . logit ;
float cum_sum = 0.0f ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
float p = expf ( candidates - > data [ i ] . logit - max_l ) ;
candidates - > data [ i ] . p = p ;
cum_sum + = p ;
}
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
candidates - > data [ i ] . p / = cum_sum ;
}
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_top_k_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates , int32_t k , size_t min_keep ) {
// TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
// if (k >= (int32_t)candidates->size) {
// return;
// }
const int64_t t_start_sample_us = ggml_time_us ( ) ;
if ( k < = 0 ) {
k = candidates - > size ;
}
k = std : : max ( k , ( int ) min_keep ) ;
k = std : : min ( k , ( int ) candidates - > size ) ;
// Sort scores in descending order
if ( ! candidates - > sorted ) {
auto comp = [ ] ( const llama_token_data & a , const llama_token_data & b ) {
return a . logit > b . logit ;
} ;
if ( k < = 128 ) {
std : : partial_sort ( candidates - > data , candidates - > data + k , candidates - > data + candidates - > size , comp ) ;
} else {
constexpr int nbuckets = 128 ;
constexpr float bucket_low = - 10.0f ;
constexpr float bucket_high = 10.0f ;
constexpr float bucket_scale = nbuckets / ( bucket_high - bucket_low ) ;
2024-08-12 09:46:03 +00:00
constexpr float bucket_inter = - bucket_low * bucket_scale ;
2024-07-23 10:10:17 +00:00
std : : vector < int > bucket_idx ( candidates - > size ) ;
std : : vector < int > histo ( nbuckets , 0 ) ;
for ( int i = 0 ; i < ( int ) candidates - > size ; + + i ) {
const float val = candidates - > data [ i ] . logit ;
2024-08-12 09:46:03 +00:00
int ib = int ( bucket_scale * val + bucket_inter ) ; //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
2024-07-23 10:10:17 +00:00
ib = std : : max ( 0 , std : : min ( nbuckets - 1 , ib ) ) ;
bucket_idx [ i ] = ib ;
+ + histo [ ib ] ;
}
int nhave = 0 ;
int ib = nbuckets - 1 ;
for ( ; ib > = 0 ; - - ib ) {
nhave + = histo [ ib ] ;
if ( nhave > = k ) break ;
}
std : : vector < llama_token_data > tmp_tokens ( nhave ) ;
auto ptr = tmp_tokens . data ( ) ;
std : : vector < llama_token_data * > bucket_ptrs ;
bucket_ptrs . reserve ( nbuckets - ib ) ;
for ( int j = nbuckets - 1 ; j > = ib ; - - j ) {
bucket_ptrs . push_back ( ptr ) ;
ptr + = histo [ j ] ;
}
for ( int i = 0 ; i < ( int ) candidates - > size ; + + i ) {
int j = bucket_idx [ i ] ;
if ( j > = ib ) {
* bucket_ptrs [ nbuckets - 1 - j ] + + = candidates - > data [ i ] ;
}
}
ptr = tmp_tokens . data ( ) ;
int ndone = 0 ;
for ( int j = nbuckets - 1 ; j > ib ; - - j ) {
std : : sort ( ptr , ptr + histo [ j ] , comp ) ;
ptr + = histo [ j ] ;
ndone + = histo [ j ] ;
}
std : : partial_sort ( ptr , ptr + k - ndone , ptr + histo [ ib ] , comp ) ;
std : : memcpy ( candidates - > data , tmp_tokens . data ( ) , k * sizeof ( llama_token_data ) ) ;
}
candidates - > sorted = true ;
}
candidates - > size = k ;
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_top_p_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates , float p , size_t min_keep ) {
if ( p > = 1.0f ) {
return ;
}
llama_sample_softmax_impl ( smpl , candidates ) ;
const int64_t t_start_sample_us = ggml_time_us ( ) ;
// Compute the cumulative probabilities
float cum_sum = 0.0f ;
size_t last_idx = candidates - > size ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
cum_sum + = candidates - > data [ i ] . p ;
// Check if the running sum is at least p or if we have kept at least min_keep tokens
// we set the last index to i+1 to indicate that the current iterate should be included in the set
if ( cum_sum > = p & & i + 1 > = min_keep ) {
last_idx = i + 1 ;
break ;
}
}
// Resize the output vector to keep only the top-p tokens
candidates - > size = last_idx ;
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_min_p_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates , float p , size_t min_keep ) {
if ( p < = 0.0f | | ! candidates - > size ) {
return ;
}
const int64_t t_start_sample_us = ggml_time_us ( ) ;
bool min_p_applied = false ;
// if the candidates aren't sorted, try the unsorted implementation first
if ( ! candidates - > sorted ) {
std : : vector < llama_token_data > filtered_tokens ;
float max_logit = - FLT_MAX ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
max_logit = std : : max ( max_logit , candidates - > data [ i ] . logit ) ;
}
const float min_logit = max_logit + logf ( p ) ; // min logit for p_i >= p * p_max
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
if ( candidates - > data [ i ] . logit > = min_logit ) {
filtered_tokens . push_back ( candidates - > data [ i ] ) ;
}
}
// if we have enough values the operation was a success
if ( filtered_tokens . size ( ) > = min_keep ) {
memcpy ( candidates - > data , filtered_tokens . data ( ) , filtered_tokens . size ( ) * sizeof ( llama_token_data ) ) ;
candidates - > size = filtered_tokens . size ( ) ;
min_p_applied = true ;
}
}
// if the candidates are sorted or the unsorted implementation failed, use this implementation
if ( ! min_p_applied ) {
// Sort the logits in descending order
if ( ! candidates - > sorted ) {
std : : sort ( candidates - > data , candidates - > data + candidates - > size , [ ] ( const llama_token_data & a , const llama_token_data & b ) {
return a . logit > b . logit ;
} ) ;
candidates - > sorted = true ;
}
const float min_logit = candidates - > data [ 0 ] . logit + logf ( p ) ; // min logit for p_i >= p * p_max
size_t i = 1 ; // first token always matches
for ( ; i < candidates - > size ; + + i ) {
if ( candidates - > data [ i ] . logit < min_logit & & i > = min_keep ) {
break ; // prob too small
}
}
// Resize the output vector to keep only the matching tokens
candidates - > size = i ;
}
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_tail_free_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates , float z , size_t min_keep ) {
if ( z > = 1.0f | | candidates - > size < = 2 ) {
return ;
}
llama_sample_softmax_impl ( ( struct llama_sampling * ) nullptr , candidates ) ;
const int64_t t_start_sample_us = ggml_time_us ( ) ;
// Compute the first and second derivatives
std : : vector < float > first_derivatives ( candidates - > size - 1 ) ;
std : : vector < float > second_derivatives ( candidates - > size - 2 ) ;
for ( size_t i = 0 ; i < first_derivatives . size ( ) ; + + i ) {
first_derivatives [ i ] = candidates - > data [ i ] . p - candidates - > data [ i + 1 ] . p ;
}
for ( size_t i = 0 ; i < second_derivatives . size ( ) ; + + i ) {
second_derivatives [ i ] = first_derivatives [ i ] - first_derivatives [ i + 1 ] ;
}
// Calculate absolute value of second derivatives
for ( size_t i = 0 ; i < second_derivatives . size ( ) ; + + i ) {
second_derivatives [ i ] = std : : abs ( second_derivatives [ i ] ) ;
}
// Normalize the second derivatives
{
const float second_derivatives_sum = std : : accumulate ( second_derivatives . begin ( ) , second_derivatives . end ( ) , 0.0f ) ;
if ( second_derivatives_sum > 1e-6 f ) {
for ( float & value : second_derivatives ) {
value / = second_derivatives_sum ;
}
} else {
for ( float & value : second_derivatives ) {
value = 1.0f / second_derivatives . size ( ) ;
}
}
}
float cum_sum = 0.0f ;
size_t last_idx = candidates - > size ;
for ( size_t i = 0 ; i < second_derivatives . size ( ) ; + + i ) {
cum_sum + = second_derivatives [ i ] ;
// Check if the running sum is greater than z or if we have kept at least min_keep tokens
if ( cum_sum > z & & i > = min_keep ) {
last_idx = i ;
break ;
}
}
// Resize the output vector to keep only the tokens above the tail location
candidates - > size = last_idx ;
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_typical_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates , float p , size_t min_keep ) {
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
if ( p > = 1.0f ) {
return ;
}
// Compute the softmax of logits and calculate entropy
llama_sample_softmax_impl ( ( struct llama_sampling * ) nullptr , candidates ) ;
const int64_t t_start_sample_us = ggml_time_us ( ) ;
float entropy = 0.0f ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
entropy + = - candidates - > data [ i ] . p * logf ( candidates - > data [ i ] . p ) ;
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std : : vector < float > shifted_scores ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
float shifted_score = fabsf ( - logf ( candidates - > data [ i ] . p ) - entropy ) ;
shifted_scores . push_back ( shifted_score ) ;
}
// Sort tokens based on the shifted_scores and their corresponding indices
std : : vector < size_t > indices ( candidates - > size ) ;
std : : iota ( indices . begin ( ) , indices . end ( ) , 0 ) ;
std : : sort ( indices . begin ( ) , indices . end ( ) , [ & ] ( size_t a , size_t b ) {
return shifted_scores [ a ] < shifted_scores [ b ] ;
} ) ;
// Compute the cumulative probabilities
float cum_sum = 0.0f ;
size_t last_idx = indices . size ( ) ;
for ( size_t i = 0 ; i < indices . size ( ) ; + + i ) {
size_t idx = indices [ i ] ;
cum_sum + = candidates - > data [ idx ] . p ;
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
if ( cum_sum > p & & i > = min_keep - 1 ) {
last_idx = i + 1 ;
break ;
}
}
// Resize the output vector to keep only the locally typical tokens
std : : vector < llama_token_data > new_candidates ;
for ( size_t i = 0 ; i < last_idx ; + + i ) {
size_t idx = indices [ i ] ;
new_candidates . push_back ( candidates - > data [ idx ] ) ;
}
// Replace the data in candidates with the new_candidates data
std : : copy ( new_candidates . begin ( ) , new_candidates . end ( ) , candidates - > data ) ;
candidates - > size = new_candidates . size ( ) ;
candidates - > sorted = false ;
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_entropy_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates , float min_temp , float max_temp , float exponent_val ) {
const int64_t t_start_sample_us = ggml_time_us ( ) ;
// no need to do anything if there is only one (or zero) candidates
if ( candidates - > size < = 1 ) {
return ;
}
// Calculate maximum possible entropy
float max_entropy = - logf ( 1.0f / candidates - > size ) ;
llama_sample_softmax_impl ( ( struct llama_sampling * ) nullptr , candidates ) ;
// Calculate entropy of the softmax probabilities
float entropy = 0.0f ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
float prob = candidates - > data [ i ] . p ;
if ( prob > 0.0f ) { // Ensure no log(0)
entropy - = prob * logf ( prob ) ;
}
}
// Normalize the entropy (max_entropy cannot be 0 here because we checked candidates->size != 1 above)
float normalized_entropy = entropy / max_entropy ;
// Map the normalized entropy to the desired temperature range using the power function
float dyn_temp = min_temp + ( max_temp - min_temp ) * powf ( normalized_entropy , exponent_val ) ;
# ifdef DEBUG
LLAMA_LOG_INFO ( " Your text maxtemp value is: %f \n " , max_temp ) ;
LLAMA_LOG_INFO ( " Entropy: %f \n " , entropy ) ;
LLAMA_LOG_INFO ( " Max Possible Entropy: %f \n " , max_entropy ) ;
LLAMA_LOG_INFO ( " Normalized Entropy: %f \n " , normalized_entropy ) ;
LLAMA_LOG_INFO ( " Exponent: %f \n " , exponent_val ) ;
LLAMA_LOG_INFO ( " Dynamic Temperature (dyn_temp): %f \n " , dyn_temp ) ;
# endif
// Apply the dynamically calculated temperature scaling
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
candidates - > data [ i ] . logit / = dyn_temp ;
}
// Re-compute softmax probabilities after scaling logits with dynamic temperature
double max_l_double = candidates - > data [ 0 ] . logit ;
double cum_sum_double = 0.0 ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
double p = exp ( candidates - > data [ i ] . logit - max_l_double ) ;
candidates - > data [ i ] . p = p ; // Store the scaled probability
cum_sum_double + = p ;
}
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
candidates - > data [ i ] . p / = cum_sum_double ; // Re-normalize the probabilities
}
# ifdef DEBUG
// Print the updated top 25 probabilities after temperature scaling
LLAMA_LOG_INFO ( " \n Updated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages): \n " ) ;
for ( size_t i = 0 ; i < 25 & & i < candidates - > size ; + + i ) {
LLAMA_LOG_INFO ( " Token %zu: %f%% \n " , i + 1 , candidates - > data [ i ] . p * 100.0f ) ;
}
# endif
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_temp_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates , float temp ) {
const int64_t t_start_sample_us = ggml_time_us ( ) ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
candidates - > data [ i ] . logit / = temp ;
}
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_repetition_penalties_impl (
struct llama_sampling * smpl ,
llama_token_data_array * candidates ,
const llama_token * last_tokens ,
size_t penalty_last_n ,
float penalty_repeat ,
float penalty_freq ,
float penalty_present ) {
if ( penalty_last_n = = 0 | | ( penalty_repeat = = 1.0f & & penalty_freq = = 0.0f & & penalty_present = = 0.0f ) ) {
return ;
}
const int64_t t_start_sample_us = ggml_time_us ( ) ;
// Create a frequency map to count occurrences of each token in last_tokens
std : : unordered_map < llama_token , int > token_count ;
for ( size_t i = 0 ; i < penalty_last_n ; + + i ) {
token_count [ last_tokens [ i ] ] + + ;
}
// Apply frequency and presence penalties to the candidates
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
const auto token_iter = token_count . find ( candidates - > data [ i ] . id ) ;
if ( token_iter = = token_count . end ( ) ) {
continue ;
}
const int count = token_iter - > second ;
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
if ( candidates - > data [ i ] . logit < = 0 ) {
candidates - > data [ i ] . logit * = penalty_repeat ;
} else {
candidates - > data [ i ] . logit / = penalty_repeat ;
}
candidates - > data [ i ] . logit - = float ( count ) * penalty_freq + float ( count > 0 ) * penalty_present ;
}
candidates - > sorted = false ;
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_apply_guidance_impl (
struct llama_sampling * smpl ,
float * logits ,
float * logits_guidance ,
float scale ) {
GGML_ASSERT ( smpl ) ;
const auto t_start_sample_us = ggml_time_us ( ) ;
const auto n_vocab = smpl - > n_vocab ;
llama_log_softmax ( logits , n_vocab ) ;
llama_log_softmax ( logits_guidance , n_vocab ) ;
for ( int i = 0 ; i < n_vocab ; + + i ) {
auto & l = logits [ i ] ;
const auto & g = logits_guidance [ i ] ;
l = scale * ( l - g ) + g ;
}
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
llama_token llama_sample_token_mirostat_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates , float tau , float eta , int32_t m , float * mu ) {
GGML_ASSERT ( smpl ) ;
const int32_t n_vocab = float ( smpl - > n_vocab ) ;
int64_t t_start_sample_us = ggml_time_us ( ) ;
llama_sample_softmax_impl ( ( struct llama_sampling * ) nullptr , candidates ) ;
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0 ;
float sum_ti_bi = 0.0 ;
float sum_ti_sq = 0.0 ;
for ( size_t i = 0 ; i < size_t ( m - 1 ) & & i < candidates - > size - 1 ; + + i ) {
float t_i = logf ( float ( i + 2 ) / float ( i + 1 ) ) ;
float b_i = logf ( candidates - > data [ i ] . p / candidates - > data [ i + 1 ] . p ) ;
sum_ti_bi + = t_i * b_i ;
sum_ti_sq + = t_i * t_i ;
}
s_hat = sum_ti_bi / sum_ti_sq ;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1 ;
float k = powf ( ( epsilon_hat * powf ( 2 , * mu ) ) / ( 1 - powf ( n_vocab , - epsilon_hat ) ) , 1 / s_hat ) ;
// Sample the next word X using top-k sampling
llama_sample_top_k_impl ( ( struct llama_sampling * ) nullptr , candidates , int ( k ) , 1 ) ;
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
llama_token X = llama_sample_token_impl ( smpl , candidates ) ;
t_start_sample_us = ggml_time_us ( ) ;
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std : : distance ( candidates - > data , std : : find_if ( candidates - > data , candidates - > data + candidates - > size , [ & ] ( const llama_token_data & candidate ) {
return candidate . id = = X ;
} ) ) ;
float observed_surprise = - log2f ( candidates - > data [ X_idx ] . p ) ;
float e = observed_surprise - tau ;
// Update mu using the learning rate and error
* mu = * mu - eta * e ;
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
return X ;
}
llama_token llama_sample_token_mirostat_v2_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates , float tau , float eta , float * mu ) {
int64_t t_start_sample_us ;
t_start_sample_us = ggml_time_us ( ) ;
llama_sample_softmax_impl ( smpl , candidates ) ;
// Truncate the words with surprise values greater than mu
candidates - > size = std : : distance ( candidates - > data , std : : find_if ( candidates - > data , candidates - > data + candidates - > size , [ & ] ( const llama_token_data & candidate ) {
return - log2f ( candidate . p ) > * mu ;
} ) ) ;
if ( candidates - > size = = 0 ) {
candidates - > size = 1 ;
}
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
// Normalize the probabilities of the remaining words
llama_sample_softmax_impl ( smpl , candidates ) ;
// Sample the next word X from the remaining words
llama_token X = llama_sample_token_impl ( smpl , candidates ) ;
t_start_sample_us = ggml_time_us ( ) ;
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std : : distance ( candidates - > data , std : : find_if ( candidates - > data , candidates - > data + candidates - > size , [ & ] ( const llama_token_data & candidate ) {
return candidate . id = = X ;
} ) ) ;
float observed_surprise = - log2f ( candidates - > data [ X_idx ] . p ) ;
float e = observed_surprise - tau ;
// Update mu using the learning rate and error
* mu = * mu - eta * e ;
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
return X ;
}
llama_token llama_sample_token_greedy_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates ) {
const int64_t t_start_sample_us = ggml_time_us ( ) ;
// Find max element
auto * max_iter = std : : max_element ( candidates - > data , candidates - > data + candidates - > size , [ ] ( const llama_token_data & a , const llama_token_data & b ) {
return a . logit < b . logit ;
} ) ;
llama_token result = max_iter - > id ;
if ( smpl ) {
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
smpl - > n_sample + + ;
}
return result ;
}
llama_token llama_sample_token_with_rng_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates , std : : mt19937 & rng ) {
GGML_ASSERT ( smpl ) ;
const int64_t t_start_sample_us = ggml_time_us ( ) ;
llama_sample_softmax_impl ( ( struct llama_sampling * ) nullptr , candidates ) ;
std : : vector < float > probs ;
probs . reserve ( candidates - > size ) ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
probs . push_back ( candidates - > data [ i ] . p ) ;
}
std : : discrete_distribution < > dist ( probs . begin ( ) , probs . end ( ) ) ;
int idx = dist ( rng ) ;
llama_token result = candidates - > data [ idx ] . id ;
smpl - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
smpl - > n_sample + + ;
return result ;
}
llama_token llama_sample_token_impl ( struct llama_sampling * smpl , llama_token_data_array * candidates ) {
return llama_sample_token_with_rng_impl ( smpl , candidates , smpl - > rng ) ;
}