mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-15 23:39:52 +00:00
13716 lines
454 KiB
C
13716 lines
454 KiB
C
|
#define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
|
||
|
#define _USE_MATH_DEFINES // For M_PI on MSVC
|
||
|
|
||
|
#include "ggml-aarch64.h"
|
||
|
#include "ggml-backend-impl.h"
|
||
|
#include "ggml-backend.h"
|
||
|
#include "ggml-cpu-impl.h"
|
||
|
#include "ggml-cpu.h"
|
||
|
#include "ggml-impl.h"
|
||
|
#include "ggml-quants.h"
|
||
|
#include "ggml.h"
|
||
|
|
||
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||
|
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||
|
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||
|
#include <alloca.h>
|
||
|
#endif
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <errno.h>
|
||
|
#include <time.h>
|
||
|
#include <math.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <stdint.h>
|
||
|
#include <inttypes.h>
|
||
|
#include <stdio.h>
|
||
|
#include <float.h>
|
||
|
#include <limits.h>
|
||
|
#include <stdarg.h>
|
||
|
#include <signal.h>
|
||
|
#if defined(__gnu_linux__)
|
||
|
#include <syscall.h>
|
||
|
#endif
|
||
|
|
||
|
#ifdef GGML_USE_OPENMP
|
||
|
#include <omp.h>
|
||
|
#endif
|
||
|
|
||
|
#if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
|
||
|
#undef GGML_USE_LLAMAFILE
|
||
|
#endif
|
||
|
|
||
|
#ifdef GGML_USE_LLAMAFILE
|
||
|
#include <llamafile/sgemm.h>
|
||
|
#endif
|
||
|
|
||
|
#if defined(_MSC_VER)
|
||
|
// disable "possible loss of data" to avoid hundreds of casts
|
||
|
// we should just be careful :)
|
||
|
#pragma warning(disable: 4244 4267)
|
||
|
|
||
|
// disable POSIX deprecation warnings
|
||
|
// these functions are never going away, anyway
|
||
|
#pragma warning(disable: 4996)
|
||
|
|
||
|
// unreachable code because of multiple instances of code after GGML_ABORT
|
||
|
#pragma warning(disable: 4702)
|
||
|
#endif
|
||
|
|
||
|
// Note: once we move threading into a separate C++ file
|
||
|
// will use std::hardware_destructive_interference_size instead of hardcoding it here
|
||
|
// and we'll use C++ attribute syntax.
|
||
|
#define GGML_CACHE_LINE 64
|
||
|
|
||
|
#if defined(__clang__) || defined(__GNUC__)
|
||
|
#define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE)))
|
||
|
#endif
|
||
|
|
||
|
#if defined(__has_feature)
|
||
|
#if __has_feature(thread_sanitizer)
|
||
|
#define GGML_TSAN_ENABLED 1
|
||
|
#endif
|
||
|
#else // __has_feature
|
||
|
#if defined(__SANITIZE_THREAD__)
|
||
|
#define GGML_TSAN_ENABLED 1
|
||
|
#endif
|
||
|
#endif // __has_feature
|
||
|
|
||
|
#define UNUSED GGML_UNUSED
|
||
|
#define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
|
||
|
|
||
|
#if defined(GGML_USE_ACCELERATE)
|
||
|
#include <Accelerate/Accelerate.h>
|
||
|
#endif
|
||
|
|
||
|
// floating point type used to accumulate sums
|
||
|
typedef double ggml_float;
|
||
|
|
||
|
#define GGML_GELU_FP16
|
||
|
#define GGML_GELU_QUICK_FP16
|
||
|
|
||
|
#define GGML_SOFT_MAX_UNROLL 4
|
||
|
#define GGML_VEC_DOT_UNROLL 2
|
||
|
#define GGML_VEC_MAD_UNROLL 32
|
||
|
|
||
|
//
|
||
|
// global data
|
||
|
//
|
||
|
|
||
|
// precomputed gelu table for f16 (128 KB)
|
||
|
static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
|
||
|
|
||
|
// precomputed quick gelu table for f16 (128 KB)
|
||
|
static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
|
||
|
|
||
|
// precomputed f32 table for f16 (256 KB) (ggml-impl.h)
|
||
|
float ggml_table_f32_f16[1 << 16];
|
||
|
|
||
|
#if defined(__ARM_ARCH)
|
||
|
struct ggml_arm_arch_features_type {
|
||
|
int has_neon;
|
||
|
int has_i8mm;
|
||
|
int has_sve;
|
||
|
int sve_cnt;
|
||
|
} ggml_arm_arch_features = {-1, -1, -1, 0};
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#if defined(_WIN32)
|
||
|
|
||
|
#define WIN32_LEAN_AND_MEAN
|
||
|
#ifndef NOMINMAX
|
||
|
#define NOMINMAX
|
||
|
#endif
|
||
|
#include <windows.h>
|
||
|
|
||
|
|
||
|
#if !defined(__clang__)
|
||
|
#define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
|
||
|
|
||
|
typedef volatile LONG atomic_int;
|
||
|
typedef atomic_int atomic_bool;
|
||
|
typedef atomic_int atomic_flag;
|
||
|
|
||
|
#define ATOMIC_FLAG_INIT 0
|
||
|
|
||
|
typedef enum {
|
||
|
memory_order_relaxed,
|
||
|
memory_order_consume,
|
||
|
memory_order_acquire,
|
||
|
memory_order_release,
|
||
|
memory_order_acq_rel,
|
||
|
memory_order_seq_cst
|
||
|
} memory_order;
|
||
|
|
||
|
static void atomic_store(atomic_int * ptr, LONG val) {
|
||
|
InterlockedExchange(ptr, val);
|
||
|
}
|
||
|
static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
|
||
|
// TODO: add support for explicit memory order
|
||
|
InterlockedExchange(ptr, val);
|
||
|
}
|
||
|
static LONG atomic_load(atomic_int * ptr) {
|
||
|
return InterlockedCompareExchange(ptr, 0, 0);
|
||
|
}
|
||
|
static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
|
||
|
// TODO: add support for explicit memory order
|
||
|
return InterlockedCompareExchange(ptr, 0, 0);
|
||
|
}
|
||
|
static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
|
||
|
return InterlockedExchangeAdd(ptr, inc);
|
||
|
}
|
||
|
static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
|
||
|
// TODO: add support for explicit memory order
|
||
|
return InterlockedExchangeAdd(ptr, inc);
|
||
|
}
|
||
|
static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
|
||
|
return InterlockedExchange(ptr, 1);
|
||
|
}
|
||
|
static void atomic_flag_clear(atomic_flag * ptr) {
|
||
|
InterlockedExchange(ptr, 0);
|
||
|
}
|
||
|
static void atomic_thread_fence(memory_order mo) {
|
||
|
MemoryBarrier();
|
||
|
}
|
||
|
#else // clang
|
||
|
#include <stdatomic.h>
|
||
|
#endif
|
||
|
|
||
|
typedef HANDLE pthread_t;
|
||
|
|
||
|
typedef DWORD thread_ret_t;
|
||
|
static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
|
||
|
(void) unused;
|
||
|
HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
|
||
|
if (handle == NULL)
|
||
|
{
|
||
|
return EAGAIN;
|
||
|
}
|
||
|
|
||
|
*out = handle;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pthread_join(pthread_t thread, void * unused) {
|
||
|
(void) unused;
|
||
|
int ret = (int) WaitForSingleObject(thread, INFINITE);
|
||
|
CloseHandle(thread);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int sched_yield (void) {
|
||
|
Sleep (0);
|
||
|
return 0;
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
#include <pthread.h>
|
||
|
#include <stdatomic.h>
|
||
|
#include <sched.h>
|
||
|
#if defined(__FreeBSD__)
|
||
|
#include <pthread_np.h>
|
||
|
#endif
|
||
|
|
||
|
typedef void * thread_ret_t;
|
||
|
|
||
|
#include <sys/types.h>
|
||
|
#include <sys/stat.h>
|
||
|
#include <unistd.h>
|
||
|
|
||
|
#endif
|
||
|
|
||
|
typedef pthread_t ggml_thread_t;
|
||
|
|
||
|
#ifdef GGML_USE_CPU_HBM
|
||
|
#include <hbwmalloc.h>
|
||
|
#endif
|
||
|
|
||
|
#if defined(__APPLE__)
|
||
|
#include <unistd.h>
|
||
|
#include <mach/mach.h>
|
||
|
#include <TargetConditionals.h>
|
||
|
#endif
|
||
|
|
||
|
//
|
||
|
// cache line
|
||
|
//
|
||
|
|
||
|
#if defined(__cpp_lib_hardware_interference_size)
|
||
|
#define CACHE_LINE_SIZE hardware_destructive_interference_size
|
||
|
#else
|
||
|
#if defined(__POWER9_VECTOR__)
|
||
|
#define CACHE_LINE_SIZE 128
|
||
|
#else
|
||
|
#define CACHE_LINE_SIZE 64
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
|
||
|
|
||
|
|
||
|
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
|
||
|
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
|
||
|
static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
|
||
|
|
||
|
static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||
|
[GGML_TYPE_F32] = {
|
||
|
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
|
||
|
.vec_dot_type = GGML_TYPE_F32,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_F16] = {
|
||
|
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
|
||
|
.vec_dot_type = GGML_TYPE_F16,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_Q4_0] = {
|
||
|
.vec_dot = ggml_vec_dot_q4_0_q8_0,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_0,
|
||
|
#if defined (__ARM_FEATURE_MATMUL_INT8)
|
||
|
.nrows = 2,
|
||
|
#else
|
||
|
.nrows = 1,
|
||
|
#endif
|
||
|
},
|
||
|
[GGML_TYPE_Q4_1] = {
|
||
|
.vec_dot = ggml_vec_dot_q4_1_q8_1,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_1,
|
||
|
#if defined (__ARM_FEATURE_MATMUL_INT8)
|
||
|
.nrows = 2,
|
||
|
#else
|
||
|
.nrows = 1,
|
||
|
#endif
|
||
|
},
|
||
|
[4] = { // GGML_TYPE_Q4_2
|
||
|
.vec_dot = NULL,
|
||
|
.vec_dot_type = GGML_TYPE_COUNT,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[5] = { // GGML_TYPE_Q4_3
|
||
|
.vec_dot = NULL,
|
||
|
.vec_dot_type = GGML_TYPE_COUNT,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_Q5_0] = {
|
||
|
.vec_dot = ggml_vec_dot_q5_0_q8_0,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_0,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_Q5_1] = {
|
||
|
.vec_dot = ggml_vec_dot_q5_1_q8_1,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_1,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_Q8_0] = {
|
||
|
.vec_dot = ggml_vec_dot_q8_0_q8_0,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_0,
|
||
|
#if defined (__ARM_FEATURE_MATMUL_INT8)
|
||
|
.nrows = 2,
|
||
|
#else
|
||
|
.nrows = 1,
|
||
|
#endif
|
||
|
},
|
||
|
[GGML_TYPE_Q8_1] = {
|
||
|
.vec_dot_type = GGML_TYPE_Q8_1,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_Q2_K] = {
|
||
|
.vec_dot = ggml_vec_dot_q2_K_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_Q3_K] = {
|
||
|
.vec_dot = ggml_vec_dot_q3_K_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_Q4_K] = {
|
||
|
.vec_dot = ggml_vec_dot_q4_K_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_Q5_K] = {
|
||
|
.vec_dot = ggml_vec_dot_q5_K_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_Q6_K] = {
|
||
|
.vec_dot = ggml_vec_dot_q6_K_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_IQ2_XXS] = {
|
||
|
.vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_IQ2_XS] = {
|
||
|
.vec_dot = ggml_vec_dot_iq2_xs_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_IQ3_XXS] = {
|
||
|
.vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_IQ3_S] = {
|
||
|
.vec_dot = ggml_vec_dot_iq3_s_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_IQ2_S] = {
|
||
|
.vec_dot = ggml_vec_dot_iq2_s_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_IQ1_S] = {
|
||
|
.vec_dot = ggml_vec_dot_iq1_s_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_IQ1_M] = {
|
||
|
.vec_dot = ggml_vec_dot_iq1_m_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_IQ4_NL] = {
|
||
|
.vec_dot = ggml_vec_dot_iq4_nl_q8_0,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_0,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_IQ4_XS] = {
|
||
|
.vec_dot = ggml_vec_dot_iq4_xs_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_BF16] = {
|
||
|
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
|
||
|
.vec_dot_type = GGML_TYPE_BF16,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_Q4_0_4_4] = {
|
||
|
.vec_dot = NULL,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_0,
|
||
|
.nrows = 1,
|
||
|
.ncols = 4,
|
||
|
.gemv = ggml_gemv_q4_0_4x4_q8_0,
|
||
|
.gemm = ggml_gemm_q4_0_4x4_q8_0,
|
||
|
},
|
||
|
[GGML_TYPE_Q4_0_4_8] = {
|
||
|
.vec_dot = NULL,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_0,
|
||
|
.nrows = 1,
|
||
|
.ncols = 4,
|
||
|
.gemv = ggml_gemv_q4_0_4x8_q8_0,
|
||
|
.gemm = ggml_gemm_q4_0_4x8_q8_0,
|
||
|
},
|
||
|
[GGML_TYPE_Q4_0_8_8] = {
|
||
|
.nrows = 1,
|
||
|
.ncols = 8,
|
||
|
.gemv = ggml_gemv_q4_0_8x8_q8_0,
|
||
|
.gemm = ggml_gemm_q4_0_8x8_q8_0,
|
||
|
},
|
||
|
[GGML_TYPE_TQ1_0] = {
|
||
|
.vec_dot = ggml_vec_dot_tq1_0_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
[GGML_TYPE_TQ2_0] = {
|
||
|
.vec_dot = ggml_vec_dot_tq2_0_q8_K,
|
||
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||
|
.nrows = 1,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
|
||
|
return &type_traits_cpu[type];
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// simd mappings
|
||
|
//
|
||
|
|
||
|
// we define a common set of C macros which map to specific intrinsics based on the current architecture
|
||
|
// we then implement the fundamental computation operations below using only these macros
|
||
|
// adding support for new architectures requires to define the corresponding SIMD macros
|
||
|
//
|
||
|
// GGML_F32_STEP / GGML_F16_STEP
|
||
|
// number of elements to process in a single step
|
||
|
//
|
||
|
// GGML_F32_EPR / GGML_F16_EPR
|
||
|
// number of elements to fit in a single register
|
||
|
//
|
||
|
|
||
|
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
|
||
|
|
||
|
#define GGML_SIMD
|
||
|
|
||
|
// F32 NEON
|
||
|
|
||
|
#define GGML_F32_STEP 16
|
||
|
#define GGML_F32_EPR 4
|
||
|
|
||
|
#define GGML_F32x4 float32x4_t
|
||
|
#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
|
||
|
#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
|
||
|
#define GGML_F32x4_LOAD vld1q_f32
|
||
|
#define GGML_F32x4_STORE vst1q_f32
|
||
|
#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
||
|
#define GGML_F32x4_ADD vaddq_f32
|
||
|
#define GGML_F32x4_MUL vmulq_f32
|
||
|
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
|
||
|
#define GGML_F32x4_REDUCE(res, x) \
|
||
|
{ \
|
||
|
int offset = GGML_F32_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
|
||
|
} \
|
||
|
(res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
|
||
|
}
|
||
|
|
||
|
#define GGML_F32_VEC GGML_F32x4
|
||
|
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||
|
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||
|
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||
|
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||
|
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||
|
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||
|
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||
|
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||
|
|
||
|
// F16 NEON
|
||
|
|
||
|
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||
|
#define GGML_F16_STEP 32
|
||
|
#define GGML_F16_EPR 8
|
||
|
|
||
|
#define GGML_F16x8 float16x8_t
|
||
|
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
|
||
|
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
|
||
|
#define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
|
||
|
#define GGML_F16x8_STORE vst1q_f16
|
||
|
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
|
||
|
#define GGML_F16x8_ADD vaddq_f16
|
||
|
#define GGML_F16x8_MUL vmulq_f16
|
||
|
#define GGML_F16x8_REDUCE(res, x) \
|
||
|
do { \
|
||
|
int offset = GGML_F16_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||
|
} \
|
||
|
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
|
||
|
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
|
||
|
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
|
||
|
} while (0)
|
||
|
|
||
|
#define GGML_F16_VEC GGML_F16x8
|
||
|
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
|
||
|
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
|
||
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
|
||
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
|
||
|
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
|
||
|
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
|
||
|
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
|
||
|
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
|
||
|
#else
|
||
|
// if FP16 vector arithmetic is not supported, we use FP32 instead
|
||
|
// and take advantage of the vcvt_ functions to convert to/from FP16
|
||
|
|
||
|
#define GGML_F16_STEP 16
|
||
|
#define GGML_F16_EPR 4
|
||
|
|
||
|
#define GGML_F32Cx4 float32x4_t
|
||
|
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
|
||
|
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
|
||
|
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
|
||
|
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
|
||
|
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
||
|
#define GGML_F32Cx4_ADD vaddq_f32
|
||
|
#define GGML_F32Cx4_MUL vmulq_f32
|
||
|
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
||
|
|
||
|
#define GGML_F16_VEC GGML_F32Cx4
|
||
|
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
||
|
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
||
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
||
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
|
||
|
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
||
|
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
||
|
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
||
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
||
|
#endif
|
||
|
|
||
|
#elif defined(__AVX512F__)
|
||
|
|
||
|
#define GGML_SIMD
|
||
|
|
||
|
// F32 AVX512
|
||
|
|
||
|
#define GGML_F32_STEP 64
|
||
|
#define GGML_F32_EPR 16
|
||
|
|
||
|
#define GGML_F32x16 __m512
|
||
|
#define GGML_F32x16_ZERO _mm512_setzero_ps()
|
||
|
#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
|
||
|
#define GGML_F32x16_LOAD _mm512_loadu_ps
|
||
|
#define GGML_F32x16_STORE _mm512_storeu_ps
|
||
|
// _mm512_fmadd_ps is defined in AVX512F so no guard is required
|
||
|
#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
|
||
|
#define GGML_F32x16_ADD _mm512_add_ps
|
||
|
#define GGML_F32x16_MUL _mm512_mul_ps
|
||
|
#define GGML_F32x16_REDUCE(res, x) \
|
||
|
do { \
|
||
|
int offset = GGML_F32_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
res = _mm512_reduce_add_ps(x[0]); \
|
||
|
} while (0)
|
||
|
|
||
|
// TODO: is this optimal ?
|
||
|
|
||
|
#define GGML_F32_VEC GGML_F32x16
|
||
|
#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
|
||
|
#define GGML_F32_VEC_SET1 GGML_F32x16_SET1
|
||
|
#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
|
||
|
#define GGML_F32_VEC_STORE GGML_F32x16_STORE
|
||
|
#define GGML_F32_VEC_FMA GGML_F32x16_FMA
|
||
|
#define GGML_F32_VEC_ADD GGML_F32x16_ADD
|
||
|
#define GGML_F32_VEC_MUL GGML_F32x16_MUL
|
||
|
#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
|
||
|
|
||
|
// F16 AVX512
|
||
|
|
||
|
// F16 AVX
|
||
|
|
||
|
#define GGML_F16_STEP 64
|
||
|
#define GGML_F16_EPR 16
|
||
|
|
||
|
// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
|
||
|
|
||
|
#define GGML_F32Cx16 __m512
|
||
|
#define GGML_F32Cx16_ZERO _mm512_setzero_ps()
|
||
|
#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
|
||
|
|
||
|
// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
|
||
|
// so F16C guard isn't required
|
||
|
#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
|
||
|
#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
|
||
|
|
||
|
#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
|
||
|
#define GGML_F32Cx16_ADD _mm512_add_ps
|
||
|
#define GGML_F32Cx16_MUL _mm512_mul_ps
|
||
|
#define GGML_F32Cx16_REDUCE(res, x) \
|
||
|
do { \
|
||
|
int offset = GGML_F32_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
res = _mm512_reduce_add_ps(x[0]); \
|
||
|
} while (0)
|
||
|
|
||
|
#define GGML_F16_VEC GGML_F32Cx16
|
||
|
#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
|
||
|
#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
|
||
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
|
||
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
|
||
|
#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
|
||
|
#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
|
||
|
#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
|
||
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
|
||
|
|
||
|
#elif defined(__AVX__)
|
||
|
|
||
|
#define GGML_SIMD
|
||
|
|
||
|
// F32 AVX
|
||
|
|
||
|
#define GGML_F32_STEP 32
|
||
|
#define GGML_F32_EPR 8
|
||
|
|
||
|
#define GGML_F32x8 __m256
|
||
|
#define GGML_F32x8_ZERO _mm256_setzero_ps()
|
||
|
#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
|
||
|
#define GGML_F32x8_LOAD _mm256_loadu_ps
|
||
|
#define GGML_F32x8_STORE _mm256_storeu_ps
|
||
|
#if defined(__FMA__)
|
||
|
#define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
|
||
|
#else
|
||
|
#define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
|
||
|
#endif
|
||
|
#define GGML_F32x8_ADD _mm256_add_ps
|
||
|
#define GGML_F32x8_MUL _mm256_mul_ps
|
||
|
#define GGML_F32x8_REDUCE(res, x) \
|
||
|
do { \
|
||
|
int offset = GGML_F32_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
|
||
|
_mm256_extractf128_ps(x[0], 1)); \
|
||
|
const __m128 t1 = _mm_hadd_ps(t0, t0); \
|
||
|
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
|
||
|
} while (0)
|
||
|
// TODO: is this optimal ?
|
||
|
|
||
|
#define GGML_F32_VEC GGML_F32x8
|
||
|
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
|
||
|
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
|
||
|
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
|
||
|
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
|
||
|
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
|
||
|
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
|
||
|
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
|
||
|
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
|
||
|
|
||
|
// F16 AVX
|
||
|
|
||
|
#define GGML_F16_STEP 32
|
||
|
#define GGML_F16_EPR 8
|
||
|
|
||
|
// F16 arithmetic is not supported by AVX, so we use F32 instead
|
||
|
|
||
|
#define GGML_F32Cx8 __m256
|
||
|
#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
|
||
|
#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
|
||
|
|
||
|
#if defined(__F16C__)
|
||
|
// the _mm256_cvt intrinsics require F16C
|
||
|
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
|
||
|
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
|
||
|
#else
|
||
|
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
|
||
|
float tmp[8];
|
||
|
|
||
|
for (int i = 0; i < 8; i++) {
|
||
|
tmp[i] = GGML_FP16_TO_FP32(x[i]);
|
||
|
}
|
||
|
|
||
|
return _mm256_loadu_ps(tmp);
|
||
|
}
|
||
|
static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
|
||
|
float arr[8];
|
||
|
|
||
|
_mm256_storeu_ps(arr, y);
|
||
|
|
||
|
for (int i = 0; i < 8; i++)
|
||
|
x[i] = GGML_FP32_TO_FP16(arr[i]);
|
||
|
}
|
||
|
#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
|
||
|
#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
|
||
|
#endif
|
||
|
|
||
|
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
|
||
|
#define GGML_F32Cx8_ADD _mm256_add_ps
|
||
|
#define GGML_F32Cx8_MUL _mm256_mul_ps
|
||
|
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
|
||
|
|
||
|
#define GGML_F16_VEC GGML_F32Cx8
|
||
|
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
|
||
|
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
|
||
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
|
||
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
|
||
|
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
|
||
|
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
|
||
|
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
|
||
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
|
||
|
|
||
|
#elif defined(__POWER9_VECTOR__)
|
||
|
|
||
|
#define GGML_SIMD
|
||
|
|
||
|
// F32 POWER9
|
||
|
|
||
|
#define GGML_F32_STEP 32
|
||
|
#define GGML_F32_EPR 4
|
||
|
|
||
|
#define GGML_F32x4 vector float
|
||
|
#define GGML_F32x4_ZERO 0.0f
|
||
|
#define GGML_F32x4_SET1 vec_splats
|
||
|
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
|
||
|
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
|
||
|
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
|
||
|
#define GGML_F32x4_ADD vec_add
|
||
|
#define GGML_F32x4_MUL vec_mul
|
||
|
#define GGML_F32x4_REDUCE(res, x) \
|
||
|
{ \
|
||
|
int offset = GGML_F32_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = vec_add(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = vec_add(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = vec_add(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
res = vec_extract(x[0], 0) + \
|
||
|
vec_extract(x[0], 1) + \
|
||
|
vec_extract(x[0], 2) + \
|
||
|
vec_extract(x[0], 3); \
|
||
|
}
|
||
|
|
||
|
#define GGML_F32_VEC GGML_F32x4
|
||
|
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||
|
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||
|
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||
|
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||
|
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||
|
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||
|
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||
|
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||
|
|
||
|
// F16 POWER9
|
||
|
#define GGML_F16_STEP GGML_F32_STEP
|
||
|
#define GGML_F16_EPR GGML_F32_EPR
|
||
|
#define GGML_F16_VEC GGML_F32x4
|
||
|
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
|
||
|
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
|
||
|
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
|
||
|
#define GGML_F16_VEC_ADD GGML_F32x4_ADD
|
||
|
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
|
||
|
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
|
||
|
// Use vec_xl, not vec_ld, in case the load address is not aligned.
|
||
|
#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
|
||
|
vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
|
||
|
vec_extract_fp32_from_shortl(vec_xl(0, p))
|
||
|
#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
|
||
|
#define GGML_F16_VEC_STORE(p, r, i) \
|
||
|
if (i & 0x1) \
|
||
|
vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
|
||
|
r[i - GGML_ENDIAN_BYTE(0)]), \
|
||
|
0, p - GGML_F16_EPR)
|
||
|
|
||
|
#elif defined(__wasm_simd128__)
|
||
|
|
||
|
#define GGML_SIMD
|
||
|
|
||
|
// F32 WASM
|
||
|
|
||
|
#define GGML_F32_STEP 16
|
||
|
#define GGML_F32_EPR 4
|
||
|
|
||
|
#define GGML_F32x4 v128_t
|
||
|
#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
|
||
|
#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
|
||
|
#define GGML_F32x4_LOAD wasm_v128_load
|
||
|
#define GGML_F32x4_STORE wasm_v128_store
|
||
|
#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
|
||
|
#define GGML_F32x4_ADD wasm_f32x4_add
|
||
|
#define GGML_F32x4_MUL wasm_f32x4_mul
|
||
|
#define GGML_F32x4_REDUCE(res, x) \
|
||
|
{ \
|
||
|
int offset = GGML_F32_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
res = wasm_f32x4_extract_lane(x[0], 0) + \
|
||
|
wasm_f32x4_extract_lane(x[0], 1) + \
|
||
|
wasm_f32x4_extract_lane(x[0], 2) + \
|
||
|
wasm_f32x4_extract_lane(x[0], 3); \
|
||
|
}
|
||
|
|
||
|
#define GGML_F32_VEC GGML_F32x4
|
||
|
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||
|
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||
|
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||
|
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||
|
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||
|
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||
|
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||
|
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||
|
|
||
|
// F16 WASM
|
||
|
|
||
|
#define GGML_F16_STEP 16
|
||
|
#define GGML_F16_EPR 4
|
||
|
|
||
|
inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
|
||
|
float tmp[4];
|
||
|
|
||
|
tmp[0] = GGML_FP16_TO_FP32(p[0]);
|
||
|
tmp[1] = GGML_FP16_TO_FP32(p[1]);
|
||
|
tmp[2] = GGML_FP16_TO_FP32(p[2]);
|
||
|
tmp[3] = GGML_FP16_TO_FP32(p[3]);
|
||
|
|
||
|
return wasm_v128_load(tmp);
|
||
|
}
|
||
|
|
||
|
inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
|
||
|
float tmp[4];
|
||
|
|
||
|
wasm_v128_store(tmp, x);
|
||
|
|
||
|
p[0] = GGML_FP32_TO_FP16(tmp[0]);
|
||
|
p[1] = GGML_FP32_TO_FP16(tmp[1]);
|
||
|
p[2] = GGML_FP32_TO_FP16(tmp[2]);
|
||
|
p[3] = GGML_FP32_TO_FP16(tmp[3]);
|
||
|
}
|
||
|
|
||
|
#define GGML_F16x4 v128_t
|
||
|
#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
|
||
|
#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
|
||
|
#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
|
||
|
#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
|
||
|
#define GGML_F16x4_FMA GGML_F32x4_FMA
|
||
|
#define GGML_F16x4_ADD wasm_f32x4_add
|
||
|
#define GGML_F16x4_MUL wasm_f32x4_mul
|
||
|
#define GGML_F16x4_REDUCE(res, x) \
|
||
|
{ \
|
||
|
int offset = GGML_F16_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
res = wasm_f32x4_extract_lane(x[0], 0) + \
|
||
|
wasm_f32x4_extract_lane(x[0], 1) + \
|
||
|
wasm_f32x4_extract_lane(x[0], 2) + \
|
||
|
wasm_f32x4_extract_lane(x[0], 3); \
|
||
|
}
|
||
|
|
||
|
#define GGML_F16_VEC GGML_F16x4
|
||
|
#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
|
||
|
#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
|
||
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
|
||
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
|
||
|
#define GGML_F16_VEC_FMA GGML_F16x4_FMA
|
||
|
#define GGML_F16_VEC_ADD GGML_F16x4_ADD
|
||
|
#define GGML_F16_VEC_MUL GGML_F16x4_MUL
|
||
|
#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
|
||
|
|
||
|
#elif defined(__SSE3__)
|
||
|
|
||
|
#define GGML_SIMD
|
||
|
|
||
|
// F32 SSE
|
||
|
|
||
|
#define GGML_F32_STEP 32
|
||
|
#define GGML_F32_EPR 4
|
||
|
|
||
|
#define GGML_F32x4 __m128
|
||
|
#define GGML_F32x4_ZERO _mm_setzero_ps()
|
||
|
#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
|
||
|
#define GGML_F32x4_LOAD _mm_loadu_ps
|
||
|
#define GGML_F32x4_STORE _mm_storeu_ps
|
||
|
#if defined(__FMA__)
|
||
|
// TODO: Does this work?
|
||
|
#define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
|
||
|
#else
|
||
|
#define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
|
||
|
#endif
|
||
|
#define GGML_F32x4_ADD _mm_add_ps
|
||
|
#define GGML_F32x4_MUL _mm_mul_ps
|
||
|
#define GGML_F32x4_REDUCE(res, x) \
|
||
|
{ \
|
||
|
int offset = GGML_F32_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = _mm_add_ps(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
|
||
|
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
|
||
|
}
|
||
|
// TODO: is this optimal ?
|
||
|
|
||
|
#define GGML_F32_VEC GGML_F32x4
|
||
|
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||
|
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||
|
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||
|
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||
|
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||
|
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||
|
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||
|
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||
|
|
||
|
// F16 SSE
|
||
|
|
||
|
#define GGML_F16_STEP 32
|
||
|
#define GGML_F16_EPR 4
|
||
|
|
||
|
static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
|
||
|
float tmp[4];
|
||
|
|
||
|
tmp[0] = GGML_FP16_TO_FP32(x[0]);
|
||
|
tmp[1] = GGML_FP16_TO_FP32(x[1]);
|
||
|
tmp[2] = GGML_FP16_TO_FP32(x[2]);
|
||
|
tmp[3] = GGML_FP16_TO_FP32(x[3]);
|
||
|
|
||
|
return _mm_loadu_ps(tmp);
|
||
|
}
|
||
|
|
||
|
static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
|
||
|
float arr[4];
|
||
|
|
||
|
_mm_storeu_ps(arr, y);
|
||
|
|
||
|
x[0] = GGML_FP32_TO_FP16(arr[0]);
|
||
|
x[1] = GGML_FP32_TO_FP16(arr[1]);
|
||
|
x[2] = GGML_FP32_TO_FP16(arr[2]);
|
||
|
x[3] = GGML_FP32_TO_FP16(arr[3]);
|
||
|
}
|
||
|
|
||
|
#define GGML_F32Cx4 __m128
|
||
|
#define GGML_F32Cx4_ZERO _mm_setzero_ps()
|
||
|
#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
|
||
|
#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
|
||
|
#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
|
||
|
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
|
||
|
#define GGML_F32Cx4_ADD _mm_add_ps
|
||
|
#define GGML_F32Cx4_MUL _mm_mul_ps
|
||
|
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
||
|
|
||
|
#define GGML_F16_VEC GGML_F32Cx4
|
||
|
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
||
|
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
||
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
||
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
|
||
|
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
||
|
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
||
|
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
||
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
||
|
|
||
|
#elif defined(__loongarch_asx)
|
||
|
|
||
|
#define GGML_SIMD
|
||
|
|
||
|
// F32 LASX
|
||
|
#define GGML_F32_STEP 32
|
||
|
#define GGML_F32_EPR 8
|
||
|
|
||
|
#define GGML_F32x8 __m256
|
||
|
#define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
|
||
|
#define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
|
||
|
#define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
|
||
|
#define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
|
||
|
#define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
|
||
|
#define GGML_F32x8_ADD __lasx_xvfadd_s
|
||
|
#define GGML_F32x8_MUL __lasx_xvfmul_s
|
||
|
#define GGML_F32x8_REDUCE(res, x) \
|
||
|
do { \
|
||
|
int offset = GGML_F32_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
float *tmp_p = (float *)&x[0]; \
|
||
|
res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
|
||
|
} while (0)
|
||
|
// TODO: is this optimal ?
|
||
|
|
||
|
#define GGML_F32_VEC GGML_F32x8
|
||
|
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
|
||
|
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
|
||
|
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
|
||
|
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
|
||
|
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
|
||
|
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
|
||
|
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
|
||
|
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
|
||
|
|
||
|
// F16 LASX
|
||
|
|
||
|
#define GGML_F16_STEP 32
|
||
|
#define GGML_F16_EPR 8
|
||
|
|
||
|
// F16 arithmetic is not supported by AVX, so we use F32 instead
|
||
|
|
||
|
#define GGML_F32Cx8 __m256
|
||
|
#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
|
||
|
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
|
||
|
|
||
|
static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
|
||
|
float tmp[8];
|
||
|
|
||
|
for (int i = 0; i < 8; i++) {
|
||
|
tmp[i] = GGML_FP16_TO_FP32(x[i]);
|
||
|
}
|
||
|
|
||
|
return (__m256)__lasx_xvld(tmp, 0);
|
||
|
}
|
||
|
static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
|
||
|
float arr[8];
|
||
|
|
||
|
__lasx_xvst(y, arr, 0);
|
||
|
|
||
|
for (int i = 0; i < 8; i++) {
|
||
|
x[i] = GGML_FP32_TO_FP16(arr[i]);
|
||
|
}
|
||
|
}
|
||
|
#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
|
||
|
#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
|
||
|
|
||
|
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
|
||
|
#define GGML_F32Cx8_ADD __lasx_xvfadd_s
|
||
|
#define GGML_F32Cx8_MUL __lasx_xvfmul_s
|
||
|
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
|
||
|
|
||
|
#define GGML_F16_VEC GGML_F32Cx8
|
||
|
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
|
||
|
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
|
||
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
|
||
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
|
||
|
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
|
||
|
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
|
||
|
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
|
||
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
|
||
|
|
||
|
#elif defined(__loongarch_sx)
|
||
|
|
||
|
#define GGML_SIMD
|
||
|
|
||
|
// F32 LSX
|
||
|
|
||
|
#define GGML_F32_STEP 32
|
||
|
#define GGML_F32_EPR 4
|
||
|
|
||
|
#define GGML_F32x4 __m128
|
||
|
#define GGML_F32x4_ZERO __lsx_vldi(0)
|
||
|
#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
|
||
|
#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
|
||
|
#define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
|
||
|
#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
|
||
|
#define GGML_F32x4_ADD __lsx_vfadd_s
|
||
|
#define GGML_F32x4_MUL __lsx_vfmul_s
|
||
|
#define GGML_F32x4_REDUCE(res, x) \
|
||
|
{ \
|
||
|
int offset = GGML_F32_ARR >> 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
offset >>= 1; \
|
||
|
for (int i = 0; i < offset; ++i) { \
|
||
|
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
|
||
|
} \
|
||
|
__m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
|
||
|
tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
|
||
|
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||
|
const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
|
||
|
tmp = __lsx_vsrli_d((__m128i)t0, 32); \
|
||
|
tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
|
||
|
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||
|
res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
|
||
|
}
|
||
|
|
||
|
#define GGML_F32_VEC GGML_F32x4
|
||
|
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||
|
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||
|
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||
|
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||
|
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||
|
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||
|
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||
|
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||
|
|
||
|
// F16 LSX
|
||
|
|
||
|
#define GGML_F16_STEP 32
|
||
|
#define GGML_F16_EPR 4
|
||
|
|
||
|
static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
|
||
|
float tmp[4];
|
||
|
|
||
|
tmp[0] = GGML_FP16_TO_FP32(x[0]);
|
||
|
tmp[1] = GGML_FP16_TO_FP32(x[1]);
|
||
|
tmp[2] = GGML_FP16_TO_FP32(x[2]);
|
||
|
tmp[3] = GGML_FP16_TO_FP32(x[3]);
|
||
|
|
||
|
return __lsx_vld(tmp, 0);
|
||
|
}
|
||
|
|
||
|
static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
||
|
float arr[4];
|
||
|
|
||
|
__lsx_vst(y, arr, 0);
|
||
|
|
||
|
x[0] = GGML_FP32_TO_FP16(arr[0]);
|
||
|
x[1] = GGML_FP32_TO_FP16(arr[1]);
|
||
|
x[2] = GGML_FP32_TO_FP16(arr[2]);
|
||
|
x[3] = GGML_FP32_TO_FP16(arr[3]);
|
||
|
}
|
||
|
|
||
|
#define GGML_F32Cx4 __m128
|
||
|
#define GGML_F32Cx4_ZERO __lsx_vldi(0)
|
||
|
#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
|
||
|
#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
|
||
|
#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
|
||
|
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
|
||
|
#define GGML_F32Cx4_ADD __lsx_vfadd_s
|
||
|
#define GGML_F32Cx4_MUL __lsx_vfmul_s
|
||
|
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
||
|
|
||
|
#define GGML_F16_VEC GGML_F32Cx4
|
||
|
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
||
|
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
||
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
||
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
|
||
|
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
||
|
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
||
|
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
||
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
||
|
|
||
|
#endif
|
||
|
|
||
|
// GGML_F32_ARR / GGML_F16_ARR
|
||
|
// number of registers to use per step
|
||
|
#ifdef GGML_SIMD
|
||
|
#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
|
||
|
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
|
||
|
#endif
|
||
|
|
||
|
//
|
||
|
// Threading defs
|
||
|
//
|
||
|
|
||
|
typedef pthread_t ggml_thread_t;
|
||
|
|
||
|
#if defined(_WIN32)
|
||
|
|
||
|
typedef CONDITION_VARIABLE ggml_cond_t;
|
||
|
typedef SRWLOCK ggml_mutex_t;
|
||
|
|
||
|
#define ggml_mutex_init(m) InitializeSRWLock(m)
|
||
|
#define ggml_mutex_destroy(m)
|
||
|
#define ggml_mutex_lock(m) AcquireSRWLockExclusive(m)
|
||
|
#define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
|
||
|
#define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m)
|
||
|
#define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
|
||
|
|
||
|
#define ggml_cond_init(c) InitializeConditionVariable(c)
|
||
|
#define ggml_cond_destroy(c)
|
||
|
#define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
|
||
|
#define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
|
||
|
|
||
|
#define ggml_thread_create pthread_create
|
||
|
#define ggml_thread_join pthread_join
|
||
|
|
||
|
#else
|
||
|
|
||
|
typedef pthread_cond_t ggml_cond_t;
|
||
|
typedef pthread_mutex_t ggml_mutex_t;
|
||
|
|
||
|
#define ggml_mutex_init(m) pthread_mutex_init(m, NULL)
|
||
|
#define ggml_mutex_destroy(m) pthread_mutex_destroy(m)
|
||
|
#define ggml_mutex_lock(m) pthread_mutex_lock(m)
|
||
|
#define ggml_mutex_unlock(m) pthread_mutex_unlock(m)
|
||
|
#define ggml_mutex_lock_shared(m) pthread_mutex_lock(m)
|
||
|
#define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
|
||
|
|
||
|
#define ggml_lock_init(x) UNUSED(x)
|
||
|
#define ggml_lock_destroy(x) UNUSED(x)
|
||
|
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
|
||
|
#define ggml_lock_lock(x) _mm_pause()
|
||
|
#else
|
||
|
#define ggml_lock_lock(x) UNUSED(x)
|
||
|
#endif
|
||
|
#define ggml_lock_unlock(x) UNUSED(x)
|
||
|
|
||
|
#define GGML_LOCK_INITIALIZER 0
|
||
|
#define ggml_cond_init(c) pthread_cond_init(c, NULL)
|
||
|
#define ggml_cond_destroy(c) pthread_cond_destroy(c)
|
||
|
#define ggml_cond_wait(c, m) pthread_cond_wait(c, m)
|
||
|
#define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
|
||
|
|
||
|
#define ggml_thread_create pthread_create
|
||
|
#define ggml_thread_join pthread_join
|
||
|
|
||
|
#endif
|
||
|
|
||
|
// Threadpool def
|
||
|
struct ggml_threadpool {
|
||
|
ggml_mutex_t mutex; // mutex for cond.var
|
||
|
ggml_cond_t cond; // cond.var for waiting for new work
|
||
|
|
||
|
struct ggml_cgraph * cgraph;
|
||
|
struct ggml_cplan * cplan;
|
||
|
|
||
|
// synchronization primitives
|
||
|
atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
|
||
|
atomic_int GGML_CACHE_ALIGN n_barrier;
|
||
|
atomic_int GGML_CACHE_ALIGN n_barrier_passed;
|
||
|
atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
|
||
|
|
||
|
// these are atomic as an annotation for thread-sanitizer
|
||
|
atomic_bool stop; // Used for stopping the threadpool altogether
|
||
|
atomic_bool pause; // Used for pausing the threadpool or individual threads
|
||
|
atomic_bool abort; // Used for aborting processing of a graph
|
||
|
|
||
|
struct ggml_compute_state * workers; // per thread state
|
||
|
int n_threads_max; // number of threads in the pool
|
||
|
atomic_int n_threads_cur; // number of threads used in the current graph
|
||
|
|
||
|
int32_t prio; // Scheduling priority
|
||
|
uint32_t poll; // Polling level (0 - no polling)
|
||
|
|
||
|
enum ggml_status ec;
|
||
|
};
|
||
|
|
||
|
// Per-thread state
|
||
|
struct ggml_compute_state {
|
||
|
#ifndef GGML_USE_OPENMP
|
||
|
ggml_thread_t thrd;
|
||
|
bool cpumask[GGML_MAX_N_THREADS];
|
||
|
int last_graph;
|
||
|
bool pending;
|
||
|
#endif
|
||
|
struct ggml_threadpool * threadpool;
|
||
|
int ith;
|
||
|
};
|
||
|
|
||
|
struct ggml_compute_params {
|
||
|
// ith = thread index, nth = number of threads
|
||
|
int ith, nth;
|
||
|
|
||
|
// work buffer for all threads
|
||
|
size_t wsize;
|
||
|
void * wdata;
|
||
|
|
||
|
struct ggml_threadpool * threadpool;
|
||
|
};
|
||
|
|
||
|
//
|
||
|
// fundamental operations
|
||
|
//
|
||
|
|
||
|
inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||
|
|
||
|
inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||
|
|
||
|
inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||
|
|
||
|
inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||
|
|
||
|
inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||
|
|
||
|
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
|
||
|
inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
|
||
|
inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
|
||
|
inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
|
||
|
inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
|
||
|
inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||
|
inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
|
||
|
inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
|
||
|
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
|
||
|
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
|
||
|
|
||
|
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
|
||
|
assert(nrc == 1);
|
||
|
UNUSED(nrc);
|
||
|
UNUSED(bx);
|
||
|
UNUSED(by);
|
||
|
UNUSED(bs);
|
||
|
|
||
|
#if defined(GGML_SIMD)
|
||
|
float sumf = 0.0f;
|
||
|
const int np = (n & ~(GGML_F32_STEP - 1));
|
||
|
|
||
|
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||
|
|
||
|
GGML_F32_VEC ax[GGML_F32_ARR];
|
||
|
GGML_F32_VEC ay[GGML_F32_ARR];
|
||
|
|
||
|
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||
|
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||
|
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||
|
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||
|
|
||
|
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// reduce sum0..sum3 to sum0
|
||
|
GGML_F32_VEC_REDUCE(sumf, sum);
|
||
|
|
||
|
// leftovers
|
||
|
for (int i = np; i < n; ++i) {
|
||
|
sumf += x[i]*y[i];
|
||
|
}
|
||
|
#else
|
||
|
// scalar
|
||
|
ggml_float sumf = 0.0;
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
sumf += (ggml_float)(x[i]*y[i]);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
*s = sumf;
|
||
|
}
|
||
|
|
||
|
static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
|
||
|
assert(nrc == 1);
|
||
|
UNUSED(nrc);
|
||
|
UNUSED(bx);
|
||
|
UNUSED(by);
|
||
|
UNUSED(bs);
|
||
|
int i = 0;
|
||
|
ggml_float sumf = 0;
|
||
|
|
||
|
#if defined(__AVX512BF16__)
|
||
|
__m512 c1 = _mm512_setzero_ps();
|
||
|
__m512 c2 = _mm512_setzero_ps();
|
||
|
for (; i + 64 <= n; i += 64) {
|
||
|
c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
|
||
|
m512bh(_mm512_loadu_si512((y + i))));
|
||
|
c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
|
||
|
m512bh(_mm512_loadu_si512((y + i + 32))));
|
||
|
}
|
||
|
sumf += (ggml_float)_mm512_reduce_add_ps(c1);
|
||
|
sumf += (ggml_float)_mm512_reduce_add_ps(c2);
|
||
|
|
||
|
#elif defined(__AVX512F__)
|
||
|
#define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
|
||
|
__m512 c1 = _mm512_setzero_ps();
|
||
|
__m512 c2 = _mm512_setzero_ps();
|
||
|
for (; i + 32 <= n; i += 32) {
|
||
|
c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
|
||
|
c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
|
||
|
}
|
||
|
sumf += (ggml_float)_mm512_reduce_add_ps(c1);
|
||
|
sumf += (ggml_float)_mm512_reduce_add_ps(c2);
|
||
|
|
||
|
#undef LOAD
|
||
|
#elif defined(__AVX2__)
|
||
|
#define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
|
||
|
__m256 c1 = _mm256_setzero_ps();
|
||
|
__m256 c2 = _mm256_setzero_ps();
|
||
|
__m256 c3 = _mm256_setzero_ps();
|
||
|
__m256 c4 = _mm256_setzero_ps();
|
||
|
for (; i + 32 <= n; i += 32) {
|
||
|
c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
|
||
|
c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
|
||
|
c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
|
||
|
c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
|
||
|
}
|
||
|
__m128 g;
|
||
|
c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
|
||
|
_mm256_add_ps(c2, c4));
|
||
|
g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
|
||
|
_mm256_castps256_ps128(c1));
|
||
|
g = _mm_add_ps(g, _mm_movehl_ps(g, g));
|
||
|
g = _mm_add_ss(g, _mm_movehdup_ps(g));
|
||
|
sumf += (ggml_float)_mm_cvtss_f32(g);
|
||
|
|
||
|
#undef LOAD
|
||
|
#endif
|
||
|
|
||
|
for (; i < n; ++i) {
|
||
|
sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
|
||
|
GGML_BF16_TO_FP32(y[i]));
|
||
|
}
|
||
|
*s = sumf;
|
||
|
}
|
||
|
|
||
|
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
|
||
|
assert(nrc == 1);
|
||
|
UNUSED(nrc);
|
||
|
UNUSED(bx);
|
||
|
UNUSED(by);
|
||
|
UNUSED(bs);
|
||
|
|
||
|
ggml_float sumf = 0.0;
|
||
|
|
||
|
#if defined(GGML_SIMD)
|
||
|
const int np = (n & ~(GGML_F16_STEP - 1));
|
||
|
|
||
|
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
|
||
|
|
||
|
GGML_F16_VEC ax[GGML_F16_ARR];
|
||
|
GGML_F16_VEC ay[GGML_F16_ARR];
|
||
|
|
||
|
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||
|
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||
|
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||
|
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||
|
|
||
|
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// reduce sum0..sum3 to sum0
|
||
|
GGML_F16_VEC_REDUCE(sumf, sum);
|
||
|
|
||
|
// leftovers
|
||
|
for (int i = np; i < n; ++i) {
|
||
|
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
|
||
|
}
|
||
|
#else
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
*s = sumf;
|
||
|
}
|
||
|
|
||
|
// compute GGML_VEC_DOT_UNROLL dot products at once
|
||
|
// xs - x row stride in bytes
|
||
|
inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
|
||
|
ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
|
||
|
|
||
|
ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
|
||
|
|
||
|
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
|
||
|
x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
|
||
|
}
|
||
|
|
||
|
#if defined(GGML_SIMD)
|
||
|
const int np = (n & ~(GGML_F16_STEP - 1));
|
||
|
|
||
|
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
|
||
|
|
||
|
GGML_F16_VEC ax[GGML_F16_ARR];
|
||
|
GGML_F16_VEC ay[GGML_F16_ARR];
|
||
|
|
||
|
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||
|
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||
|
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||
|
|
||
|
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||
|
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
|
||
|
|
||
|
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// reduce sum0..sum3 to sum0
|
||
|
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||
|
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
|
||
|
}
|
||
|
|
||
|
// leftovers
|
||
|
for (int i = np; i < n; ++i) {
|
||
|
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||
|
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||
|
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
|
||
|
s[i] = sumf[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
|
||
|
#if defined(GGML_SIMD)
|
||
|
const int np = (n & ~(GGML_F32_STEP - 1));
|
||
|
|
||
|
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||
|
|
||
|
GGML_F32_VEC ax[GGML_F32_ARR];
|
||
|
GGML_F32_VEC ay[GGML_F32_ARR];
|
||
|
|
||
|
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||
|
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||
|
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||
|
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||
|
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
|
||
|
|
||
|
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// leftovers
|
||
|
for (int i = np; i < n; ++i) {
|
||
|
y[i] += x[i]*v;
|
||
|
}
|
||
|
#else
|
||
|
// scalar
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
y[i] += x[i]*v;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
|
||
|
#if defined(GGML_SIMD)
|
||
|
const int np = (n & ~(GGML_F16_STEP - 1));
|
||
|
|
||
|
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||
|
|
||
|
GGML_F16_VEC ax[GGML_F16_ARR];
|
||
|
GGML_F16_VEC ay[GGML_F16_ARR];
|
||
|
|
||
|
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||
|
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||
|
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||
|
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||
|
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
|
||
|
|
||
|
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// leftovers
|
||
|
for (int i = np; i < n; ++i) {
|
||
|
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
|
||
|
}
|
||
|
#else
|
||
|
// scalar
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// xs and vs are byte strides of x and v
|
||
|
inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
|
||
|
|
||
|
const float * restrict x[GGML_VEC_MAD_UNROLL];
|
||
|
const float * restrict v[GGML_VEC_MAD_UNROLL];
|
||
|
|
||
|
for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
|
||
|
x[i] = (const float *) ((const char *) xv + i*xs);
|
||
|
v[i] = (const float *) ((const char *) vv + i*vs);
|
||
|
}
|
||
|
|
||
|
#if defined(GGML_SIMD)
|
||
|
const int np = (n & ~(GGML_F32_STEP - 1));
|
||
|
|
||
|
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
|
||
|
|
||
|
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||
|
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
|
||
|
}
|
||
|
|
||
|
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
|
||
|
GGML_F32_VEC ay[GGML_F32_ARR];
|
||
|
|
||
|
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||
|
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||
|
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||
|
|
||
|
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||
|
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
|
||
|
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
|
||
|
}
|
||
|
|
||
|
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// leftovers
|
||
|
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||
|
for (int i = np; i < n; ++i) {
|
||
|
y[i] += x[k][i]*v[k][0];
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
// scalar
|
||
|
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
y[i] += x[k][i]*v[k][0];
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
|
||
|
inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
|
||
|
#if defined(GGML_USE_ACCELERATE)
|
||
|
vDSP_vsmul(y, 1, &v, y, 1, n);
|
||
|
#elif defined(GGML_SIMD)
|
||
|
const int np = (n & ~(GGML_F32_STEP - 1));
|
||
|
|
||
|
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||
|
|
||
|
GGML_F32_VEC ay[GGML_F32_ARR];
|
||
|
|
||
|
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||
|
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||
|
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||
|
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
|
||
|
|
||
|
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// leftovers
|
||
|
for (int i = np; i < n; ++i) {
|
||
|
y[i] *= v;
|
||
|
}
|
||
|
#else
|
||
|
// scalar
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
y[i] *= v;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
|
||
|
#if defined(GGML_SIMD)
|
||
|
const int np = (n & ~(GGML_F16_STEP - 1));
|
||
|
|
||
|
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||
|
|
||
|
GGML_F16_VEC ay[GGML_F16_ARR];
|
||
|
|
||
|
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||
|
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||
|
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||
|
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
|
||
|
|
||
|
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// leftovers
|
||
|
for (int i = np; i < n; ++i) {
|
||
|
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
|
||
|
}
|
||
|
#else
|
||
|
// scalar
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
|
||
|
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
|
||
|
inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
|
||
|
inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
|
||
|
inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
|
||
|
inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
|
||
|
inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
|
||
|
inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
|
||
|
inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
|
||
|
inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
|
||
|
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
|
||
|
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
|
||
|
inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
|
||
|
inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
|
||
|
// TODO: optimize performance
|
||
|
inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
|
||
|
inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
|
||
|
inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
|
||
|
|
||
|
static const float GELU_COEF_A = 0.044715f;
|
||
|
static const float GELU_QUICK_COEF = -1.702f;
|
||
|
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||
|
|
||
|
inline static float ggml_gelu_f32(float x) {
|
||
|
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||
|
const uint16_t * i16 = (const uint16_t *) x;
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
y[i] = ggml_table_gelu_f16[i16[i]];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef GGML_GELU_FP16
|
||
|
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||
|
uint16_t t;
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
if (x[i] <= -10.0f) {
|
||
|
y[i] = 0.0f;
|
||
|
} else if (x[i] >= 10.0f) {
|
||
|
y[i] = x[i];
|
||
|
} else {
|
||
|
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
||
|
memcpy(&t, &fp16, sizeof(uint16_t));
|
||
|
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
y[i] = ggml_gelu_f32(x[i]);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
inline static float ggml_gelu_quick_f32(float x) {
|
||
|
return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
|
||
|
}
|
||
|
|
||
|
//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||
|
// const uint16_t * i16 = (const uint16_t *) x;
|
||
|
// for (int i = 0; i < n; ++i) {
|
||
|
// y[i] = ggml_table_gelu_quick_f16[i16[i]];
|
||
|
// }
|
||
|
//}
|
||
|
|
||
|
#ifdef GGML_GELU_QUICK_FP16
|
||
|
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
|
||
|
uint16_t t;
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
||
|
memcpy(&t, &fp16, sizeof(uint16_t));
|
||
|
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
y[i] = ggml_gelu_quick_f32(x[i]);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Sigmoid Linear Unit (SiLU) function
|
||
|
inline static float ggml_silu_f32(float x) {
|
||
|
return x/(1.0f + expf(-x));
|
||
|
}
|
||
|
|
||
|
#if __FINITE_MATH_ONLY__
|
||
|
#error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
|
||
|
#error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
|
||
|
#endif
|
||
|
|
||
|
#if defined(__ARM_NEON) && defined(__aarch64__)
|
||
|
|
||
|
// adapted from arm limited optimized routine
|
||
|
// the maximum error is 1.45358 plus 0.5 ulps
|
||
|
// numbers above 88.38 will flush to infinity
|
||
|
// numbers beneath -103.97 will flush to zero
|
||
|
inline static float32x4_t ggml_v_expf(float32x4_t x) {
|
||
|
const float32x4_t r = vdupq_n_f32(0x1.8p23f);
|
||
|
const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
|
||
|
const float32x4_t n = vsubq_f32(z, r);
|
||
|
const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
|
||
|
vdupq_n_f32(0x1.7f7d1cp-20f));
|
||
|
const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
|
||
|
const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
|
||
|
const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
|
||
|
const float32x4_t u = vmulq_f32(b, b);
|
||
|
const float32x4_t j = vfmaq_f32(
|
||
|
vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
|
||
|
vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
|
||
|
vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
|
||
|
if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
|
||
|
return vfmaq_f32(k, j, k);
|
||
|
const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
|
||
|
const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
|
||
|
const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
|
||
|
return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
|
||
|
vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
|
||
|
}
|
||
|
|
||
|
// computes silu x/(1+exp(-x)) in single precision vector
|
||
|
inline static float32x4_t ggml_v_silu(float32x4_t x) {
|
||
|
const float32x4_t one = vdupq_n_f32(1.0f);
|
||
|
const float32x4_t zero = vdupq_n_f32(0.0f);
|
||
|
const float32x4_t neg_x = vsubq_f32(zero, x);
|
||
|
const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
|
||
|
const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
|
||
|
return vdivq_f32(x, one_plus_exp_neg_x);
|
||
|
}
|
||
|
|
||
|
#elif defined(__AVX512F__) && defined(__AVX512DQ__)
|
||
|
|
||
|
// adapted from arm limited optimized routine
|
||
|
// the maximum error is 1.45358 plus 0.5 ulps
|
||
|
// numbers above 88.38 will flush to infinity
|
||
|
// numbers beneath -103.97 will flush to zero
|
||
|
inline static __m512 ggml_v_expf(__m512 x) {
|
||
|
const __m512 r = _mm512_set1_ps(0x1.8p23f);
|
||
|
const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
|
||
|
const __m512 n = _mm512_sub_ps(z, r);
|
||
|
const __m512 b =
|
||
|
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
|
||
|
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
|
||
|
const __mmask16 d =
|
||
|
_mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
|
||
|
const __m512 u = _mm512_mul_ps(b, b);
|
||
|
const __m512 j = _mm512_fmadd_ps(
|
||
|
_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
|
||
|
_mm512_set1_ps(0x1.573e2ep-5f)),
|
||
|
u,
|
||
|
_mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
|
||
|
_mm512_set1_ps(0x1.fffdb6p-2f))),
|
||
|
u,
|
||
|
_mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
|
||
|
const __m512 res = _mm512_scalef_ps(j, n);
|
||
|
if (_mm512_kortestz(d, d))
|
||
|
return res;
|
||
|
const __m512 zero = _mm512_setzero_ps();
|
||
|
const __m512 alt = _mm512_mask_blend_ps(
|
||
|
_mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
|
||
|
return _mm512_mask_blend_ps(d, res, alt);
|
||
|
}
|
||
|
|
||
|
// computes silu x/(1+exp(-x)) in single precision vector
|
||
|
inline static __m512 ggml_v_silu(__m512 x) {
|
||
|
const __m512 one = _mm512_set1_ps(1);
|
||
|
const __m512 zero = _mm512_setzero_ps();
|
||
|
const __m512 neg_x = _mm512_sub_ps(zero, x);
|
||
|
const __m512 exp_neg_x = ggml_v_expf(neg_x);
|
||
|
const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
|
||
|
return _mm512_div_ps(x, one_plus_exp_neg_x);
|
||
|
}
|
||
|
|
||
|
#elif defined(__AVX2__) && defined(__FMA__)
|
||
|
|
||
|
// adapted from arm limited optimized routine
|
||
|
// the maximum error is 1.45358 plus 0.5 ulps
|
||
|
// numbers above 88.38 will flush to infinity
|
||
|
// numbers beneath -103.97 will flush to zero
|
||
|
inline static __m256 ggml_v_expf(__m256 x) {
|
||
|
const __m256 r = _mm256_set1_ps(0x1.8p23f);
|
||
|
const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
|
||
|
const __m256 n = _mm256_sub_ps(z, r);
|
||
|
const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
|
||
|
_mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
|
||
|
const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
|
||
|
const __m256 k = _mm256_castsi256_ps(
|
||
|
_mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
|
||
|
const __m256i c = _mm256_castps_si256(
|
||
|
_mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
|
||
|
_mm256_set1_ps(126), _CMP_GT_OQ));
|
||
|
const __m256 u = _mm256_mul_ps(b, b);
|
||
|
const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
|
||
|
_mm256_set1_ps(0x1.573e2ep-5f)), u,
|
||
|
_mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
|
||
|
_mm256_set1_ps(0x1.fffdb6p-2f))),
|
||
|
u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
|
||
|
if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
|
||
|
return _mm256_fmadd_ps(j, k, k);
|
||
|
const __m256i g = _mm256_and_si256(
|
||
|
_mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
|
||
|
_mm256_set1_epi32(0x82000000u));
|
||
|
const __m256 s1 =
|
||
|
_mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
|
||
|
const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
|
||
|
const __m256i d = _mm256_castps_si256(
|
||
|
_mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
|
||
|
_mm256_set1_ps(192), _CMP_GT_OQ));
|
||
|
return _mm256_or_ps(
|
||
|
_mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
|
||
|
_mm256_andnot_ps(
|
||
|
_mm256_castsi256_ps(d),
|
||
|
_mm256_or_ps(
|
||
|
_mm256_and_ps(_mm256_castsi256_ps(c),
|
||
|
_mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
|
||
|
_mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
|
||
|
}
|
||
|
|
||
|
// computes silu x/(1+exp(-x)) in single precision vector
|
||
|
inline static __m256 ggml_v_silu(__m256 x) {
|
||
|
const __m256 one = _mm256_set1_ps(1);
|
||
|
const __m256 zero = _mm256_setzero_ps();
|
||
|
const __m256 neg_x = _mm256_sub_ps(zero, x);
|
||
|
const __m256 exp_neg_x = ggml_v_expf(neg_x);
|
||
|
const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
|
||
|
return _mm256_div_ps(x, one_plus_exp_neg_x);
|
||
|
}
|
||
|
|
||
|
#elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
|
||
|
|
||
|
#if defined(__FMA__)
|
||
|
#define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
|
||
|
#define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
|
||
|
#else
|
||
|
#define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
|
||
|
#define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
|
||
|
#endif
|
||
|
|
||
|
// adapted from arm limited optimized routine
|
||
|
// the maximum error is 1.45358 plus 0.5 ulps
|
||
|
// numbers above 88.38 will flush to infinity
|
||
|
// numbers beneath -103.97 will flush to zero
|
||
|
inline static __m128 ggml_v_expf(__m128 x) {
|
||
|
const __m128 r = _mm_set1_ps(0x1.8p23f);
|
||
|
const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
|
||
|
const __m128 n = _mm_sub_ps(z, r);
|
||
|
const __m128 b =
|
||
|
NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
|
||
|
const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
|
||
|
const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
|
||
|
const __m128i c =
|
||
|
_mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
|
||
|
const __m128 u = _mm_mul_ps(b, b);
|
||
|
const __m128 j =
|
||
|
MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
|
||
|
MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
|
||
|
u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
|
||
|
if (!_mm_movemask_epi8(c))
|
||
|
return MADD128(j, k, k);
|
||
|
const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
|
||
|
_mm_set1_epi32(0x82000000u));
|
||
|
const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
|
||
|
const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
|
||
|
const __m128i d =
|
||
|
_mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
|
||
|
return _mm_or_ps(
|
||
|
_mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
|
||
|
_mm_andnot_ps(_mm_castsi128_ps(d),
|
||
|
_mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
|
||
|
_mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
|
||
|
}
|
||
|
|
||
|
// computes silu x/(1+exp(-x)) in single precision vector
|
||
|
inline static __m128 ggml_v_silu(__m128 x) {
|
||
|
const __m128 one = _mm_set1_ps(1);
|
||
|
const __m128 zero = _mm_setzero_ps();
|
||
|
const __m128 neg_x = _mm_sub_ps(zero, x);
|
||
|
const __m128 exp_neg_x = ggml_v_expf(neg_x);
|
||
|
const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
|
||
|
return _mm_div_ps(x, one_plus_exp_neg_x);
|
||
|
}
|
||
|
|
||
|
#endif // __ARM_NEON / __AVX2__ / __SSE2__
|
||
|
|
||
|
static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
|
||
|
int i = 0;
|
||
|
#if defined(__AVX512F__) && defined(__AVX512DQ__)
|
||
|
for (; i + 15 < n; i += 16) {
|
||
|
_mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
|
||
|
}
|
||
|
#elif defined(__AVX2__) && defined(__FMA__)
|
||
|
for (; i + 7 < n; i += 8) {
|
||
|
_mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
|
||
|
}
|
||
|
#elif defined(__SSE2__)
|
||
|
for (; i + 3 < n; i += 4) {
|
||
|
_mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
|
||
|
}
|
||
|
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||
|
for (; i + 3 < n; i += 4) {
|
||
|
vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
|
||
|
}
|
||
|
#endif
|
||
|
for (; i < n; ++i) {
|
||
|
y[i] = ggml_silu_f32(x[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
|
||
|
int i = 0;
|
||
|
ggml_float sum = 0;
|
||
|
#if defined(__AVX512F__) && defined(__AVX512DQ__)
|
||
|
for (; i + 15 < n; i += 16) {
|
||
|
__m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
|
||
|
_mm512_set1_ps(max)));
|
||
|
_mm512_storeu_ps(y + i, val);
|
||
|
sum += (ggml_float)_mm512_reduce_add_ps(val);
|
||
|
}
|
||
|
#elif defined(__AVX2__) && defined(__FMA__)
|
||
|
for (; i + 7 < n; i += 8) {
|
||
|
__m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
|
||
|
_mm256_set1_ps(max)));
|
||
|
_mm256_storeu_ps(y + i, val);
|
||
|
__m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
|
||
|
_mm256_castps256_ps128(val));
|
||
|
val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
|
||
|
val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
|
||
|
sum += (ggml_float)_mm_cvtss_f32(val2);
|
||
|
}
|
||
|
#elif defined(__SSE2__)
|
||
|
for (; i + 3 < n; i += 4) {
|
||
|
__m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
|
||
|
_mm_set1_ps(max)));
|
||
|
_mm_storeu_ps(y + i, val);
|
||
|
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||
|
val = _mm_add_ps(val, _mm_movehl_ps(val, val));
|
||
|
val = _mm_add_ss(val, _mm_movehdup_ps(val));
|
||
|
#else
|
||
|
__m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
|
||
|
val = _mm_add_ps(val, tmp);
|
||
|
tmp = _mm_movehl_ps(tmp, val);
|
||
|
val = _mm_add_ss(val, tmp);
|
||
|
#endif
|
||
|
sum += (ggml_float)_mm_cvtss_f32(val);
|
||
|
}
|
||
|
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||
|
for (; i + 3 < n; i += 4) {
|
||
|
float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
|
||
|
vdupq_n_f32(max)));
|
||
|
vst1q_f32(y + i, val);
|
||
|
sum += (ggml_float)vaddvq_f32(val);
|
||
|
}
|
||
|
#endif
|
||
|
for (; i < n; ++i) {
|
||
|
float val = expf(x[i] - max);
|
||
|
sum += (ggml_float)val;
|
||
|
y[i] = val;
|
||
|
}
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
|
||
|
// log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
|
||
|
|
||
|
int i = 0;
|
||
|
ggml_float sum = 0;
|
||
|
for (; i < n; ++i) {
|
||
|
float val = x[i] - max;
|
||
|
y[i] = val;
|
||
|
sum += (ggml_float)expf(val);
|
||
|
}
|
||
|
return sum = (ggml_float)logf(sum);
|
||
|
}
|
||
|
|
||
|
inline static float ggml_silu_backward_f32(float x, float dy) {
|
||
|
const float s = 1.0f/(1.0f + expf(-x));
|
||
|
return dy*s*(1.0f + x*(1.0f - s));
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
|
||
|
#ifndef GGML_USE_ACCELERATE
|
||
|
ggml_float sum = 0.0;
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
sum += (ggml_float)x[i];
|
||
|
}
|
||
|
*s = sum;
|
||
|
#else
|
||
|
vDSP_sve(x, 1, s, n);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
|
||
|
ggml_float sum = 0.0;
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
sum += (ggml_float)x[i];
|
||
|
}
|
||
|
*s = sum;
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
|
||
|
float sum = 0.0f;
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
sum += GGML_FP16_TO_FP32(x[i]);
|
||
|
}
|
||
|
*s = sum;
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
|
||
|
float sum = 0.0f;
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
sum += GGML_BF16_TO_FP32(x[i]);
|
||
|
}
|
||
|
*s = sum;
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
|
||
|
#ifndef GGML_USE_ACCELERATE
|
||
|
float max = -INFINITY;
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
max = MAX(max, x[i]);
|
||
|
}
|
||
|
*s = max;
|
||
|
#else
|
||
|
vDSP_maxv(x, 1, s, n);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
|
||
|
ggml_vec_norm_f32(n, s, x);
|
||
|
*s = 1.f/(*s);
|
||
|
}
|
||
|
|
||
|
inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
|
||
|
float max = -INFINITY;
|
||
|
int idx = 0;
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
max = MAX(max, x[i]);
|
||
|
if (max == x[i]) { idx = i; }
|
||
|
}
|
||
|
*s = idx;
|
||
|
}
|
||
|
|
||
|
// Helpers for polling loops
|
||
|
#if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
|
||
|
static inline void ggml_thread_cpu_relax(void) {
|
||
|
__asm__ volatile("yield" ::: "memory");
|
||
|
}
|
||
|
#elif defined(__x86_64__)
|
||
|
static inline void ggml_thread_cpu_relax(void) {
|
||
|
_mm_pause();
|
||
|
}
|
||
|
#else
|
||
|
static inline void ggml_thread_cpu_relax(void) {;}
|
||
|
#endif
|
||
|
|
||
|
//
|
||
|
// NUMA support
|
||
|
//
|
||
|
|
||
|
#define GGML_NUMA_MAX_NODES 8
|
||
|
#define GGML_NUMA_MAX_CPUS 512
|
||
|
|
||
|
struct ggml_numa_node {
|
||
|
uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
|
||
|
uint32_t n_cpus;
|
||
|
};
|
||
|
|
||
|
struct ggml_numa_nodes {
|
||
|
enum ggml_numa_strategy numa_strategy;
|
||
|
struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
|
||
|
uint32_t n_nodes;
|
||
|
uint32_t total_cpus; // hardware threads on system
|
||
|
uint32_t current_node; // node on which main process is execting
|
||
|
#if defined(__gnu_linux__)
|
||
|
cpu_set_t cpuset; // cpuset from numactl
|
||
|
#else
|
||
|
uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
//
|
||
|
// ggml state
|
||
|
//
|
||
|
|
||
|
struct ggml_state {
|
||
|
struct ggml_numa_nodes numa;
|
||
|
};
|
||
|
|
||
|
// global state
|
||
|
static struct ggml_state g_state = {0};
|
||
|
static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
|
||
|
|
||
|
// TODO: move to threading file
|
||
|
// critical section via spin lock
|
||
|
void ggml_critical_section_start(void) {
|
||
|
while (atomic_flag_test_and_set(&g_state_critical)) {
|
||
|
// spin
|
||
|
sched_yield();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_critical_section_end(void) {
|
||
|
atomic_flag_clear(&g_state_critical);
|
||
|
}
|
||
|
|
||
|
static void ggml_barrier(struct ggml_threadpool * tp) {
|
||
|
int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
|
||
|
if (n_threads == 1) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#ifdef GGML_USE_OPENMP
|
||
|
#pragma omp barrier
|
||
|
#else
|
||
|
int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
|
||
|
|
||
|
// enter barrier (full seq-cst fence)
|
||
|
int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
|
||
|
|
||
|
if (n_barrier == (n_threads - 1)) {
|
||
|
// last thread
|
||
|
atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
|
||
|
|
||
|
// exit barrier (fill seq-cst fence)
|
||
|
atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// wait for other threads
|
||
|
while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
|
||
|
ggml_thread_cpu_relax();
|
||
|
}
|
||
|
|
||
|
// exit barrier (full seq-cst fence)
|
||
|
// TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
|
||
|
#ifdef GGML_TSAN_ENABLED
|
||
|
atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
|
||
|
#else
|
||
|
atomic_thread_fence(memory_order_seq_cst);
|
||
|
#endif
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#if defined(__gnu_linux__)
|
||
|
static cpu_set_t ggml_get_numa_affinity(void) {
|
||
|
cpu_set_t cpuset;
|
||
|
pthread_t thread;
|
||
|
thread = pthread_self();
|
||
|
CPU_ZERO(&cpuset);
|
||
|
pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
|
||
|
return cpuset;
|
||
|
}
|
||
|
#else
|
||
|
static uint32_t ggml_get_numa_affinity(void) {
|
||
|
return 0; // no NUMA support
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
|
||
|
if (g_state.numa.n_nodes > 0) {
|
||
|
fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#if defined(__gnu_linux__)
|
||
|
struct stat st;
|
||
|
char path[256];
|
||
|
int rv;
|
||
|
|
||
|
// set numa scheme
|
||
|
g_state.numa.numa_strategy = numa_flag;
|
||
|
|
||
|
GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
|
||
|
|
||
|
g_state.numa.cpuset = ggml_get_numa_affinity();
|
||
|
|
||
|
// enumerate nodes
|
||
|
while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
|
||
|
rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
|
||
|
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
|
||
|
if (stat(path, &st) != 0) { break; }
|
||
|
++g_state.numa.n_nodes;
|
||
|
}
|
||
|
|
||
|
// enumerate CPUs
|
||
|
while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
|
||
|
rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
|
||
|
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
|
||
|
if (stat(path, &st) != 0) { break; }
|
||
|
++g_state.numa.total_cpus;
|
||
|
}
|
||
|
|
||
|
GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
|
||
|
|
||
|
// figure out which node we're on
|
||
|
uint current_cpu;
|
||
|
int getcpu_ret = 0;
|
||
|
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
|
||
|
getcpu_ret = getcpu(¤t_cpu, &g_state.numa.current_node);
|
||
|
#else
|
||
|
// old glibc doesn't have a wrapper for this call. Fall back on direct syscall
|
||
|
# if !defined(SYS_getcpu) && defined(SYS_get_cpu)
|
||
|
# define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
|
||
|
# endif
|
||
|
getcpu_ret = syscall(SYS_getcpu, ¤t_cpu, &g_state.numa.current_node);
|
||
|
#endif
|
||
|
|
||
|
if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
|
||
|
g_state.numa.n_nodes = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
|
||
|
|
||
|
for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
|
||
|
struct ggml_numa_node * node = &g_state.numa.nodes[n];
|
||
|
GGML_PRINT_DEBUG("CPUs on node %u:", n);
|
||
|
node->n_cpus = 0;
|
||
|
for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
|
||
|
rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
|
||
|
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
|
||
|
if (stat(path, &st) == 0) {
|
||
|
node->cpus[node->n_cpus++] = c;
|
||
|
GGML_PRINT_DEBUG(" %u", c);
|
||
|
}
|
||
|
}
|
||
|
GGML_PRINT_DEBUG("\n");
|
||
|
}
|
||
|
|
||
|
if (ggml_is_numa()) {
|
||
|
FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
|
||
|
if (fptr != NULL) {
|
||
|
char buf[42];
|
||
|
if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
|
||
|
GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
|
||
|
}
|
||
|
fclose(fptr);
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
UNUSED(numa_flag);
|
||
|
// TODO
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
bool ggml_is_numa(void) {
|
||
|
return g_state.numa.n_nodes > 1;
|
||
|
}
|
||
|
|
||
|
#if defined(__ARM_ARCH)
|
||
|
|
||
|
#if defined(__linux__) && defined(__aarch64__)
|
||
|
#include <sys/auxv.h>
|
||
|
#elif defined(__APPLE__)
|
||
|
#include <sys/sysctl.h>
|
||
|
#endif
|
||
|
|
||
|
#if !defined(HWCAP2_I8MM)
|
||
|
#define HWCAP2_I8MM 0
|
||
|
#endif
|
||
|
|
||
|
static void ggml_init_arm_arch_features(void) {
|
||
|
#if defined(__linux__) && defined(__aarch64__)
|
||
|
uint32_t hwcap = getauxval(AT_HWCAP);
|
||
|
uint32_t hwcap2 = getauxval(AT_HWCAP2);
|
||
|
|
||
|
ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
|
||
|
ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
|
||
|
ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
|
||
|
|
||
|
#if defined(__ARM_FEATURE_SVE)
|
||
|
ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
|
||
|
#endif
|
||
|
#elif defined(__APPLE__)
|
||
|
int oldp = 0;
|
||
|
size_t size = sizeof(oldp);
|
||
|
if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
|
||
|
oldp = 0;
|
||
|
}
|
||
|
ggml_arm_arch_features.has_neon = oldp;
|
||
|
|
||
|
if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
|
||
|
oldp = 0;
|
||
|
}
|
||
|
ggml_arm_arch_features.has_i8mm = oldp;
|
||
|
|
||
|
ggml_arm_arch_features.has_sve = 0;
|
||
|
ggml_arm_arch_features.sve_cnt = 0;
|
||
|
#else
|
||
|
// Run-time CPU feature detection not implemented for this platform, fallback to compile time
|
||
|
#if defined(__ARM_NEON)
|
||
|
ggml_arm_arch_features.has_neon = 1;
|
||
|
#else
|
||
|
ggml_arm_arch_features.has_neon = 0;
|
||
|
#endif
|
||
|
|
||
|
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||
|
ggml_arm_arch_features.has_i8mm = 1;
|
||
|
#else
|
||
|
ggml_arm_arch_features.has_i8mm = 0;
|
||
|
#endif
|
||
|
|
||
|
#if defined(__ARM_FEATURE_SVE)
|
||
|
ggml_arm_arch_features.has_sve = 1;
|
||
|
ggml_arm_arch_features.sve_cnt = 16;
|
||
|
#else
|
||
|
ggml_arm_arch_features.has_sve = 0;
|
||
|
ggml_arm_arch_features.sve_cnt = 0;
|
||
|
#endif
|
||
|
#endif
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
|
||
|
GGML_ASSERT(!ggml_get_no_alloc(ctx));
|
||
|
|
||
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
|
||
|
|
||
|
ggml_set_i32(result, value);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
|
||
|
GGML_ASSERT(!ggml_get_no_alloc(ctx));
|
||
|
|
||
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
||
|
|
||
|
ggml_set_f32(result, value);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
|
||
|
const int n = ggml_nrows(tensor);
|
||
|
const int nc = tensor->ne[0];
|
||
|
const size_t n1 = tensor->nb[1];
|
||
|
|
||
|
char * const data = tensor->data;
|
||
|
|
||
|
switch (tensor->type) {
|
||
|
case GGML_TYPE_I8:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(int8_t));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_I16:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(int16_t));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(int32_t));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(float));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
|
||
|
}
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return tensor;
|
||
|
}
|
||
|
|
||
|
struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
|
||
|
const int n = ggml_nrows(tensor);
|
||
|
const int nc = tensor->ne[0];
|
||
|
const size_t n1 = tensor->nb[1];
|
||
|
|
||
|
char * const data = tensor->data;
|
||
|
|
||
|
switch (tensor->type) {
|
||
|
case GGML_TYPE_I8:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(int8_t));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_I16:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(int16_t));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(int32_t));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(ggml_bf16_t));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
assert(tensor->nb[0] == sizeof(float));
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
|
||
|
}
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return tensor;
|
||
|
}
|
||
|
|
||
|
int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
|
||
|
if (!ggml_is_contiguous(tensor)) {
|
||
|
int64_t id[4] = { 0, 0, 0, 0 };
|
||
|
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
|
||
|
return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
|
||
|
}
|
||
|
switch (tensor->type) {
|
||
|
case GGML_TYPE_I8:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
|
||
|
return ((int8_t *)(tensor->data))[i];
|
||
|
}
|
||
|
case GGML_TYPE_I16:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
|
||
|
return ((int16_t *)(tensor->data))[i];
|
||
|
}
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
|
||
|
return ((int32_t *)(tensor->data))[i];
|
||
|
}
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||
|
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
||
|
}
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
|
||
|
return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
|
||
|
}
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
||
|
return ((float *)(tensor->data))[i];
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
|
||
|
if (!ggml_is_contiguous(tensor)) {
|
||
|
int64_t id[4] = { 0, 0, 0, 0 };
|
||
|
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
|
||
|
ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
|
||
|
return;
|
||
|
}
|
||
|
switch (tensor->type) {
|
||
|
case GGML_TYPE_I8:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
|
||
|
((int8_t *)(tensor->data))[i] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_I16:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
|
||
|
((int16_t *)(tensor->data))[i] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
|
||
|
((int32_t *)(tensor->data))[i] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||
|
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
|
||
|
((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
||
|
((float *)(tensor->data))[i] = value;
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
|
||
|
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
|
||
|
switch (tensor->type) {
|
||
|
case GGML_TYPE_I8:
|
||
|
return ((int8_t *) data)[0];
|
||
|
case GGML_TYPE_I16:
|
||
|
return ((int16_t *) data)[0];
|
||
|
case GGML_TYPE_I32:
|
||
|
return ((int32_t *) data)[0];
|
||
|
case GGML_TYPE_F16:
|
||
|
return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
|
||
|
case GGML_TYPE_BF16:
|
||
|
return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
|
||
|
case GGML_TYPE_F32:
|
||
|
return ((float *) data)[0];
|
||
|
default:
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
|
||
|
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
|
||
|
switch (tensor->type) {
|
||
|
case GGML_TYPE_I8:
|
||
|
{
|
||
|
((int8_t *)(data))[0] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_I16:
|
||
|
{
|
||
|
((int16_t *)(data))[0] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
((int32_t *)(data))[0] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
((float *)(data))[0] = value;
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
|
||
|
if (!ggml_is_contiguous(tensor)) {
|
||
|
int64_t id[4] = { 0, 0, 0, 0 };
|
||
|
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
|
||
|
return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
|
||
|
}
|
||
|
switch (tensor->type) {
|
||
|
case GGML_TYPE_I8:
|
||
|
{
|
||
|
return ((int8_t *)(tensor->data))[i];
|
||
|
}
|
||
|
case GGML_TYPE_I16:
|
||
|
{
|
||
|
return ((int16_t *)(tensor->data))[i];
|
||
|
}
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
return ((int32_t *)(tensor->data))[i];
|
||
|
}
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
||
|
}
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
|
||
|
}
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
return ((float *)(tensor->data))[i];
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
|
||
|
if (!ggml_is_contiguous(tensor)) {
|
||
|
int64_t id[4] = { 0, 0, 0, 0 };
|
||
|
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
|
||
|
ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
|
||
|
return;
|
||
|
}
|
||
|
switch (tensor->type) {
|
||
|
case GGML_TYPE_I8:
|
||
|
{
|
||
|
((int8_t *)(tensor->data))[i] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_I16:
|
||
|
{
|
||
|
((int16_t *)(tensor->data))[i] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
((int32_t *)(tensor->data))[i] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
((float *)(tensor->data))[i] = value;
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
|
||
|
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
|
||
|
switch (tensor->type) {
|
||
|
case GGML_TYPE_I8:
|
||
|
return ((int8_t *) data)[0];
|
||
|
case GGML_TYPE_I16:
|
||
|
return ((int16_t *) data)[0];
|
||
|
case GGML_TYPE_I32:
|
||
|
return ((int32_t *) data)[0];
|
||
|
case GGML_TYPE_F16:
|
||
|
return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
|
||
|
case GGML_TYPE_BF16:
|
||
|
return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
|
||
|
case GGML_TYPE_F32:
|
||
|
return ((float *) data)[0];
|
||
|
default:
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
|
||
|
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
|
||
|
switch (tensor->type) {
|
||
|
case GGML_TYPE_I8:
|
||
|
{
|
||
|
((int8_t *)(data))[0] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_I16:
|
||
|
{
|
||
|
((int16_t *)(data))[0] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
((int32_t *)(data))[0] = value;
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
((float *)(data))[0] = value;
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
// ggml_compute_forward_dup
|
||
|
|
||
|
static void ggml_compute_forward_dup_same_cont(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
||
|
GGML_ASSERT(src0->type == dst->type);
|
||
|
|
||
|
const size_t nb0 = ggml_type_size(src0->type);
|
||
|
|
||
|
const int ith = params->ith; // thread index
|
||
|
const int nth = params->nth; // number of threads
|
||
|
|
||
|
// parallelize by elements
|
||
|
const int ne = ggml_nelements(dst);
|
||
|
const int dr = (ne + nth - 1) / nth;
|
||
|
const int ie0 = dr * ith;
|
||
|
const int ie1 = MIN(ie0 + dr, ne);
|
||
|
|
||
|
if (ie0 < ie1) {
|
||
|
memcpy(
|
||
|
((char *) dst->data + ie0*nb0),
|
||
|
((char *) src0->data + ie0*nb0),
|
||
|
(ie1 - ie0) * nb0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_dup_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
const int ith = params->ith; // thread index
|
||
|
const int nth = params->nth; // number of threads
|
||
|
|
||
|
// parallelize by rows
|
||
|
const int nr = ne01;
|
||
|
// number of rows per thread
|
||
|
const int dr = (nr + nth - 1) / nth;
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr * ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
if (src0->type == dst->type &&
|
||
|
ne00 == ne0 &&
|
||
|
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
|
||
|
// copy by rows
|
||
|
const size_t rs = ne00*nb00;
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
memcpy(
|
||
|
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
||
|
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
||
|
rs);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
|
||
|
|
||
|
if (ggml_is_contiguous(dst)) {
|
||
|
if (nb00 == sizeof(ggml_fp16_t)) {
|
||
|
if (dst->type == GGML_TYPE_F16) {
|
||
|
size_t id = 0;
|
||
|
const size_t rs = ne00 * nb00;
|
||
|
char * dst_ptr = (char *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += rs * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
||
|
memcpy(dst_ptr + id, src0_ptr, rs);
|
||
|
id += rs;
|
||
|
}
|
||
|
id += rs * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_F32) {
|
||
|
size_t id = 0;
|
||
|
float * dst_ptr = (float *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (ggml_get_type_traits(dst->type)->from_float) {
|
||
|
ggml_from_float_t const quantize_row_q = ggml_get_type_traits(dst->type)->from_float;
|
||
|
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
||
|
|
||
|
size_t id = 0;
|
||
|
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
|
||
|
char * dst_ptr = (char *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += rs * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
|
||
|
}
|
||
|
|
||
|
quantize_row_q(src0_f32, dst_ptr + id, ne00);
|
||
|
id += rs;
|
||
|
}
|
||
|
id += rs * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error"); // TODO: implement
|
||
|
}
|
||
|
} else {
|
||
|
//printf("%s: this is not optimal - fix me\n", __func__);
|
||
|
|
||
|
if (dst->type == GGML_TYPE_F32) {
|
||
|
size_t id = 0;
|
||
|
float * dst_ptr = (float *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_F16) {
|
||
|
size_t id = 0;
|
||
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
dst_ptr[id] = *src0_ptr;
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error"); // TODO: implement
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// dst counters
|
||
|
int64_t i10 = 0;
|
||
|
int64_t i11 = 0;
|
||
|
int64_t i12 = 0;
|
||
|
int64_t i13 = 0;
|
||
|
|
||
|
if (dst->type == GGML_TYPE_F16) {
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
i10 += ne00 * ir0;
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||
|
|
||
|
memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
|
||
|
|
||
|
if (++i10 == ne00) {
|
||
|
i10 = 0;
|
||
|
if (++i11 == ne01) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne02) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne03) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
i10 += ne00 * (ne01 - ir1);
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_F32) {
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
i10 += ne00 * ir0;
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||
|
|
||
|
*(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
|
||
|
|
||
|
if (++i10 == ne0) {
|
||
|
i10 = 0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
i10 += ne00 * (ne01 - ir1);
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error"); // TODO: implement
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_dup_bf16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
const int ith = params->ith; // thread index
|
||
|
const int nth = params->nth; // number of threads
|
||
|
|
||
|
// parallelize by rows
|
||
|
const int nr = ne01;
|
||
|
// number of rows per thread
|
||
|
const int dr = (nr + nth - 1) / nth;
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr * ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
if (src0->type == dst->type &&
|
||
|
ne00 == ne0 &&
|
||
|
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
|
||
|
// copy by rows
|
||
|
const size_t rs = ne00*nb00;
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
memcpy(
|
||
|
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
||
|
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
||
|
rs);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
|
||
|
|
||
|
if (ggml_is_contiguous(dst)) {
|
||
|
if (nb00 == sizeof(ggml_bf16_t)) {
|
||
|
if (dst->type == GGML_TYPE_BF16) {
|
||
|
size_t id = 0;
|
||
|
const size_t rs = ne00 * nb00;
|
||
|
char * dst_ptr = (char *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += rs * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
||
|
memcpy(dst_ptr + id, src0_ptr, rs);
|
||
|
id += rs;
|
||
|
}
|
||
|
id += rs * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_F16) {
|
||
|
size_t id = 0;
|
||
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_F32) {
|
||
|
size_t id = 0;
|
||
|
float * dst_ptr = (float *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (ggml_get_type_traits(dst->type)->from_float) {
|
||
|
ggml_from_float_t const quantize_row_q = ggml_get_type_traits(dst->type)->from_float;
|
||
|
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
||
|
|
||
|
size_t id = 0;
|
||
|
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
|
||
|
char * dst_ptr = (char *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += rs * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
|
||
|
}
|
||
|
|
||
|
quantize_row_q(src0_f32, dst_ptr + id, ne00);
|
||
|
id += rs;
|
||
|
}
|
||
|
id += rs * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error"); // TODO: implement
|
||
|
}
|
||
|
} else {
|
||
|
//printf("%s: this is not optimal - fix me\n", __func__);
|
||
|
|
||
|
if (dst->type == GGML_TYPE_F32) {
|
||
|
size_t id = 0;
|
||
|
float * dst_ptr = (float *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_BF16) {
|
||
|
size_t id = 0;
|
||
|
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
dst_ptr[id] = *src0_ptr;
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_F16) {
|
||
|
size_t id = 0;
|
||
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error"); // TODO: implement
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// dst counters
|
||
|
int64_t i10 = 0;
|
||
|
int64_t i11 = 0;
|
||
|
int64_t i12 = 0;
|
||
|
int64_t i13 = 0;
|
||
|
|
||
|
if (dst->type == GGML_TYPE_BF16) {
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
i10 += ne00 * ir0;
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||
|
|
||
|
memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
|
||
|
|
||
|
if (++i10 == ne00) {
|
||
|
i10 = 0;
|
||
|
if (++i11 == ne01) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne02) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne03) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
i10 += ne00 * (ne01 - ir1);
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_F16) {
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
i10 += ne00 * ir0;
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||
|
|
||
|
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
|
||
|
|
||
|
if (++i10 == ne0) {
|
||
|
i10 = 0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
i10 += ne00 * (ne01 - ir1);
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_F32) {
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
i10 += ne00 * ir0;
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||
|
|
||
|
*(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
|
||
|
|
||
|
if (++i10 == ne0) {
|
||
|
i10 = 0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
i10 += ne00 * (ne01 - ir1);
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error"); // TODO: implement
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_dup_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
const int ith = params->ith; // thread index
|
||
|
const int nth = params->nth; // number of threads
|
||
|
|
||
|
// parallelize by rows
|
||
|
const int nr = ne01;
|
||
|
// number of rows per thread
|
||
|
const int dr = (nr + nth - 1) / nth;
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr * ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
if (src0->type == dst->type &&
|
||
|
ne00 == ne0 &&
|
||
|
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
|
||
|
// copy by rows
|
||
|
const size_t rs = ne00*nb00;
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
memcpy(
|
||
|
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
||
|
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
||
|
rs);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (ggml_is_contiguous(dst)) {
|
||
|
// TODO: simplify
|
||
|
if (nb00 == sizeof(float)) {
|
||
|
if (dst->type == GGML_TYPE_F32) {
|
||
|
size_t id = 0;
|
||
|
const size_t rs = ne00 * nb00;
|
||
|
char * dst_ptr = (char *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += rs * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
||
|
memcpy(dst_ptr + id, src0_ptr, rs);
|
||
|
id += rs;
|
||
|
}
|
||
|
id += rs * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (ggml_get_type_traits(dst->type)->from_float) {
|
||
|
ggml_from_float_t const quantize_row_q = ggml_get_type_traits(dst->type)->from_float;
|
||
|
|
||
|
size_t id = 0;
|
||
|
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
|
||
|
char * dst_ptr = (char *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += rs * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
quantize_row_q(src0_ptr, dst_ptr + id, ne00);
|
||
|
id += rs;
|
||
|
}
|
||
|
id += rs * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error"); // TODO: implement
|
||
|
}
|
||
|
} else {
|
||
|
//printf("%s: this is not optimal - fix me\n", __func__);
|
||
|
|
||
|
if (dst->type == GGML_TYPE_F32) {
|
||
|
size_t id = 0;
|
||
|
float * dst_ptr = (float *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
dst_ptr[id] = *src0_ptr;
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_F16) {
|
||
|
size_t id = 0;
|
||
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_BF16) {
|
||
|
size_t id = 0;
|
||
|
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
|
||
|
|
||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||
|
id += ne00 * ir0;
|
||
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
|
||
|
id++;
|
||
|
}
|
||
|
}
|
||
|
id += ne00 * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error"); // TODO: implement
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// dst counters
|
||
|
|
||
|
int64_t i10 = 0;
|
||
|
int64_t i11 = 0;
|
||
|
int64_t i12 = 0;
|
||
|
int64_t i13 = 0;
|
||
|
|
||
|
if (dst->type == GGML_TYPE_F32) {
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
i10 += ne00 * ir0;
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||
|
|
||
|
memcpy(dst_ptr, src0_ptr, sizeof(float));
|
||
|
|
||
|
if (++i10 == ne0) {
|
||
|
i10 = 0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
i10 += ne00 * (ne01 - ir1);
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_F16) {
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
i10 += ne00 * ir0;
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||
|
|
||
|
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
|
||
|
|
||
|
if (++i10 == ne0) {
|
||
|
i10 = 0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
i10 += ne00 * (ne01 - ir1);
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else if (dst->type == GGML_TYPE_BF16) {
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
i10 += ne00 * ir0;
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||
|
|
||
|
*(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
|
||
|
|
||
|
if (++i10 == ne0) {
|
||
|
i10 = 0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
i10 += ne00 * (ne01 - ir1);
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error"); // TODO: implement
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
|
||
|
static void ggml_compute_forward_dup_bytes(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||
|
GGML_ASSERT(src0->type == dst->type);
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS;
|
||
|
|
||
|
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
|
||
|
ggml_compute_forward_dup_same_cont(params, dst);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const size_t type_size = ggml_type_size(src0->type);
|
||
|
const int ith = params->ith; // thread index
|
||
|
const int nth = params->nth; // number of threads
|
||
|
|
||
|
|
||
|
// parallelize by rows
|
||
|
const int nr = ne01;
|
||
|
// number of rows per thread
|
||
|
const int dr = (nr + nth - 1) / nth;
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr * ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
if (src0->type == dst->type &&
|
||
|
ne00 == ne0 &&
|
||
|
nb00 == type_size && nb0 == type_size) {
|
||
|
// copy by rows
|
||
|
const size_t rs = ne00 * type_size;
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
memcpy(
|
||
|
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
||
|
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
||
|
rs);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (ggml_is_contiguous(dst)) {
|
||
|
size_t id = 0;
|
||
|
char * dst_ptr = (char *) dst->data;
|
||
|
const size_t rs = ne00 * type_size;
|
||
|
|
||
|
if (nb00 == type_size) {
|
||
|
// src0 is contigous on first dimension, copy by rows
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
id += rs * ir0;
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
||
|
memcpy(dst_ptr + id, src0_ptr, rs);
|
||
|
id += rs;
|
||
|
}
|
||
|
id += rs * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
//printf("%s: this is not optimal - fix me\n", __func__);
|
||
|
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
id += rs * ir0;
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
|
||
|
memcpy(dst_ptr + id, src0_ptr, type_size);
|
||
|
|
||
|
id += type_size;
|
||
|
}
|
||
|
}
|
||
|
id += rs * (ne01 - ir1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// dst counters
|
||
|
|
||
|
int64_t i10 = 0;
|
||
|
int64_t i11 = 0;
|
||
|
int64_t i12 = 0;
|
||
|
int64_t i13 = 0;
|
||
|
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
i10 += ne00 * ir0;
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||
|
|
||
|
memcpy(dst_ptr, src0_ptr, type_size);
|
||
|
|
||
|
if (++i10 == ne0) {
|
||
|
i10 = 0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
i10 += ne00 * (ne01 - ir1);
|
||
|
while (i10 >= ne0) {
|
||
|
i10 -= ne0;
|
||
|
if (++i11 == ne1) {
|
||
|
i11 = 0;
|
||
|
if (++i12 == ne2) {
|
||
|
i12 = 0;
|
||
|
if (++i13 == ne3) {
|
||
|
i13 = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_dup(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (src0->type == dst->type) {
|
||
|
ggml_compute_forward_dup_bytes(params, dst);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
ggml_compute_forward_dup_f16(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
ggml_compute_forward_dup_bf16(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_dup_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_add
|
||
|
|
||
|
static void ggml_compute_forward_add_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
if (nb10 == sizeof(float)) {
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
||
|
const int64_t i03 = ir/(ne02*ne01);
|
||
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||
|
|
||
|
const int64_t i13 = i03 % ne13;
|
||
|
const int64_t i12 = i02 % ne12;
|
||
|
const int64_t i11 = i01 % ne11;
|
||
|
const int64_t nr0 = ne00 / ne10;
|
||
|
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||
|
|
||
|
for (int64_t r = 0; r < nr0; ++r) {
|
||
|
#ifdef GGML_USE_ACCELERATE
|
||
|
vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
|
||
|
#else
|
||
|
ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// src1 is not contiguous
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
||
|
const int64_t i03 = ir/(ne02*ne01);
|
||
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||
|
|
||
|
const int64_t i13 = i03 % ne13;
|
||
|
const int64_t i12 = i02 % ne12;
|
||
|
const int64_t i11 = i01 % ne11;
|
||
|
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||
|
|
||
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||
|
const int64_t i10 = i0 % ne10;
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
|
||
|
|
||
|
dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add_f16_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
|
||
|
if (dst->type == GGML_TYPE_F32) {
|
||
|
GGML_ASSERT( nb0 == sizeof(float));
|
||
|
}
|
||
|
else {
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
if (nb10 == sizeof(float)) {
|
||
|
if (dst->type == GGML_TYPE_F16) {
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0, src1 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
||
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
|
||
|
|
||
|
for (int i = 0; i < ne0; i++) {
|
||
|
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0, src1 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
||
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
|
||
|
|
||
|
for (int i = 0; i < ne0; i++) {
|
||
|
dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// src1 is not contiguous
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add_bf16_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
|
||
|
if (dst->type == GGML_TYPE_F32) {
|
||
|
GGML_ASSERT( nb0 == sizeof(float));
|
||
|
}
|
||
|
else {
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
|
||
|
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
if (nb10 == sizeof(float)) {
|
||
|
if (dst->type == GGML_TYPE_BF16) {
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0, src1 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
||
|
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
|
||
|
|
||
|
for (int i = 0; i < ne0; i++) {
|
||
|
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0, src1 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
||
|
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
|
||
|
|
||
|
for (int i = 0; i < ne0; i++) {
|
||
|
dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// src1 is not contiguous
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add_f16_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_F16);
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
if (nb10 == sizeof(ggml_fp16_t)) {
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0, src1 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
||
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||
|
ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
|
||
|
|
||
|
for (int i = 0; i < ne0; i++) {
|
||
|
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// src1 is not contiguous
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add_bf16_bf16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_BF16);
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
if (nb10 == sizeof(ggml_bf16_t)) {
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0, src1 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
||
|
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||
|
ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
|
||
|
|
||
|
for (int i = 0; i < ne0; i++) {
|
||
|
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// src1 is not contiguous
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add_q_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const enum ggml_type type = src0->type;
|
||
|
const enum ggml_type dtype = dst->type;
|
||
|
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
|
||
|
ggml_from_float_t const quantize_row_q = ggml_get_type_traits(dtype)->from_float;
|
||
|
|
||
|
// we don't support permuted src0 or src1
|
||
|
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||
|
GGML_ASSERT(nb10 == sizeof(float));
|
||
|
|
||
|
// dst cannot be transposed or permuted
|
||
|
GGML_ASSERT(nb0 <= nb1);
|
||
|
GGML_ASSERT(nb1 <= nb2);
|
||
|
GGML_ASSERT(nb2 <= nb3);
|
||
|
|
||
|
GGML_ASSERT(ggml_is_quantized(src0->type));
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0 indices
|
||
|
const int i03 = ir/(ne02*ne01);
|
||
|
const int i02 = (ir - i03*ne02*ne01)/ne01;
|
||
|
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||
|
|
||
|
// src1 and dst are same shape as src0 => same indices
|
||
|
const int i13 = i03;
|
||
|
const int i12 = i02;
|
||
|
const int i11 = i01;
|
||
|
|
||
|
const int i3 = i03;
|
||
|
const int i2 = i02;
|
||
|
const int i1 = i01;
|
||
|
|
||
|
void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
|
||
|
float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
|
||
|
void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
||
|
|
||
|
assert(ne00 % 32 == 0);
|
||
|
|
||
|
// unquantize row from src0 to temp buffer
|
||
|
dequantize_row_q(src0_row, wdata, ne00);
|
||
|
// add src1
|
||
|
ggml_vec_acc_f32(ne00, wdata, src1_row);
|
||
|
// quantize row to dst
|
||
|
if (quantize_row_q != NULL) {
|
||
|
quantize_row_q(wdata, dst_row, ne00);
|
||
|
} else {
|
||
|
memcpy(dst_row, wdata, ne0*nb0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
if (src1->type == GGML_TYPE_F32) {
|
||
|
ggml_compute_forward_add_f32(params, dst);
|
||
|
}
|
||
|
else {
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
if (src1->type == GGML_TYPE_F16) {
|
||
|
ggml_compute_forward_add_f16_f16(params, dst);
|
||
|
}
|
||
|
else if (src1->type == GGML_TYPE_F32) {
|
||
|
ggml_compute_forward_add_f16_f32(params, dst);
|
||
|
}
|
||
|
else {
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
if (src1->type == GGML_TYPE_BF16) {
|
||
|
ggml_compute_forward_add_bf16_bf16(params, dst);
|
||
|
}
|
||
|
else if (src1->type == GGML_TYPE_F32) {
|
||
|
ggml_compute_forward_add_bf16_f32(params, dst);
|
||
|
}
|
||
|
else {
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_Q4_0:
|
||
|
case GGML_TYPE_Q4_1:
|
||
|
case GGML_TYPE_Q5_0:
|
||
|
case GGML_TYPE_Q5_1:
|
||
|
case GGML_TYPE_Q8_0:
|
||
|
case GGML_TYPE_Q2_K:
|
||
|
case GGML_TYPE_Q3_K:
|
||
|
case GGML_TYPE_Q4_K:
|
||
|
case GGML_TYPE_Q5_K:
|
||
|
case GGML_TYPE_Q6_K:
|
||
|
case GGML_TYPE_TQ1_0:
|
||
|
case GGML_TYPE_TQ2_0:
|
||
|
case GGML_TYPE_IQ2_XXS:
|
||
|
case GGML_TYPE_IQ2_XS:
|
||
|
case GGML_TYPE_IQ3_XXS:
|
||
|
case GGML_TYPE_IQ1_S:
|
||
|
case GGML_TYPE_IQ1_M:
|
||
|
case GGML_TYPE_IQ4_NL:
|
||
|
case GGML_TYPE_IQ4_XS:
|
||
|
case GGML_TYPE_IQ3_S:
|
||
|
case GGML_TYPE_IQ2_S:
|
||
|
case GGML_TYPE_Q4_0_4_4:
|
||
|
case GGML_TYPE_Q4_0_4_8:
|
||
|
case GGML_TYPE_Q4_0_8_8:
|
||
|
{
|
||
|
ggml_compute_forward_add_q_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_add1
|
||
|
|
||
|
static void ggml_compute_forward_add1_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
GGML_ASSERT(ggml_is_scalar(src1));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
#ifdef GGML_USE_ACCELERATE
|
||
|
UNUSED(ggml_vec_add1_f32);
|
||
|
|
||
|
vDSP_vadd(
|
||
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
|
||
|
(float *) ((char *) src1->data), 0,
|
||
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
|
||
|
ne0);
|
||
|
#else
|
||
|
ggml_vec_add1_f32(ne0,
|
||
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
|
||
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
|
||
|
*(float *) src1->data);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add1_f16_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
GGML_ASSERT(ggml_is_scalar(src1));
|
||
|
|
||
|
// scalar to add
|
||
|
const float v = *(float *) src1->data;
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_F16);
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
||
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||
|
for (int i = 0; i < ne0; i++) {
|
||
|
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add1_f16_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
GGML_ASSERT(ggml_is_scalar(src1));
|
||
|
|
||
|
// scalar to add
|
||
|
const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_F16);
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
||
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||
|
for (int i = 0; i < ne0; i++) {
|
||
|
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add1_q_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
GGML_ASSERT(ggml_is_scalar(src1));
|
||
|
|
||
|
// scalar to add
|
||
|
const float v = *(float *) src1->data;
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
const enum ggml_type type = src0->type;
|
||
|
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
|
||
|
ggml_from_float_t const quantize_row_q = ggml_get_type_traits(type)->from_float;
|
||
|
|
||
|
// we don't support permuted src0
|
||
|
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||
|
|
||
|
// dst cannot be transposed or permuted
|
||
|
GGML_ASSERT(nb0 <= nb1);
|
||
|
GGML_ASSERT(nb1 <= nb2);
|
||
|
GGML_ASSERT(nb2 <= nb3);
|
||
|
|
||
|
GGML_ASSERT(ggml_is_quantized(src0->type));
|
||
|
GGML_ASSERT(dst->type == src0->type);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
|
||
|
void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
|
||
|
|
||
|
assert(ne0 % 32 == 0);
|
||
|
|
||
|
// unquantize row from src0 to temp buffer
|
||
|
dequantize_row_q(src0_row, wdata, ne0);
|
||
|
// add src1
|
||
|
ggml_vec_acc1_f32(ne0, wdata, v);
|
||
|
// quantize row to dst
|
||
|
quantize_row_q(wdata, dst_row, ne0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add1_bf16_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
GGML_ASSERT(ggml_is_scalar(src1));
|
||
|
|
||
|
// scalar to add
|
||
|
const float v = *(float *) src1->data;
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
||
|
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||
|
for (int i = 0; i < ne0; i++) {
|
||
|
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add1_bf16_bf16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
GGML_ASSERT(ggml_is_scalar(src1));
|
||
|
|
||
|
// scalar to add
|
||
|
const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_BF16);
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0 and dst are same shape => same indices
|
||
|
const int i3 = ir/(ne2*ne1);
|
||
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
||
|
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||
|
for (int i = 0; i < ne0; i++) {
|
||
|
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add1(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_add1_f32(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
if (src1->type == GGML_TYPE_F16) {
|
||
|
ggml_compute_forward_add1_f16_f16(params, dst);
|
||
|
}
|
||
|
else if (src1->type == GGML_TYPE_F32) {
|
||
|
ggml_compute_forward_add1_f16_f32(params, dst);
|
||
|
}
|
||
|
else {
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
if (src1->type == GGML_TYPE_BF16) {
|
||
|
ggml_compute_forward_add1_bf16_bf16(params, dst);
|
||
|
}
|
||
|
else if (src1->type == GGML_TYPE_F32) {
|
||
|
ggml_compute_forward_add1_bf16_f32(params, dst);
|
||
|
}
|
||
|
else {
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_TYPE_Q4_0:
|
||
|
case GGML_TYPE_Q4_1:
|
||
|
case GGML_TYPE_Q5_0:
|
||
|
case GGML_TYPE_Q5_1:
|
||
|
case GGML_TYPE_Q8_0:
|
||
|
case GGML_TYPE_Q8_1:
|
||
|
case GGML_TYPE_Q2_K:
|
||
|
case GGML_TYPE_Q3_K:
|
||
|
case GGML_TYPE_Q4_K:
|
||
|
case GGML_TYPE_Q5_K:
|
||
|
case GGML_TYPE_Q6_K:
|
||
|
case GGML_TYPE_TQ1_0:
|
||
|
case GGML_TYPE_TQ2_0:
|
||
|
case GGML_TYPE_IQ2_XXS:
|
||
|
case GGML_TYPE_IQ2_XS:
|
||
|
case GGML_TYPE_IQ3_XXS:
|
||
|
case GGML_TYPE_IQ1_S:
|
||
|
case GGML_TYPE_IQ1_M:
|
||
|
case GGML_TYPE_IQ4_NL:
|
||
|
case GGML_TYPE_IQ4_XS:
|
||
|
case GGML_TYPE_IQ3_S:
|
||
|
case GGML_TYPE_IQ2_S:
|
||
|
case GGML_TYPE_Q4_0_4_4:
|
||
|
case GGML_TYPE_Q4_0_4_8:
|
||
|
case GGML_TYPE_Q4_0_8_8:
|
||
|
{
|
||
|
ggml_compute_forward_add1_q_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_acc
|
||
|
|
||
|
static void ggml_compute_forward_acc_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
||
|
|
||
|
// view src0 and dst with these strides and data offset inbytes during acc
|
||
|
// nb0 is implicitly element_size because src0 and dst are contiguous
|
||
|
size_t nb1 = ((int32_t *) dst->op_params)[0];
|
||
|
size_t nb2 = ((int32_t *) dst->op_params)[1];
|
||
|
size_t nb3 = ((int32_t *) dst->op_params)[2];
|
||
|
size_t offset = ((int32_t *) dst->op_params)[3];
|
||
|
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
|
||
|
|
||
|
if (!inplace) {
|
||
|
if (params->ith == 0) {
|
||
|
// memcpy needs to be synchronized across threads to avoid race conditions.
|
||
|
// => do it in INIT phase
|
||
|
memcpy(
|
||
|
((char *) dst->data),
|
||
|
((char *) src0->data),
|
||
|
ggml_nbytes(dst));
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
}
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src1);
|
||
|
const int nc = src1->ne[0];
|
||
|
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
||
|
|
||
|
// src0 and dst as viewed during acc
|
||
|
const size_t nb0 = ggml_element_size(src0);
|
||
|
|
||
|
const size_t nb00 = nb0;
|
||
|
const size_t nb01 = nb1;
|
||
|
const size_t nb02 = nb2;
|
||
|
const size_t nb03 = nb3;
|
||
|
|
||
|
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
|
||
|
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
|
||
|
|
||
|
GGML_ASSERT(nb10 == sizeof(float));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0 and dst are viewed with shape of src1 and offset
|
||
|
// => same indices
|
||
|
const int i3 = ir/(ne12*ne11);
|
||
|
const int i2 = (ir - i3*ne12*ne11)/ne11;
|
||
|
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
|
||
|
|
||
|
#ifdef GGML_USE_ACCELERATE
|
||
|
vDSP_vadd(
|
||
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
|
||
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
|
||
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
|
||
|
#else
|
||
|
ggml_vec_add_f32(nc,
|
||
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
|
||
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
|
||
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_acc(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_acc_f32(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
case GGML_TYPE_BF16:
|
||
|
case GGML_TYPE_Q4_0:
|
||
|
case GGML_TYPE_Q4_1:
|
||
|
case GGML_TYPE_Q5_0:
|
||
|
case GGML_TYPE_Q5_1:
|
||
|
case GGML_TYPE_Q8_0:
|
||
|
case GGML_TYPE_Q8_1:
|
||
|
case GGML_TYPE_Q2_K:
|
||
|
case GGML_TYPE_Q3_K:
|
||
|
case GGML_TYPE_Q4_K:
|
||
|
case GGML_TYPE_Q5_K:
|
||
|
case GGML_TYPE_Q6_K:
|
||
|
case GGML_TYPE_TQ1_0:
|
||
|
case GGML_TYPE_TQ2_0:
|
||
|
case GGML_TYPE_IQ2_XXS:
|
||
|
case GGML_TYPE_IQ2_XS:
|
||
|
case GGML_TYPE_IQ3_XXS:
|
||
|
case GGML_TYPE_IQ1_S:
|
||
|
case GGML_TYPE_IQ1_M:
|
||
|
case GGML_TYPE_IQ4_NL:
|
||
|
case GGML_TYPE_IQ4_XS:
|
||
|
case GGML_TYPE_IQ3_S:
|
||
|
case GGML_TYPE_IQ2_S:
|
||
|
case GGML_TYPE_Q4_0_4_4:
|
||
|
case GGML_TYPE_Q4_0_4_8:
|
||
|
case GGML_TYPE_Q4_0_8_8:
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_sub
|
||
|
|
||
|
static void ggml_compute_forward_sub_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
assert(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
if (nb10 == sizeof(float)) {
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
||
|
const int64_t i03 = ir/(ne02*ne01);
|
||
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||
|
|
||
|
const int64_t i13 = i03 % ne13;
|
||
|
const int64_t i12 = i02 % ne12;
|
||
|
const int64_t i11 = i01 % ne11;
|
||
|
const int64_t nr0 = ne00 / ne10;
|
||
|
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||
|
|
||
|
for (int64_t r = 0; r < nr0; ++r) {
|
||
|
#ifdef GGML_USE_ACCELERATE
|
||
|
vDSP_vsub(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
|
||
|
#else
|
||
|
ggml_vec_sub_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// src1 is not contiguous
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
||
|
const int64_t i03 = ir/(ne02*ne01);
|
||
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||
|
|
||
|
const int64_t i13 = i03 % ne13;
|
||
|
const int64_t i12 = i02 % ne12;
|
||
|
const int64_t i11 = i01 % ne11;
|
||
|
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||
|
|
||
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||
|
const int64_t i10 = i0 % ne10;
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
|
||
|
|
||
|
dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_sub(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_sub_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_mul
|
||
|
|
||
|
static void ggml_compute_forward_mul_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int64_t nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
if (nb10 == sizeof(float)) {
|
||
|
for (int64_t ir = ith; ir < nr; ir += nth) {
|
||
|
// src0 and dst are same shape => same indices
|
||
|
const int64_t i03 = ir/(ne02*ne01);
|
||
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||
|
|
||
|
const int64_t i13 = i03 % ne13;
|
||
|
const int64_t i12 = i02 % ne12;
|
||
|
const int64_t i11 = i01 % ne11;
|
||
|
const int64_t nr0 = ne00 / ne10;
|
||
|
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||
|
|
||
|
for (int64_t r = 0 ; r < nr0; ++r) {
|
||
|
#ifdef GGML_USE_ACCELERATE
|
||
|
UNUSED(ggml_vec_mul_f32);
|
||
|
|
||
|
vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
|
||
|
#else
|
||
|
ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// src1 is not contiguous
|
||
|
for (int64_t ir = ith; ir < nr; ir += nth) {
|
||
|
// src0 and dst are same shape => same indices
|
||
|
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
||
|
const int64_t i03 = ir/(ne02*ne01);
|
||
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||
|
|
||
|
const int64_t i13 = i03 % ne13;
|
||
|
const int64_t i12 = i02 % ne12;
|
||
|
const int64_t i11 = i01 % ne11;
|
||
|
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||
|
|
||
|
for (int64_t i0 = 0; i0 < ne00; ++i0) {
|
||
|
const int64_t i10 = i0 % ne10;
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
|
||
|
|
||
|
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_mul(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_mul_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_div
|
||
|
|
||
|
static void ggml_compute_forward_div_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int64_t nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
if (nb10 == sizeof(float)) {
|
||
|
for (int64_t ir = ith; ir < nr; ir += nth) {
|
||
|
// src0 and dst are same shape => same indices
|
||
|
const int64_t i03 = ir/(ne02*ne01);
|
||
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||
|
|
||
|
const int64_t i13 = i03 % ne13;
|
||
|
const int64_t i12 = i02 % ne12;
|
||
|
const int64_t i11 = i01 % ne11;
|
||
|
const int64_t nr0 = ne00 / ne10;
|
||
|
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||
|
|
||
|
for (int64_t r = 0; r < nr0; ++r) {
|
||
|
#ifdef GGML_USE_ACCELERATE
|
||
|
UNUSED(ggml_vec_div_f32);
|
||
|
|
||
|
vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
|
||
|
#else
|
||
|
ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// src1 is not contiguous
|
||
|
for (int64_t ir = ith; ir < nr; ir += nth) {
|
||
|
// src0 and dst are same shape => same indices
|
||
|
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
||
|
const int64_t i03 = ir/(ne02*ne01);
|
||
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||
|
|
||
|
const int64_t i13 = i03 % ne13;
|
||
|
const int64_t i12 = i02 % ne12;
|
||
|
const int64_t i11 = i01 % ne11;
|
||
|
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||
|
|
||
|
for (int64_t i0 = 0; i0 < ne00; ++i0) {
|
||
|
const int64_t i10 = i0 % ne10;
|
||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
|
||
|
|
||
|
dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_div(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_div_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_sqr
|
||
|
|
||
|
static void ggml_compute_forward_sqr_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
assert( dst->nb[0] == sizeof(float));
|
||
|
assert(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_sqr_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_sqr(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_sqr_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_sqrt
|
||
|
|
||
|
static void ggml_compute_forward_sqrt_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
assert( dst->nb[0] == sizeof(float));
|
||
|
assert(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_sqrt_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_sqrt(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_sqrt_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_log
|
||
|
|
||
|
static void ggml_compute_forward_log_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_log_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_log(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_log_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_sin
|
||
|
|
||
|
static void ggml_compute_forward_sin_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_sin_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_sin(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_sin_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_cos
|
||
|
|
||
|
static void ggml_compute_forward_cos_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_cos_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_cos(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_cos_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_sum
|
||
|
|
||
|
static void ggml_compute_forward_sum_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_scalar(dst));
|
||
|
assert(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
|
||
|
|
||
|
ggml_float sum = 0;
|
||
|
ggml_float row_sum = 0;
|
||
|
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||
|
ggml_vec_sum_f32_ggf(ne00,
|
||
|
&row_sum,
|
||
|
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
|
||
|
sum += row_sum;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
((float *) dst->data)[0] = sum;
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_sum_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_scalar(dst));
|
||
|
|
||
|
assert(src0->nb[0] == sizeof(ggml_fp16_t));
|
||
|
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
|
||
|
|
||
|
float sum = 0;
|
||
|
float row_sum = 0;
|
||
|
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||
|
ggml_vec_sum_f16_ggf(ne00,
|
||
|
&row_sum,
|
||
|
(ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
|
||
|
sum += row_sum;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_sum_bf16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_scalar(dst));
|
||
|
|
||
|
assert(src0->nb[0] == sizeof(ggml_bf16_t));
|
||
|
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
|
||
|
|
||
|
float sum = 0;
|
||
|
float row_sum = 0;
|
||
|
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||
|
ggml_vec_sum_bf16_ggf(ne00,
|
||
|
&row_sum,
|
||
|
(ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
|
||
|
sum += row_sum;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_sum(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_sum_f32(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
ggml_compute_forward_sum_f16(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
ggml_compute_forward_sum_bf16(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_sum_rows
|
||
|
|
||
|
static void ggml_compute_forward_sum_rows_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(dst->nb[0] == sizeof(float));
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(ne0 == 1);
|
||
|
GGML_ASSERT(ne1 == ne01);
|
||
|
GGML_ASSERT(ne2 == ne02);
|
||
|
GGML_ASSERT(ne3 == ne03);
|
||
|
|
||
|
for (int64_t i3 = 0; i3 < ne03; i3++) {
|
||
|
for (int64_t i2 = 0; i2 < ne02; i2++) {
|
||
|
for (int64_t i1 = 0; i1 < ne01; i1++) {
|
||
|
float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
|
||
|
float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
|
||
|
float row_sum = 0;
|
||
|
ggml_vec_sum_f32(ne00, &row_sum, src_row);
|
||
|
dst_row[0] = row_sum;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_sum_rows(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_sum_rows_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_mean
|
||
|
|
||
|
static void ggml_compute_forward_mean_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
assert(ne0 == 1);
|
||
|
assert(ne1 == ne01);
|
||
|
assert(ne2 == ne02);
|
||
|
assert(ne3 == ne03);
|
||
|
|
||
|
UNUSED(ne0);
|
||
|
UNUSED(ne1);
|
||
|
UNUSED(ne2);
|
||
|
UNUSED(ne3);
|
||
|
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||
|
ggml_vec_sum_f32(ne00,
|
||
|
(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
||
|
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
|
||
|
|
||
|
*(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_mean(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_mean_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_argmax
|
||
|
|
||
|
static void ggml_compute_forward_argmax_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(src0->nb[0] == sizeof(float));
|
||
|
assert(dst->nb[0] == sizeof(float));
|
||
|
|
||
|
const int64_t ne00 = src0->ne[0];
|
||
|
const int64_t ne01 = src0->ne[1];
|
||
|
|
||
|
const size_t nb01 = src0->nb[1];
|
||
|
const size_t nb0 = dst->nb[0];
|
||
|
|
||
|
for (int64_t i1 = 0; i1 < ne01; i1++) {
|
||
|
float * src = (float *) ((char *) src0->data + i1*nb01);
|
||
|
int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
|
||
|
int v = 0;
|
||
|
ggml_vec_argmax_f32(ne00, &v, src);
|
||
|
dst_[0] = v;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_argmax(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_argmax_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_count_equal
|
||
|
|
||
|
static void ggml_compute_forward_count_equal_i32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_I32);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
||
|
GGML_ASSERT(ggml_is_scalar(dst));
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_I64);
|
||
|
|
||
|
const int64_t nr = ggml_nrows(src0);
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
int64_t * sums = (int64_t *) params->wdata;
|
||
|
int64_t sum_thread = 0;
|
||
|
|
||
|
// rows per thread
|
||
|
const int64_t dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int64_t ir0 = dr*ith;
|
||
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
||
|
const int64_t i03 = ir / (ne02*ne01);
|
||
|
const int64_t i02 = (ir - i03*ne03) / ne01;
|
||
|
const int64_t i01 = ir - i03*ne03 - i02*ne02;
|
||
|
|
||
|
const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
|
||
|
const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
|
||
|
|
||
|
for (int64_t i00 = 0; i00 < ne00; ++i00) {
|
||
|
const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
|
||
|
const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
|
||
|
|
||
|
sum_thread += val0 == val1;
|
||
|
}
|
||
|
}
|
||
|
if (ith != 0) {
|
||
|
sums[ith] = sum_thread;
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
|
||
|
if (ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (int ith_other = 1; ith_other < nth; ++ith_other) {
|
||
|
sum_thread += sums[ith_other];
|
||
|
}
|
||
|
*((int64_t *) dst->data) = sum_thread;
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_count_equal(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
ggml_compute_forward_count_equal_i32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_repeat
|
||
|
|
||
|
static void ggml_compute_forward_repeat_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(ggml_can_repeat(src0, dst));
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
// guaranteed to be an integer due to the check in ggml_can_repeat
|
||
|
const int nr0 = (int)(ne0/ne00);
|
||
|
const int nr1 = (int)(ne1/ne01);
|
||
|
const int nr2 = (int)(ne2/ne02);
|
||
|
const int nr3 = (int)(ne3/ne03);
|
||
|
|
||
|
// TODO: support for transposed / permuted tensors
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
// TODO: maybe this is not optimal?
|
||
|
for (int i3 = 0; i3 < nr3; i3++) {
|
||
|
for (int k3 = 0; k3 < ne03; k3++) {
|
||
|
for (int i2 = 0; i2 < nr2; i2++) {
|
||
|
for (int k2 = 0; k2 < ne02; k2++) {
|
||
|
for (int i1 = 0; i1 < nr1; i1++) {
|
||
|
for (int k1 = 0; k1 < ne01; k1++) {
|
||
|
for (int i0 = 0; i0 < nr0; i0++) {
|
||
|
ggml_vec_cpy_f32(ne00,
|
||
|
(float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
|
||
|
(float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_repeat_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(ggml_can_repeat(src0, dst));
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
// guaranteed to be an integer due to the check in ggml_can_repeat
|
||
|
const int nr0 = (int)(ne0/ne00);
|
||
|
const int nr1 = (int)(ne1/ne01);
|
||
|
const int nr2 = (int)(ne2/ne02);
|
||
|
const int nr3 = (int)(ne3/ne03);
|
||
|
|
||
|
// TODO: support for transposed / permuted tensors
|
||
|
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||
|
|
||
|
// TODO: maybe this is not optimal?
|
||
|
for (int i3 = 0; i3 < nr3; i3++) {
|
||
|
for (int k3 = 0; k3 < ne03; k3++) {
|
||
|
for (int i2 = 0; i2 < nr2; i2++) {
|
||
|
for (int k2 = 0; k2 < ne02; k2++) {
|
||
|
for (int i1 = 0; i1 < nr1; i1++) {
|
||
|
for (int k1 = 0; k1 < ne01; k1++) {
|
||
|
for (int i0 = 0; i0 < nr0; i0++) {
|
||
|
ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
|
||
|
ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
|
||
|
// ggml_vec_cpy_f16(ne00, y, x)
|
||
|
for (int i = 0; i < ne00; ++i) {
|
||
|
y[i] = x[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_repeat(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F16:
|
||
|
case GGML_TYPE_BF16:
|
||
|
case GGML_TYPE_I16:
|
||
|
{
|
||
|
ggml_compute_forward_repeat_f16(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
ggml_compute_forward_repeat_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_repeat_back
|
||
|
|
||
|
static void ggml_compute_forward_repeat_back_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(ggml_can_repeat(dst, src0));
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
// guaranteed to be an integer due to the check in ggml_can_repeat
|
||
|
const int nr0 = (int)(ne00/ne0);
|
||
|
const int nr1 = (int)(ne01/ne1);
|
||
|
const int nr2 = (int)(ne02/ne2);
|
||
|
const int nr3 = (int)(ne03/ne3);
|
||
|
|
||
|
// TODO: support for transposed / permuted tensors
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
if (ggml_is_contiguous(dst)) {
|
||
|
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
|
||
|
} else {
|
||
|
for (int k3 = 0; k3 < ne3; k3++) {
|
||
|
for (int k2 = 0; k2 < ne2; k2++) {
|
||
|
for (int k1 = 0; k1 < ne1; k1++) {
|
||
|
ggml_vec_set_f32(ne0,
|
||
|
(float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
|
||
|
0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// TODO: maybe this is not optimal?
|
||
|
for (int i3 = 0; i3 < nr3; i3++) {
|
||
|
for (int k3 = 0; k3 < ne3; k3++) {
|
||
|
for (int i2 = 0; i2 < nr2; i2++) {
|
||
|
for (int k2 = 0; k2 < ne2; k2++) {
|
||
|
for (int i1 = 0; i1 < nr1; i1++) {
|
||
|
for (int k1 = 0; k1 < ne1; k1++) {
|
||
|
for (int i0 = 0; i0 < nr0; i0++) {
|
||
|
ggml_vec_acc_f32(ne0,
|
||
|
(float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
|
||
|
(float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_repeat_back(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_repeat_back_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_concat
|
||
|
|
||
|
static void ggml_compute_forward_concat_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int32_t dim = ggml_get_op_params_i32(dst, 0);
|
||
|
|
||
|
GGML_ASSERT(dim >= 0 && dim < 4);
|
||
|
|
||
|
int64_t o[4] = {0, 0, 0, 0};
|
||
|
o[dim] = src0->ne[dim];
|
||
|
|
||
|
const float * x;
|
||
|
|
||
|
// TODO: smarter multi-theading
|
||
|
for (int i3 = 0; i3 < ne3; i3++) {
|
||
|
for (int i2 = ith; i2 < ne2; i2 += nth) {
|
||
|
for (int i1 = 0; i1 < ne1; i1++) {
|
||
|
for (int i0 = 0; i0 < ne0; i0++) {
|
||
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||
|
x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
|
||
|
} else {
|
||
|
x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
|
||
|
}
|
||
|
|
||
|
float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
||
|
|
||
|
*y = *x;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_concat(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
ggml_compute_forward_concat_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_abs
|
||
|
|
||
|
static void ggml_compute_forward_abs_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_abs_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_abs(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_abs_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_sgn
|
||
|
|
||
|
static void ggml_compute_forward_sgn_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_sgn_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_sgn(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_sgn_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_neg
|
||
|
|
||
|
static void ggml_compute_forward_neg_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_neg_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_neg(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_neg_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_step
|
||
|
|
||
|
static void ggml_compute_forward_step_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_step_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_step(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_step_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_tanh
|
||
|
|
||
|
static void ggml_compute_forward_tanh_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_tanh_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_tanh(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_tanh_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_elu
|
||
|
|
||
|
static void ggml_compute_forward_elu_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_elu_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_elu(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_elu_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_relu
|
||
|
|
||
|
static void ggml_compute_forward_relu_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_relu_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_relu(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_relu_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_sigmoid
|
||
|
|
||
|
static void ggml_compute_forward_sigmoid_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_sigmoid_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_sigmoid(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_sigmoid_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_gelu
|
||
|
|
||
|
static void ggml_compute_forward_gelu_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nc = src0->ne[0];
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
||
|
ggml_vec_gelu_f32(nc,
|
||
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i1*(src0->nb[1])));
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int k = 0; k < nc; k++) {
|
||
|
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||
|
UNUSED(x);
|
||
|
assert(!isnan(x));
|
||
|
assert(!isinf(x));
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_gelu(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_gelu_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_gelu_quick
|
||
|
|
||
|
static void ggml_compute_forward_gelu_quick_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nc = src0->ne[0];
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
||
|
ggml_vec_gelu_quick_f32(nc,
|
||
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i1*(src0->nb[1])));
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int k = 0; k < nc; k++) {
|
||
|
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||
|
UNUSED(x);
|
||
|
assert(!isnan(x));
|
||
|
assert(!isinf(x));
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_gelu_quick(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_gelu_quick_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_silu
|
||
|
|
||
|
static void ggml_compute_forward_silu_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nc = src0->ne[0];
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
||
|
ggml_vec_silu_f32(nc,
|
||
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i1*(src0->nb[1])));
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int k = 0; k < nc; k++) {
|
||
|
const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
|
||
|
UNUSED(x);
|
||
|
assert(!isnan(x));
|
||
|
assert(!isinf(x));
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_silu(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_silu_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// ggml_compute_forward_leaky_relu
|
||
|
|
||
|
static void ggml_compute_forward_leaky_relu_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
float negative_slope;
|
||
|
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
||
|
|
||
|
assert(dst->nb[0] == sizeof(float));
|
||
|
assert(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_leaky_relu_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_leaky_relu(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_leaky_relu_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_silu_back
|
||
|
|
||
|
static void ggml_compute_forward_silu_back_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * grad = dst->src[1];
|
||
|
|
||
|
assert(ggml_is_contiguous_1(grad));
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
assert(ggml_are_same_shape(src0, grad));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nc = src0->ne[0];
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
||
|
ggml_vec_silu_backward_f32(nc,
|
||
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i1*(src0->nb[1])),
|
||
|
(float *) ((char *) grad->data + i1*(grad->nb[1])));
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int k = 0; k < nc; k++) {
|
||
|
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||
|
UNUSED(x);
|
||
|
assert(!isnan(x));
|
||
|
assert(!isinf(x));
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_silu_back(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_silu_back_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static void ggml_compute_forward_hardswish_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_hardswish_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
static void ggml_compute_forward_hardswish(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_hardswish_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_hardsigmoid_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_hardsigmoid_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_hardsigmoid(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_hardsigmoid_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_exp_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
ggml_vec_exp_f32(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_exp(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_exp_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// ggml_compute_forward_norm
|
||
|
|
||
|
static void ggml_compute_forward_norm_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
float eps;
|
||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||
|
|
||
|
GGML_ASSERT(eps > 0.0f);
|
||
|
|
||
|
// TODO: optimize
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
||
|
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
ggml_float sum = 0.0;
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
sum += (ggml_float)x[i00];
|
||
|
}
|
||
|
|
||
|
float mean = sum/ne00;
|
||
|
|
||
|
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
||
|
|
||
|
ggml_float sum2 = 0.0;
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
float v = x[i00] - mean;
|
||
|
y[i00] = v;
|
||
|
sum2 += (ggml_float)(v*v);
|
||
|
}
|
||
|
|
||
|
float variance = sum2/ne00;
|
||
|
const float scale = 1.0f/sqrtf(variance + eps);
|
||
|
|
||
|
ggml_vec_scale_f32(ne00, y, scale);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_norm(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_norm_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_group_rms_norm
|
||
|
|
||
|
static void ggml_compute_forward_rms_norm_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
float eps;
|
||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||
|
|
||
|
GGML_ASSERT(eps > 0.0f);
|
||
|
|
||
|
// TODO: optimize
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
||
|
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
|
||
|
ggml_float sum = 0.0;
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
sum += (ggml_float)(x[i00] * x[i00]);
|
||
|
}
|
||
|
|
||
|
const float mean = sum/ne00;
|
||
|
|
||
|
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
||
|
|
||
|
memcpy(y, x, ne00 * sizeof(float));
|
||
|
// for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
// y[i00] = x[i00];
|
||
|
// }
|
||
|
|
||
|
const float scale = 1.0f/sqrtf(mean + eps);
|
||
|
|
||
|
ggml_vec_scale_f32(ne00, y, scale);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_rms_norm(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_rms_norm_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_rms_norm_back_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
|
||
|
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
float eps;
|
||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||
|
|
||
|
// TODO: optimize
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
||
|
// src1 is same shape as src0 => same indices
|
||
|
const int64_t i11 = i01;
|
||
|
const int64_t i12 = i02;
|
||
|
const int64_t i13 = i03;
|
||
|
|
||
|
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
|
||
|
|
||
|
ggml_float sum_xx = 0.0;
|
||
|
ggml_float sum_xdz = 0.0;
|
||
|
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
sum_xx += (ggml_float)(x[i00] * x[i00]);
|
||
|
sum_xdz += (ggml_float)(x[i00] * dz[i00]);
|
||
|
}
|
||
|
|
||
|
//const float mean = (float)(sum_xx)/ne00;
|
||
|
const float mean_eps = (float)(sum_xx)/ne00 + eps;
|
||
|
const float sum_eps = (float)(sum_xx) + eps*ne00;
|
||
|
//const float mean_xdz = (float)(sum_xdz)/ne00;
|
||
|
// we could cache rms from forward pass to improve performance.
|
||
|
// to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
|
||
|
//const float rms = sqrtf(mean_eps);
|
||
|
const float rrms = 1.0f / sqrtf(mean_eps);
|
||
|
//const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
|
||
|
|
||
|
{
|
||
|
// z = rms_norm(x)
|
||
|
//
|
||
|
// rms_norm(src0) =
|
||
|
// scale(
|
||
|
// src0,
|
||
|
// div(
|
||
|
// 1,
|
||
|
// sqrt(
|
||
|
// add(
|
||
|
// scale(
|
||
|
// sum(
|
||
|
// sqr(
|
||
|
// src0)),
|
||
|
// (1.0/N)),
|
||
|
// eps))));
|
||
|
|
||
|
// postorder:
|
||
|
// ## op args grad
|
||
|
// 00 param src0 grad[#00]
|
||
|
// 01 const 1
|
||
|
// 02 sqr (#00) grad[#02]
|
||
|
// 03 sum (#02) grad[#03]
|
||
|
// 04 const 1/N
|
||
|
// 05 scale (#03, #04) grad[#05]
|
||
|
// 06 const eps
|
||
|
// 07 add (#05, #06) grad[#07]
|
||
|
// 08 sqrt (#07) grad[#08]
|
||
|
// 09 div (#01,#08) grad[#09]
|
||
|
// 10 scale (#00,#09) grad[#10]
|
||
|
//
|
||
|
// backward pass, given grad[#10]
|
||
|
// #10: scale
|
||
|
// grad[#00] += scale(grad[#10],#09)
|
||
|
// grad[#09] += sum(mul(grad[#10],#00))
|
||
|
// #09: div
|
||
|
// grad[#08] += neg(mul(grad[#09], div(#09,#08)))
|
||
|
// #08: sqrt
|
||
|
// grad[#07] += mul(grad[#08], div(0.5, #08))
|
||
|
// #07: add
|
||
|
// grad[#05] += grad[#07]
|
||
|
// #05: scale
|
||
|
// grad[#03] += scale(grad[#05],#04)
|
||
|
// #03: sum
|
||
|
// grad[#02] += repeat(grad[#03], #02)
|
||
|
// #02:
|
||
|
// grad[#00] += scale(mul(#00, grad[#02]), 2.0)
|
||
|
//
|
||
|
// substitute and simplify:
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
|
||
|
// grad[#02] = repeat(grad[#03], #02)
|
||
|
// grad[#02] = repeat(scale(grad[#05],#04), #02)
|
||
|
// grad[#02] = repeat(scale(grad[#07],#04), #02)
|
||
|
// grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
|
||
|
// grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
|
||
|
// grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
|
||
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
|
||
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
|
||
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
|
||
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
|
||
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
|
||
|
// grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
|
||
|
// grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
|
||
|
// a = b*c + d*e
|
||
|
// a = b*c*f/f + d*e*f/f
|
||
|
// a = (b*c*f + d*e*f)*(1/f)
|
||
|
// a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
|
||
|
// a = (b + d*e/c)*c
|
||
|
// b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
|
||
|
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
|
||
|
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
|
||
|
// a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
|
||
|
// a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
|
||
|
// a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
|
||
|
// a = (dz + x*div(-mean_xdz,mean_eps))*rrms
|
||
|
// grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
|
||
|
// grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
|
||
|
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
|
||
|
}
|
||
|
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
|
||
|
// post-order:
|
||
|
// dx := x
|
||
|
// dx := scale(dx,-mean_xdz/mean_eps)
|
||
|
// dx := add(dx, dz)
|
||
|
// dx := scale(dx, rrms)
|
||
|
float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
||
|
|
||
|
ggml_vec_cpy_f32 (ne00, dx, x);
|
||
|
// ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
|
||
|
ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
|
||
|
ggml_vec_acc_f32 (ne00, dx, dz);
|
||
|
ggml_vec_scale_f32(ne00, dx, rrms);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_rms_norm_back(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_rms_norm_back_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_group_norm
|
||
|
|
||
|
static void ggml_compute_forward_group_norm_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
// TODO: optimize
|
||
|
|
||
|
float eps;
|
||
|
memcpy(&eps, dst->op_params + 1, sizeof(float));
|
||
|
|
||
|
int n_channels = src0->ne[2];
|
||
|
int n_groups = dst->op_params[0];
|
||
|
int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
|
||
|
for (int i = ith; i < n_groups; i += nth) {
|
||
|
int start = i * n_channels_per_group;
|
||
|
int end = start + n_channels_per_group;
|
||
|
if (end > n_channels) {
|
||
|
end = n_channels;
|
||
|
}
|
||
|
int step = end - start;
|
||
|
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
ggml_float sum = 0.0;
|
||
|
for (int64_t i02 = start; i02 < end; i02++) {
|
||
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||
|
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
|
||
|
|
||
|
ggml_float sumr = 0.0;
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
sumr += (ggml_float)x[i00];
|
||
|
}
|
||
|
sum += sumr;
|
||
|
}
|
||
|
}
|
||
|
const float mean = sum / (ne00 * ne01 * step);
|
||
|
|
||
|
ggml_float sum2 = 0.0;
|
||
|
for (int64_t i02 = start; i02 < end; i02++) {
|
||
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||
|
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
|
||
|
|
||
|
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
|
||
|
|
||
|
ggml_float sumr = 0.0;
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
float v = x[i00] - mean;
|
||
|
y[i00] = v;
|
||
|
sumr += (ggml_float)(v * v);
|
||
|
}
|
||
|
sum2 += sumr;
|
||
|
}
|
||
|
}
|
||
|
const float variance = sum2 / (ne00 * ne01 * step);
|
||
|
const float scale = 1.0f / sqrtf(variance + eps);
|
||
|
|
||
|
for (int64_t i02 = start; i02 < end; i02++) {
|
||
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||
|
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
|
||
|
ggml_vec_scale_f32(ne00, y, scale);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_group_norm(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_group_norm_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_mul_mat
|
||
|
|
||
|
static void ggml_compute_forward_mul_mat_one_chunk(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const int64_t num_rows_per_vec_dot,
|
||
|
const int64_t ir0_start,
|
||
|
const int64_t ir0_end,
|
||
|
const int64_t ir1_start,
|
||
|
const int64_t ir1_end) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const enum ggml_type type = src0->type;
|
||
|
|
||
|
const bool src1_cont = ggml_is_contiguous(src1);
|
||
|
|
||
|
ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
|
||
|
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
|
||
|
|
||
|
// broadcast factors
|
||
|
const int64_t r2 = ne12 / ne02;
|
||
|
const int64_t r3 = ne13 / ne03;
|
||
|
|
||
|
//printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
|
||
|
|
||
|
// threads with no work simply yield (not sure if it helps)
|
||
|
if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||
|
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||
|
|
||
|
assert(ne12 % ne02 == 0);
|
||
|
assert(ne13 % ne03 == 0);
|
||
|
|
||
|
// block-tiling attempt
|
||
|
const int64_t blck_0 = 16;
|
||
|
const int64_t blck_1 = 16;
|
||
|
|
||
|
const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
|
||
|
|
||
|
// attempt to reduce false-sharing (does not seem to make a difference)
|
||
|
// 16 * 2, accounting for mmla kernels
|
||
|
float tmp[32];
|
||
|
|
||
|
for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
|
||
|
for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
|
||
|
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
|
||
|
const int64_t i13 = (ir1 / (ne12 * ne1));
|
||
|
const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
|
||
|
const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
|
||
|
|
||
|
// broadcast src0 into src1
|
||
|
const int64_t i03 = i13 / r3;
|
||
|
const int64_t i02 = i12 / r2;
|
||
|
|
||
|
const int64_t i1 = i11;
|
||
|
const int64_t i2 = i12;
|
||
|
const int64_t i3 = i13;
|
||
|
|
||
|
const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
|
||
|
|
||
|
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
|
||
|
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
|
||
|
// the original src1 data pointer, so we should index using the indices directly
|
||
|
// TODO: this is a bit of a hack, we should probably have a better way to handle this
|
||
|
const char * src1_col = (const char*)wdata +
|
||
|
(src1_cont || src1->type != vec_dot_type
|
||
|
? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
|
||
|
: (i11 * nb11 + i12 * nb12 + i13 * nb13));
|
||
|
float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
|
||
|
|
||
|
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
|
||
|
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
|
||
|
//}
|
||
|
|
||
|
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
|
||
|
vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
|
||
|
}
|
||
|
|
||
|
for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
|
||
|
memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_mul_mat(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const enum ggml_type type = src0->type;
|
||
|
|
||
|
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
|
||
|
ggml_from_float_t const from_float = ggml_get_type_traits(vec_dot_type)->from_float;
|
||
|
ggml_from_float_to_mat_t const from_float_to_mat = type_traits_cpu[vec_dot_type].from_float_to_mat;
|
||
|
int64_t const vec_dot_num_rows = type_traits_cpu[type].nrows;
|
||
|
int64_t const matmul_num_cols = type_traits_cpu[type].ncols;
|
||
|
int64_t const blck_size_interleave = ggml_get_type_traits(type)->blck_size_interleave;
|
||
|
ggml_gemv_t const gemv = type_traits_cpu[type].gemv;
|
||
|
ggml_gemm_t const gemm = type_traits_cpu[type].gemm;
|
||
|
|
||
|
GGML_ASSERT(ne0 == ne01);
|
||
|
GGML_ASSERT(ne1 == ne11);
|
||
|
GGML_ASSERT(ne2 == ne12);
|
||
|
GGML_ASSERT(ne3 == ne13);
|
||
|
|
||
|
// we don't support permuted src0 or src1
|
||
|
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||
|
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
||
|
|
||
|
// dst cannot be transposed or permuted
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb0 <= nb1);
|
||
|
GGML_ASSERT(nb1 <= nb2);
|
||
|
GGML_ASSERT(nb2 <= nb3);
|
||
|
|
||
|
// nb01 >= nb00 - src0 is not transposed
|
||
|
// compute by src0 rows
|
||
|
|
||
|
#if GGML_USE_LLAMAFILE
|
||
|
// broadcast factors
|
||
|
const int64_t r2 = ne12 / ne02;
|
||
|
const int64_t r3 = ne13 / ne03;
|
||
|
|
||
|
const bool src1_cont = ggml_is_contiguous(src1);
|
||
|
|
||
|
if (src1_cont) {
|
||
|
for (int64_t i13 = 0; i13 < ne13; i13++)
|
||
|
for (int64_t i12 = 0; i12 < ne12; i12++)
|
||
|
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
|
||
|
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
|
||
|
nb01/ggml_type_size(src0->type),
|
||
|
(const char *)src1->data + i12*nb12 + i13*nb13,
|
||
|
nb11/ggml_type_size(src1->type),
|
||
|
(char *)dst->data + i12*nb2 + i13*nb3,
|
||
|
nb1/ggml_type_size(dst->type),
|
||
|
ith, nth,
|
||
|
src0->type,
|
||
|
src1->type,
|
||
|
dst->type))
|
||
|
goto UseGgmlGemm1;
|
||
|
return;
|
||
|
}
|
||
|
UseGgmlGemm1:;
|
||
|
#endif
|
||
|
|
||
|
if (src1->type != vec_dot_type) {
|
||
|
char * wdata = params->wdata;
|
||
|
|
||
|
const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
|
||
|
const size_t nbw2 = nbw1*ne11;
|
||
|
const size_t nbw3 = nbw2*ne12;
|
||
|
|
||
|
assert(params->wsize >= ne13*nbw3);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
|
||
|
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||
|
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||
|
int64_t i11_processed = 0;
|
||
|
if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
|
||
|
for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
|
||
|
from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
|
||
|
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
|
||
|
4, ne10, blck_size_interleave);
|
||
|
}
|
||
|
i11_processed = ne11 - ne11 % 4;
|
||
|
}
|
||
|
for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
|
||
|
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
|
||
|
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
|
||
|
ne10);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ith == 0) {
|
||
|
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||
|
atomic_store_explicit(¶ms->threadpool->current_chunk, nth, memory_order_relaxed);
|
||
|
}
|
||
|
|
||
|
ggml_barrier(params->threadpool);
|
||
|
|
||
|
#if GGML_USE_LLAMAFILE
|
||
|
if (src1->type != vec_dot_type) {
|
||
|
const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||
|
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||
|
|
||
|
for (int64_t i13 = 0; i13 < ne13; i13++)
|
||
|
for (int64_t i12 = 0; i12 < ne12; i12++)
|
||
|
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
|
||
|
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
|
||
|
nb01/ggml_type_size(src0->type),
|
||
|
(const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
|
||
|
row_size/ggml_type_size(vec_dot_type),
|
||
|
(char *)dst->data + i12*nb2 + i13*nb3,
|
||
|
nb1/ggml_type_size(dst->type),
|
||
|
ith, nth,
|
||
|
src0->type,
|
||
|
vec_dot_type,
|
||
|
dst->type))
|
||
|
goto UseGgmlGemm2;
|
||
|
return;
|
||
|
}
|
||
|
UseGgmlGemm2:;
|
||
|
#endif
|
||
|
|
||
|
// This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
|
||
|
const int64_t nr0 = ne0;
|
||
|
|
||
|
// This is the size of the rest of the dimensions of the result
|
||
|
const int64_t nr1 = ne1 * ne2 * ne3;
|
||
|
|
||
|
// dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
|
||
|
int64_t num_rows_per_vec_dot = vec_dot_num_rows;
|
||
|
// TODO: currently the mmla kernels support only even numbered rows/cols.
|
||
|
// this check can be removed once they are extended to support odd numbered rows/cols too
|
||
|
if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
|
||
|
num_rows_per_vec_dot = 1;
|
||
|
}
|
||
|
|
||
|
// Now select a reasonable chunk size.
|
||
|
int chunk_size = 16;
|
||
|
|
||
|
// We need to step up the size if it's small
|
||
|
if (nr0 == 1 || nr1 == 1) {
|
||
|
chunk_size = 64;
|
||
|
}
|
||
|
|
||
|
// distribute the work across the inner or outer loop based on which one is larger
|
||
|
// The number of chunks in the 0/1 dim.
|
||
|
// CEIL(nr0/chunk_size)
|
||
|
int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
|
||
|
int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
|
||
|
|
||
|
// If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
|
||
|
// Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
|
||
|
// In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
|
||
|
if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
|
||
|
// distribute the thread work across the inner or outer loop based on which one is larger
|
||
|
nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
|
||
|
nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
|
||
|
}
|
||
|
|
||
|
// The number of elements in each chunk
|
||
|
const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
|
||
|
const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
|
||
|
|
||
|
if ((ggml_n_dims(src0) == 2) && gemv) {
|
||
|
const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||
|
const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
|
||
|
int64_t src0_start = (ith * ne01) / nth;
|
||
|
int64_t src0_end = ((ith + 1) * ne01) / nth;
|
||
|
src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
|
||
|
src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
|
||
|
if (src0_start >= src0_end) return;
|
||
|
|
||
|
// If there are more than three rows in src1, use gemm; otherwise, use gemv.
|
||
|
if (gemm && (ne11 > 3)) {
|
||
|
gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
|
||
|
(const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
|
||
|
}
|
||
|
for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
|
||
|
gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
|
||
|
(const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
|
||
|
src0_end - src0_start);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// The first chunk comes from our thread_id, the rest will get auto-assigned.
|
||
|
int current_chunk = ith;
|
||
|
|
||
|
while (current_chunk < nchunk0 * nchunk1) {
|
||
|
const int64_t ith0 = current_chunk % nchunk0;
|
||
|
const int64_t ith1 = current_chunk / nchunk0;
|
||
|
|
||
|
const int64_t ir0_start = dr0 * ith0;
|
||
|
const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
|
||
|
|
||
|
const int64_t ir1_start = dr1 * ith1;
|
||
|
const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
|
||
|
|
||
|
ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
|
||
|
|
||
|
if (nth >= nchunk0 * nchunk1) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
current_chunk = atomic_fetch_add_explicit(¶ms->threadpool->current_chunk, 1, memory_order_relaxed);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_mul_mat_id
|
||
|
|
||
|
static void ggml_compute_forward_mul_mat_id(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
const struct ggml_tensor * ids = dst->src[2];
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const enum ggml_type type = src0->type;
|
||
|
|
||
|
const bool src1_cont = ggml_is_contiguous(src1);
|
||
|
|
||
|
ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
|
||
|
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
|
||
|
ggml_from_float_t const from_float = ggml_get_type_traits(vec_dot_type)->from_float;
|
||
|
int64_t const matmul_num_cols = type_traits_cpu[type].ncols;
|
||
|
ggml_gemv_t const gemv = type_traits_cpu[type].gemv;
|
||
|
|
||
|
// we don't support permuted src0 or src1
|
||
|
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||
|
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
||
|
|
||
|
// dst cannot be transposed or permuted
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb0 <= nb1);
|
||
|
GGML_ASSERT(nb1 <= nb2);
|
||
|
GGML_ASSERT(nb2 <= nb3);
|
||
|
|
||
|
// row groups
|
||
|
const int n_ids = ids->ne[0]; // n_expert_used
|
||
|
const int n_as = ne02; // n_expert
|
||
|
|
||
|
char * wdata_src1_end = (src1->type == vec_dot_type) ?
|
||
|
(char *) params->wdata :
|
||
|
(char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
|
||
|
|
||
|
struct mmid_row_mapping {
|
||
|
int32_t i1;
|
||
|
int32_t i2;
|
||
|
};
|
||
|
|
||
|
int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
|
||
|
struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
|
||
|
|
||
|
if (src1->type != vec_dot_type) {
|
||
|
char * wdata = params->wdata;
|
||
|
|
||
|
const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
|
||
|
const size_t nbw2 = nbw1*ne11;
|
||
|
const size_t nbw3 = nbw2*ne12;
|
||
|
|
||
|
assert(params->wsize >= ne13*nbw3);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
|
||
|
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||
|
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||
|
for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
|
||
|
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
|
||
|
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
|
||
|
ne10);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
|
||
|
|
||
|
if (ith == 0) {
|
||
|
// initialize matrix_row_counts
|
||
|
memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
|
||
|
|
||
|
// group rows by src0 matrix
|
||
|
for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
|
||
|
for (int id = 0; id < n_ids; ++id) {
|
||
|
const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
|
||
|
|
||
|
assert(i02 >= 0 && i02 < n_as);
|
||
|
|
||
|
MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
|
||
|
matrix_row_counts[i02] += 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ggml_barrier(params->threadpool);
|
||
|
|
||
|
// compute each matrix multiplication in sequence
|
||
|
for (int cur_a = 0; cur_a < n_as; ++cur_a) {
|
||
|
const int64_t cne1 = matrix_row_counts[cur_a];
|
||
|
|
||
|
if (cne1 == 0) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
const char * src0_cur = (const char *) src0->data + cur_a*nb02;
|
||
|
|
||
|
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||
|
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||
|
|
||
|
const int64_t nr0 = ne01; // src0 rows
|
||
|
const int64_t nr1 = cne1; // src1 rows
|
||
|
|
||
|
if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
|
||
|
int64_t src0_cur_start = (ith * ne01) / nth;
|
||
|
int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
|
||
|
src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
|
||
|
src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
|
||
|
if (src0_cur_start >= src0_cur_end) return;
|
||
|
|
||
|
for (int ir1 = 0; ir1 < nr1; ir1++) {
|
||
|
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
|
||
|
const int id = row_mapping.i1; // selected expert index
|
||
|
|
||
|
const int64_t i11 = id % ne11;
|
||
|
const int64_t i12 = row_mapping.i2; // row index in src1
|
||
|
|
||
|
const int64_t i1 = id; // selected expert index
|
||
|
const int64_t i2 = i12; // row
|
||
|
|
||
|
const char * src1_col = (const char *) wdata +
|
||
|
(src1_cont || src1->type != vec_dot_type
|
||
|
? (i11 + i12 * ne11) * row_size
|
||
|
: (i11 * nb11 + i12 * nb12));
|
||
|
|
||
|
gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
|
||
|
(const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// distribute the thread work across the inner or outer loop based on which one is larger
|
||
|
|
||
|
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
|
||
|
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
|
||
|
|
||
|
const int64_t ith0 = ith % nth0;
|
||
|
const int64_t ith1 = ith / nth0;
|
||
|
|
||
|
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
|
||
|
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
|
||
|
|
||
|
const int64_t ir010 = dr0*ith0;
|
||
|
const int64_t ir011 = MIN(ir010 + dr0, nr0);
|
||
|
|
||
|
const int64_t ir110 = dr1*ith1;
|
||
|
const int64_t ir111 = MIN(ir110 + dr1, nr1);
|
||
|
|
||
|
// threads with no work simply yield (not sure if it helps)
|
||
|
//if (ir010 >= ir011 || ir110 >= ir111) {
|
||
|
// sched_yield();
|
||
|
// continue;
|
||
|
//}
|
||
|
|
||
|
// block-tiling attempt
|
||
|
const int64_t blck_0 = 16;
|
||
|
const int64_t blck_1 = 16;
|
||
|
|
||
|
// attempt to reduce false-sharing (does not seem to make a difference)
|
||
|
float tmp[16];
|
||
|
|
||
|
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
|
||
|
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
|
||
|
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
|
||
|
const int64_t _i12 = ir1; // logical row index for this expert
|
||
|
|
||
|
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
|
||
|
const int id = row_mapping.i1; // selected expert index
|
||
|
|
||
|
const int64_t i11 = id % ne11;
|
||
|
const int64_t i12 = row_mapping.i2; // row index in src1
|
||
|
|
||
|
const int64_t i1 = id; // selected expert index
|
||
|
const int64_t i2 = i12; // row
|
||
|
|
||
|
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
|
||
|
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
|
||
|
// the original src1 data pointer, so we should index using the indices directly
|
||
|
// TODO: this is a bit of a hack, we should probably have a better way to handle this
|
||
|
const char * src1_col = (const char *) wdata +
|
||
|
(src1_cont || src1->type != vec_dot_type
|
||
|
? (i11 + i12*ne11)*row_size
|
||
|
: (i11*nb11 + i12*nb12));
|
||
|
|
||
|
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
|
||
|
|
||
|
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
|
||
|
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
|
||
|
//}
|
||
|
|
||
|
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
|
||
|
vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
|
||
|
}
|
||
|
|
||
|
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#undef MMID_MATRIX_ROW
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_out_prod
|
||
|
|
||
|
static void ggml_compute_forward_out_prod_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
GGML_ASSERT(ne0 == ne00);
|
||
|
GGML_ASSERT(ne1 == ne10);
|
||
|
GGML_ASSERT(ne2 == ne02);
|
||
|
GGML_ASSERT(ne02 == ne12);
|
||
|
GGML_ASSERT(ne3 == ne13);
|
||
|
GGML_ASSERT(ne03 == ne13);
|
||
|
|
||
|
// we don't support permuted src0 or src1
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
// dst cannot be transposed or permuted
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
// GGML_ASSERT(nb0 <= nb1);
|
||
|
// GGML_ASSERT(nb1 <= nb2);
|
||
|
// GGML_ASSERT(nb2 <= nb3);
|
||
|
|
||
|
// nb01 >= nb00 - src0 is not transposed
|
||
|
// compute by src0 rows
|
||
|
|
||
|
if (ith == 0) {
|
||
|
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
|
||
|
// dst[:,:,:,:] = 0
|
||
|
// for i2,i3:
|
||
|
// for i1:
|
||
|
// for i01:
|
||
|
// for i0:
|
||
|
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
|
||
|
|
||
|
// parallelize by last three dimensions
|
||
|
|
||
|
// total rows in dst
|
||
|
const int64_t nr = ne1*ne2*ne3;
|
||
|
|
||
|
// rows per thread
|
||
|
const int64_t dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int64_t ir0 = dr*ith;
|
||
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
// block-tiling attempt
|
||
|
const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
|
||
|
const int64_t blck_1 = 16;
|
||
|
|
||
|
for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
|
||
|
const int64_t bir1 = MIN(bir + blck_1, ir1);
|
||
|
for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
|
||
|
const int64_t bne01 = MIN(bi01 + blck_0, ne01);
|
||
|
for (int64_t ir = bir; ir < bir1; ++ir) {
|
||
|
// dst indices
|
||
|
const int64_t i3 = ir/(ne2*ne1);
|
||
|
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
const int64_t i02 = i2;
|
||
|
const int64_t i03 = i3;
|
||
|
|
||
|
//const int64_t i10 = i1;
|
||
|
const int64_t i12 = i2;
|
||
|
const int64_t i13 = i3;
|
||
|
|
||
|
#if GGML_VEC_MAD_UNROLL > 2
|
||
|
const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
|
||
|
for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
|
||
|
const int64_t i11 = i01;
|
||
|
|
||
|
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
||
|
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
||
|
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
||
|
|
||
|
ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
|
||
|
}
|
||
|
for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
|
||
|
const int64_t i11 = i01;
|
||
|
|
||
|
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
||
|
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
||
|
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
||
|
|
||
|
ggml_vec_mad_f32(ne0, d, s0, *s1);
|
||
|
}
|
||
|
#else
|
||
|
for (int64_t i01 = bi01; i01 < bne01; ++i01) {
|
||
|
const int64_t i11 = i01;
|
||
|
|
||
|
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
||
|
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
||
|
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
||
|
|
||
|
ggml_vec_mad_f32(ne0, d, s0, *s1);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_out_prod_q_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const enum ggml_type type = src0->type;
|
||
|
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
|
||
|
|
||
|
GGML_ASSERT(ne02 == ne12);
|
||
|
GGML_ASSERT(ne03 == ne13);
|
||
|
GGML_ASSERT(ne2 == ne12);
|
||
|
GGML_ASSERT(ne3 == ne13);
|
||
|
|
||
|
// we don't support permuted src0 dim0
|
||
|
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||
|
|
||
|
// dst dim0 cannot be transposed or permuted
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
// GGML_ASSERT(nb0 <= nb1);
|
||
|
// GGML_ASSERT(nb1 <= nb2);
|
||
|
// GGML_ASSERT(nb2 <= nb3);
|
||
|
|
||
|
GGML_ASSERT(ne0 == ne00);
|
||
|
GGML_ASSERT(ne1 == ne10);
|
||
|
GGML_ASSERT(ne2 == ne02);
|
||
|
GGML_ASSERT(ne3 == ne03);
|
||
|
|
||
|
// nb01 >= nb00 - src0 is not transposed
|
||
|
// compute by src0 rows
|
||
|
|
||
|
if (ith == 0) {
|
||
|
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
|
||
|
// parallelize by last three dimensions
|
||
|
|
||
|
// total rows in dst
|
||
|
const int64_t nr = ne1*ne2*ne3;
|
||
|
|
||
|
// rows per thread
|
||
|
const int64_t dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int64_t ir0 = dr*ith;
|
||
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
// dst[:,:,:,:] = 0
|
||
|
// for i2,i3:
|
||
|
// for i1:
|
||
|
// for i01:
|
||
|
// for i0:
|
||
|
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
|
||
|
|
||
|
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
|
||
|
|
||
|
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
||
|
// dst indices
|
||
|
const int64_t i3 = ir/(ne2*ne1);
|
||
|
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
|
||
|
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||
|
|
||
|
const int64_t i02 = i2;
|
||
|
const int64_t i03 = i3;
|
||
|
|
||
|
//const int64_t i10 = i1;
|
||
|
const int64_t i12 = i2;
|
||
|
const int64_t i13 = i3;
|
||
|
|
||
|
for (int64_t i01 = 0; i01 < ne01; ++i01) {
|
||
|
const int64_t i11 = i01;
|
||
|
|
||
|
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
||
|
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
||
|
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
||
|
|
||
|
dequantize_row_q(s0, wdata, ne0);
|
||
|
ggml_vec_mad_f32(ne0, d, wdata, *s1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_out_prod(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_Q4_0:
|
||
|
case GGML_TYPE_Q4_1:
|
||
|
case GGML_TYPE_Q5_0:
|
||
|
case GGML_TYPE_Q5_1:
|
||
|
case GGML_TYPE_Q8_0:
|
||
|
case GGML_TYPE_Q2_K:
|
||
|
case GGML_TYPE_Q3_K:
|
||
|
case GGML_TYPE_Q4_K:
|
||
|
case GGML_TYPE_Q5_K:
|
||
|
case GGML_TYPE_Q6_K:
|
||
|
case GGML_TYPE_TQ1_0:
|
||
|
case GGML_TYPE_TQ2_0:
|
||
|
case GGML_TYPE_IQ2_XXS:
|
||
|
case GGML_TYPE_IQ2_XS:
|
||
|
case GGML_TYPE_IQ3_XXS:
|
||
|
case GGML_TYPE_IQ1_S:
|
||
|
case GGML_TYPE_IQ1_M:
|
||
|
case GGML_TYPE_IQ4_NL:
|
||
|
case GGML_TYPE_IQ4_XS:
|
||
|
case GGML_TYPE_IQ3_S:
|
||
|
case GGML_TYPE_IQ2_S:
|
||
|
case GGML_TYPE_Q4_0_4_4:
|
||
|
case GGML_TYPE_Q4_0_4_8:
|
||
|
case GGML_TYPE_Q4_0_8_8:
|
||
|
{
|
||
|
ggml_compute_forward_out_prod_q_f32(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
GGML_ABORT("fatal error"); // todo
|
||
|
// ggml_compute_forward_out_prod_f16_f32(params, dst);
|
||
|
}
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_out_prod_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_scale
|
||
|
|
||
|
static void ggml_compute_forward_scale_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
// scale factor
|
||
|
float v;
|
||
|
memcpy(&v, dst->op_params, sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nc = src0->ne[0];
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
const size_t nb01 = src0->nb[1];
|
||
|
|
||
|
const size_t nb1 = dst->nb[1];
|
||
|
|
||
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
||
|
if (dst->data != src0->data) {
|
||
|
// src0 is same shape as dst => same indices
|
||
|
memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
|
||
|
}
|
||
|
ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_scale(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_scale_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_set
|
||
|
|
||
|
static void ggml_compute_forward_set_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
||
|
|
||
|
// view src0 and dst with these strides and data offset inbytes during set
|
||
|
// nb0 is implicitly element_size because src0 and dst are contiguous
|
||
|
size_t nb1 = ((int32_t *) dst->op_params)[0];
|
||
|
size_t nb2 = ((int32_t *) dst->op_params)[1];
|
||
|
size_t nb3 = ((int32_t *) dst->op_params)[2];
|
||
|
size_t offset = ((int32_t *) dst->op_params)[3];
|
||
|
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
|
||
|
|
||
|
if (!inplace) {
|
||
|
if (params->ith == 0) {
|
||
|
// memcpy needs to be synchronized across threads to avoid race conditions.
|
||
|
// => do it in INIT phase
|
||
|
memcpy(
|
||
|
((char *) dst->data),
|
||
|
((char *) src0->data),
|
||
|
ggml_nbytes(dst));
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
}
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src1);
|
||
|
const int nc = src1->ne[0];
|
||
|
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
||
|
|
||
|
// src0 and dst as viewed during set
|
||
|
const size_t nb0 = ggml_element_size(src0);
|
||
|
|
||
|
const int im0 = (ne10 == 0 ? 0 : ne10-1);
|
||
|
const int im1 = (ne11 == 0 ? 0 : ne11-1);
|
||
|
const int im2 = (ne12 == 0 ? 0 : ne12-1);
|
||
|
const int im3 = (ne13 == 0 ? 0 : ne13-1);
|
||
|
|
||
|
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
|
||
|
|
||
|
GGML_ASSERT(nb10 == sizeof(float));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// src0 and dst are viewed with shape of src1 and offset
|
||
|
// => same indices
|
||
|
const int i3 = ir/(ne12*ne11);
|
||
|
const int i2 = (ir - i3*ne12*ne11)/ne11;
|
||
|
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
|
||
|
|
||
|
ggml_vec_cpy_f32(nc,
|
||
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
|
||
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_set(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_set_f32(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
case GGML_TYPE_BF16:
|
||
|
case GGML_TYPE_Q4_0:
|
||
|
case GGML_TYPE_Q4_1:
|
||
|
case GGML_TYPE_Q5_0:
|
||
|
case GGML_TYPE_Q5_1:
|
||
|
case GGML_TYPE_Q8_0:
|
||
|
case GGML_TYPE_Q8_1:
|
||
|
case GGML_TYPE_Q2_K:
|
||
|
case GGML_TYPE_Q3_K:
|
||
|
case GGML_TYPE_Q4_K:
|
||
|
case GGML_TYPE_Q5_K:
|
||
|
case GGML_TYPE_Q6_K:
|
||
|
case GGML_TYPE_TQ1_0:
|
||
|
case GGML_TYPE_TQ2_0:
|
||
|
case GGML_TYPE_IQ2_XXS:
|
||
|
case GGML_TYPE_IQ2_XS:
|
||
|
case GGML_TYPE_IQ3_XXS:
|
||
|
case GGML_TYPE_IQ1_S:
|
||
|
case GGML_TYPE_IQ1_M:
|
||
|
case GGML_TYPE_IQ4_NL:
|
||
|
case GGML_TYPE_IQ4_XS:
|
||
|
case GGML_TYPE_IQ3_S:
|
||
|
case GGML_TYPE_IQ2_S:
|
||
|
case GGML_TYPE_Q4_0_4_4:
|
||
|
case GGML_TYPE_Q4_0_4_8:
|
||
|
case GGML_TYPE_Q4_0_8_8:
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_cpy
|
||
|
|
||
|
static void ggml_compute_forward_cpy(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
ggml_compute_forward_dup(params, dst);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_cont
|
||
|
|
||
|
static void ggml_compute_forward_cont(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
ggml_compute_forward_dup(params, dst);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_reshape
|
||
|
|
||
|
static void ggml_compute_forward_reshape(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
// NOP
|
||
|
UNUSED(params);
|
||
|
UNUSED(dst);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_view
|
||
|
|
||
|
static void ggml_compute_forward_view(
|
||
|
const struct ggml_compute_params * params,
|
||
|
const struct ggml_tensor * dst) {
|
||
|
// NOP
|
||
|
UNUSED(params);
|
||
|
UNUSED(dst);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_permute
|
||
|
|
||
|
static void ggml_compute_forward_permute(
|
||
|
const struct ggml_compute_params * params,
|
||
|
const struct ggml_tensor * dst) {
|
||
|
// NOP
|
||
|
UNUSED(params);
|
||
|
UNUSED(dst);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_transpose
|
||
|
|
||
|
static void ggml_compute_forward_transpose(
|
||
|
const struct ggml_compute_params * params,
|
||
|
const struct ggml_tensor * dst) {
|
||
|
// NOP
|
||
|
UNUSED(params);
|
||
|
UNUSED(dst);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_get_rows
|
||
|
|
||
|
static void ggml_compute_forward_get_rows_q(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int64_t nc = ne00;
|
||
|
const int64_t nr = ggml_nelements(src1);
|
||
|
|
||
|
const enum ggml_type type = src0->type;
|
||
|
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
|
||
|
|
||
|
assert(ne0 == nc);
|
||
|
assert(ne02 == ne11);
|
||
|
assert(nb00 == ggml_type_size(type));
|
||
|
assert(ggml_nrows(dst) == nr);
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int64_t i = ir0; i < ir1; ++i) {
|
||
|
const int64_t i12 = i/(ne11*ne10);
|
||
|
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
|
||
|
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||
|
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||
|
|
||
|
GGML_ASSERT(i01 >= 0 && i01 < ne01);
|
||
|
|
||
|
dequantize_row_q(
|
||
|
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||
|
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_get_rows_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int64_t nc = ne00;
|
||
|
const int64_t nr = ggml_nelements(src1);
|
||
|
|
||
|
assert(ne0 == nc);
|
||
|
assert(ne02 == ne11);
|
||
|
assert(nb00 == sizeof(ggml_fp16_t));
|
||
|
assert(ggml_nrows(dst) == nr);
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int64_t i = ir0; i < ir1; ++i) {
|
||
|
const int64_t i12 = i/(ne11*ne10);
|
||
|
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
|
||
|
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||
|
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||
|
|
||
|
GGML_ASSERT(i01 >= 0 && i01 < ne01);
|
||
|
|
||
|
ggml_fp16_to_fp32_row(
|
||
|
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||
|
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_get_rows_bf16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int64_t nc = ne00;
|
||
|
const int64_t nr = ggml_nelements(src1);
|
||
|
|
||
|
assert(ne0 == nc);
|
||
|
assert(ne02 == ne11);
|
||
|
assert(nb00 == sizeof(ggml_bf16_t));
|
||
|
assert(ggml_nrows(dst) == nr);
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int64_t i = ir0; i < ir1; ++i) {
|
||
|
const int64_t i12 = i/(ne11*ne10);
|
||
|
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
|
||
|
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||
|
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||
|
|
||
|
GGML_ASSERT(i01 >= 0 && i01 < ne01);
|
||
|
|
||
|
ggml_bf16_to_fp32_row(
|
||
|
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||
|
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_get_rows_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int64_t nc = ne00;
|
||
|
const int64_t nr = ggml_nelements(src1);
|
||
|
|
||
|
assert(ne0 == nc);
|
||
|
assert(ne02 == ne11);
|
||
|
assert(nb00 == sizeof(float));
|
||
|
assert(ggml_nrows(dst) == nr);
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int64_t i = ir0; i < ir1; ++i) {
|
||
|
const int64_t i12 = i/(ne11*ne10);
|
||
|
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
|
||
|
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||
|
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||
|
|
||
|
GGML_ASSERT(i01 >= 0 && i01 < ne01);
|
||
|
|
||
|
ggml_vec_cpy_f32(nc,
|
||
|
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
|
||
|
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_get_rows(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_Q4_0:
|
||
|
case GGML_TYPE_Q4_1:
|
||
|
case GGML_TYPE_Q5_0:
|
||
|
case GGML_TYPE_Q5_1:
|
||
|
case GGML_TYPE_Q8_0:
|
||
|
case GGML_TYPE_Q8_1:
|
||
|
case GGML_TYPE_Q2_K:
|
||
|
case GGML_TYPE_Q3_K:
|
||
|
case GGML_TYPE_Q4_K:
|
||
|
case GGML_TYPE_Q5_K:
|
||
|
case GGML_TYPE_Q6_K:
|
||
|
case GGML_TYPE_TQ1_0:
|
||
|
case GGML_TYPE_TQ2_0:
|
||
|
case GGML_TYPE_IQ2_XXS:
|
||
|
case GGML_TYPE_IQ2_XS:
|
||
|
case GGML_TYPE_IQ3_XXS:
|
||
|
case GGML_TYPE_IQ1_S:
|
||
|
case GGML_TYPE_IQ1_M:
|
||
|
case GGML_TYPE_IQ4_NL:
|
||
|
case GGML_TYPE_IQ4_XS:
|
||
|
case GGML_TYPE_IQ3_S:
|
||
|
case GGML_TYPE_IQ2_S:
|
||
|
case GGML_TYPE_Q4_0_4_4:
|
||
|
case GGML_TYPE_Q4_0_4_8:
|
||
|
case GGML_TYPE_Q4_0_8_8:
|
||
|
{
|
||
|
ggml_compute_forward_get_rows_q(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
ggml_compute_forward_get_rows_f16(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
ggml_compute_forward_get_rows_bf16(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
case GGML_TYPE_I32:
|
||
|
{
|
||
|
ggml_compute_forward_get_rows_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//static bool first = true;
|
||
|
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
|
||
|
//if (first) {
|
||
|
// first = false;
|
||
|
//} else {
|
||
|
// for (int k = 0; k < dst->ne[1]; ++k) {
|
||
|
// for (int j = 0; j < dst->ne[0]/16; ++j) {
|
||
|
// for (int i = 0; i < 16; ++i) {
|
||
|
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
|
||
|
// }
|
||
|
// printf("\n");
|
||
|
// }
|
||
|
// printf("\n");
|
||
|
// }
|
||
|
// printf("\n");
|
||
|
// exit(0);
|
||
|
//}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_get_rows_back
|
||
|
|
||
|
static void ggml_compute_forward_get_rows_back_f32_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
||
|
|
||
|
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
|
||
|
|
||
|
memset(dst->data, 0, ggml_nbytes(dst));
|
||
|
|
||
|
const int nc = src0->ne[0];
|
||
|
const int nr = ggml_nelements(src1);
|
||
|
|
||
|
GGML_ASSERT( dst->ne[0] == nc);
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
|
||
|
|
||
|
for (int i = 0; i < nr; ++i) {
|
||
|
const int r = ((int32_t *) src1->data)[i];
|
||
|
|
||
|
for (int j = 0; j < nc; ++j) {
|
||
|
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
|
||
|
((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_get_rows_back_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
||
|
|
||
|
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
|
||
|
|
||
|
memset(dst->data, 0, ggml_nbytes(dst));
|
||
|
|
||
|
const int nc = src0->ne[0];
|
||
|
const int nr = ggml_nelements(src1);
|
||
|
|
||
|
GGML_ASSERT( dst->ne[0] == nc);
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
for (int i = 0; i < nr; ++i) {
|
||
|
const int r = ((int32_t *) src1->data)[i];
|
||
|
|
||
|
ggml_vec_add_f32(nc,
|
||
|
(float *) ((char *) dst->data + r*dst->nb[1]),
|
||
|
(float *) ((char *) dst->data + r*dst->nb[1]),
|
||
|
(float *) ((char *) src0->data + i*src0->nb[1]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_get_rows_back(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
ggml_compute_forward_get_rows_back_f32_f16(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_get_rows_back_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//static bool first = true;
|
||
|
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
|
||
|
//if (first) {
|
||
|
// first = false;
|
||
|
//} else {
|
||
|
// for (int k = 0; k < dst->ne[1]; ++k) {
|
||
|
// for (int j = 0; j < dst->ne[0]/16; ++j) {
|
||
|
// for (int i = 0; i < 16; ++i) {
|
||
|
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
|
||
|
// }
|
||
|
// printf("\n");
|
||
|
// }
|
||
|
// printf("\n");
|
||
|
// }
|
||
|
// printf("\n");
|
||
|
// exit(0);
|
||
|
//}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_diag
|
||
|
|
||
|
static void ggml_compute_forward_diag_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// TODO: handle transposed/permuted matrices
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(ne00 == ne0);
|
||
|
GGML_ASSERT(ne00 == ne1);
|
||
|
GGML_ASSERT(ne01 == 1);
|
||
|
GGML_ASSERT(ne02 == ne2);
|
||
|
GGML_ASSERT(ne03 == ne3);
|
||
|
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
|
||
|
for (int i3 = 0; i3 < ne3; i3++) {
|
||
|
for (int i2 = 0; i2 < ne2; i2++) {
|
||
|
for (int i1 = 0; i1 < ne1; i1++) {
|
||
|
float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
||
|
float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
|
||
|
for (int i0 = 0; i0 < i1; i0++) {
|
||
|
d[i0] = 0;
|
||
|
}
|
||
|
d[i1] = s[i1];
|
||
|
for (int i0 = i1+1; i0 < ne0; i0++) {
|
||
|
d[i0] = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_diag(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_diag_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_diag_mask_inf
|
||
|
|
||
|
static void ggml_compute_forward_diag_mask_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const float value) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
||
|
const bool inplace = src0->data == dst->data;
|
||
|
|
||
|
GGML_ASSERT(n_past >= 0);
|
||
|
|
||
|
if (!inplace) {
|
||
|
if (ith == 0) {
|
||
|
// memcpy needs to be synchronized across threads to avoid race conditions.
|
||
|
// => do it in INIT phase
|
||
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
||
|
memcpy(
|
||
|
((char *) dst->data),
|
||
|
((char *) src0->data),
|
||
|
ggml_nbytes(dst));
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
}
|
||
|
|
||
|
// TODO: handle transposed/permuted matrices
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
const int nr = src0->ne[1];
|
||
|
const int nz = n/nr;
|
||
|
|
||
|
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
for (int k = 0; k < nz; k++) {
|
||
|
for (int j = ith; j < nr; j += nth) {
|
||
|
for (int i = n_past; i < nc; i++) {
|
||
|
if (i > n_past + j) {
|
||
|
*(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_diag_mask_inf(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_diag_mask_zero(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_diag_mask_f32(params, dst, 0);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_soft_max
|
||
|
|
||
|
static void ggml_compute_forward_soft_max_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
assert(ggml_is_contiguous(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
float scale = 1.0f;
|
||
|
float max_bias = 0.0f;
|
||
|
|
||
|
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
||
|
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
||
|
|
||
|
// TODO: handle transposed/permuted matrices
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
//const int64_t ne11 = src1 ? src1->ne[1] : 1;
|
||
|
|
||
|
// TODO: is this supposed to be ceil instead of floor?
|
||
|
// https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
|
||
|
const uint32_t n_head = ne02;
|
||
|
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
|
||
|
|
||
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||
|
|
||
|
const int nc = src0->ne[0];
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
|
||
|
|
||
|
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
||
|
|
||
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
||
|
// ALiBi
|
||
|
const uint32_t h = (i1/ne01)%ne02; // head
|
||
|
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
|
||
|
|
||
|
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
|
||
|
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
|
||
|
|
||
|
// broadcast the mask across rows
|
||
|
ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
|
||
|
float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
|
||
|
|
||
|
ggml_vec_cpy_f32 (nc, wp, sp);
|
||
|
ggml_vec_scale_f32(nc, wp, scale);
|
||
|
if (mp_f32) {
|
||
|
if (use_f16) {
|
||
|
for (int i = 0; i < nc; ++i) {
|
||
|
wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
|
||
|
}
|
||
|
} else {
|
||
|
for (int i = 0; i < nc; ++i) {
|
||
|
wp[i] += slope*mp_f32[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int i = 0; i < nc; ++i) {
|
||
|
//printf("p[%d] = %f\n", i, p[i]);
|
||
|
assert(!isnan(wp[i]));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
float max = -INFINITY;
|
||
|
ggml_vec_max_f32(nc, &max, wp);
|
||
|
|
||
|
ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
|
||
|
assert(sum > 0.0);
|
||
|
|
||
|
sum = 1.0/sum;
|
||
|
ggml_vec_scale_f32(nc, dp, sum);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int i = 0; i < nc; ++i) {
|
||
|
assert(!isnan(dp[i]));
|
||
|
assert(!isinf(dp[i]));
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_soft_max(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_soft_max_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// ggml_compute_forward_soft_max_back
|
||
|
|
||
|
static void ggml_compute_forward_soft_max_back_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
||
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
|
GGML_ASSERT(ggml_are_same_shape(src1, dst));
|
||
|
|
||
|
// TODO: handle transposed/permuted matrices
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nc = src0->ne[0];
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
||
|
float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
|
||
|
float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
|
||
|
float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int i = 0; i < nc; ++i) {
|
||
|
//printf("p[%d] = %f\n", i, p[i]);
|
||
|
assert(!isnan(dy[i]));
|
||
|
assert(!isnan(y[i]));
|
||
|
}
|
||
|
#endif
|
||
|
// Jii = yi - yi*yi
|
||
|
// Jij = -yi*yj
|
||
|
// J = diag(y)-y.T*y
|
||
|
// dx = J * dy
|
||
|
// dxk = sum_i(Jki * dyi)
|
||
|
// dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
|
||
|
// dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
|
||
|
// dxk = sum_i(-yk*yi * dyi) + yk*dyk
|
||
|
// dxk = -yk * sum_i(yi * dyi) + yk*dyk
|
||
|
// dxk = -yk * dot(y, dy) + yk*dyk
|
||
|
// dxk = yk * (- dot(y, dy) + dyk)
|
||
|
// dxk = yk * (dyk - dot(y, dy))
|
||
|
//
|
||
|
// post-order:
|
||
|
// dot_y_dy := dot(y, dy)
|
||
|
// dx := dy
|
||
|
// dx := dx - dot_y_dy
|
||
|
// dx := dx * y
|
||
|
|
||
|
// linear runtime, no additional memory
|
||
|
float dot_y_dy = 0;
|
||
|
ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
|
||
|
ggml_vec_cpy_f32 (nc, dx, dy);
|
||
|
ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
|
||
|
ggml_vec_mul_f32 (nc, dx, dx, y);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int i = 0; i < nc; ++i) {
|
||
|
assert(!isnan(dx[i]));
|
||
|
assert(!isinf(dx[i]));
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_soft_max_back(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_soft_max_back_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_clamp
|
||
|
|
||
|
static void ggml_compute_forward_clamp_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
float min;
|
||
|
float max;
|
||
|
memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
|
||
|
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
const size_t nb00 = src0->nb[0];
|
||
|
const size_t nb01 = src0->nb[1];
|
||
|
|
||
|
const size_t nb0 = dst->nb[0];
|
||
|
const size_t nb1 = dst->nb[1];
|
||
|
|
||
|
GGML_ASSERT( nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
for (int j = ith; j < n; j += nth) {
|
||
|
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
|
||
|
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
|
||
|
|
||
|
for (int i = 0; i < nc; i++) {
|
||
|
dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_clamp(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_clamp_f32(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F16:
|
||
|
case GGML_TYPE_BF16:
|
||
|
case GGML_TYPE_Q4_0:
|
||
|
case GGML_TYPE_Q4_1:
|
||
|
case GGML_TYPE_Q5_0:
|
||
|
case GGML_TYPE_Q5_1:
|
||
|
case GGML_TYPE_Q8_0:
|
||
|
case GGML_TYPE_Q8_1:
|
||
|
case GGML_TYPE_Q2_K:
|
||
|
case GGML_TYPE_Q3_K:
|
||
|
case GGML_TYPE_Q4_K:
|
||
|
case GGML_TYPE_Q5_K:
|
||
|
case GGML_TYPE_Q6_K:
|
||
|
case GGML_TYPE_TQ1_0:
|
||
|
case GGML_TYPE_TQ2_0:
|
||
|
case GGML_TYPE_IQ2_XXS:
|
||
|
case GGML_TYPE_IQ2_XS:
|
||
|
case GGML_TYPE_IQ3_XXS:
|
||
|
case GGML_TYPE_IQ1_S:
|
||
|
case GGML_TYPE_IQ1_M:
|
||
|
case GGML_TYPE_IQ4_NL:
|
||
|
case GGML_TYPE_IQ4_XS:
|
||
|
case GGML_TYPE_IQ3_S:
|
||
|
case GGML_TYPE_IQ2_S:
|
||
|
case GGML_TYPE_Q8_K:
|
||
|
case GGML_TYPE_Q4_0_4_4:
|
||
|
case GGML_TYPE_Q4_0_4_8:
|
||
|
case GGML_TYPE_Q4_0_8_8:
|
||
|
case GGML_TYPE_I8:
|
||
|
case GGML_TYPE_I16:
|
||
|
case GGML_TYPE_I32:
|
||
|
case GGML_TYPE_I64:
|
||
|
case GGML_TYPE_F64:
|
||
|
case GGML_TYPE_COUNT:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_rope
|
||
|
|
||
|
static float rope_yarn_ramp(const float low, const float high, const int i0) {
|
||
|
const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
|
||
|
return 1 - MIN(1, MAX(0, y));
|
||
|
}
|
||
|
|
||
|
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||
|
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||
|
static void rope_yarn(
|
||
|
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
|
||
|
float * cos_theta, float * sin_theta) {
|
||
|
// Get n-d rotational scaling corrected for extrapolation
|
||
|
float theta_interp = freq_scale * theta_extrap;
|
||
|
float theta = theta_interp;
|
||
|
if (ext_factor != 0.0f) {
|
||
|
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
|
||
|
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||
|
|
||
|
// Get n-d magnitude scaling corrected for interpolation
|
||
|
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
|
||
|
}
|
||
|
*cos_theta = cosf(theta) * mscale;
|
||
|
*sin_theta = sinf(theta) * mscale;
|
||
|
}
|
||
|
|
||
|
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
|
||
|
// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
|
||
|
static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
|
||
|
return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
|
||
|
}
|
||
|
|
||
|
static void ggml_rope_cache_init(
|
||
|
float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
|
||
|
float * cache, float sin_sign, float theta_scale) {
|
||
|
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
|
||
|
float theta = theta_base;
|
||
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
||
|
const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
|
||
|
rope_yarn(
|
||
|
theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
|
||
|
);
|
||
|
cache[i0 + 1] *= sin_sign;
|
||
|
|
||
|
theta *= theta_scale;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_rope_yarn_corr_dims(
|
||
|
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
|
||
|
) {
|
||
|
// start and end correction dims
|
||
|
float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
|
||
|
float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
|
||
|
dims[0] = MAX(0, start);
|
||
|
dims[1] = MIN(n_dims - 1, end);
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_rope_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const bool forward) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
const struct ggml_tensor * src2 = dst->src[2];
|
||
|
|
||
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||
|
|
||
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||
|
//const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||
|
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
||
|
|
||
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||
|
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
|
||
|
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
|
||
|
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(dst);
|
||
|
|
||
|
GGML_ASSERT(n_dims <= ne0);
|
||
|
GGML_ASSERT(n_dims % 2 == 0);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
// row index used to determine which thread to use
|
||
|
int ir = 0;
|
||
|
|
||
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||
|
|
||
|
float corr_dims[2];
|
||
|
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
||
|
|
||
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||
|
|
||
|
const float * freq_factors = NULL;
|
||
|
if (src2 != NULL) {
|
||
|
GGML_ASSERT(src2->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
|
||
|
freq_factors = (const float *) src2->data;
|
||
|
}
|
||
|
|
||
|
// backward process uses inverse rotation by cos and sin.
|
||
|
// cos and sin build a rotation matrix, where the inverse is the transpose.
|
||
|
// this essentially just switches the sign of sin.
|
||
|
const float sin_sign = forward ? 1.0f : -1.0f;
|
||
|
|
||
|
const int32_t * pos = (const int32_t *) src1->data;
|
||
|
|
||
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||
|
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
||
|
const int64_t p = pos[i2];
|
||
|
|
||
|
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
|
||
|
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
||
|
|
||
|
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
||
|
if (ir++ < ir0) continue;
|
||
|
if (ir > ir1) break;
|
||
|
|
||
|
if (!is_neox) {
|
||
|
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||
|
const float cos_theta = cache[i0 + 0];
|
||
|
const float sin_theta = cache[i0 + 1];
|
||
|
|
||
|
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||
|
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||
|
|
||
|
const float x0 = src[0];
|
||
|
const float x1 = src[1];
|
||
|
|
||
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||
|
dst_data[1] = x0*sin_theta + x1*cos_theta;
|
||
|
}
|
||
|
} else {
|
||
|
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||
|
const int64_t ic = i0/2;
|
||
|
|
||
|
const float cos_theta = cache[i0 + 0];
|
||
|
const float sin_theta = cache[i0 + 1];
|
||
|
|
||
|
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||
|
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||
|
|
||
|
const float x0 = src[0];
|
||
|
const float x1 = src[n_dims/2];
|
||
|
|
||
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||
|
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
||
|
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||
|
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||
|
|
||
|
dst_data[0] = src[0];
|
||
|
dst_data[1] = src[1];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// TODO: deduplicate f16/f32 code
|
||
|
static void ggml_compute_forward_rope_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const bool forward) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
const struct ggml_tensor * src2 = dst->src[2];
|
||
|
|
||
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||
|
|
||
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||
|
//const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||
|
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
||
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||
|
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
|
||
|
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
|
||
|
|
||
|
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(dst);
|
||
|
|
||
|
GGML_ASSERT(n_dims <= ne0);
|
||
|
GGML_ASSERT(n_dims % 2 == 0);
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
// row index used to determine which thread to use
|
||
|
int ir = 0;
|
||
|
|
||
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||
|
|
||
|
float corr_dims[2];
|
||
|
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
||
|
|
||
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||
|
|
||
|
const float * freq_factors = NULL;
|
||
|
if (src2 != NULL) {
|
||
|
GGML_ASSERT(src2->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
|
||
|
freq_factors = (const float *) src2->data;
|
||
|
}
|
||
|
|
||
|
// backward process uses inverse rotation by cos and sin.
|
||
|
// cos and sin build a rotation matrix, where the inverse is the transpose.
|
||
|
// this essentially just switches the sign of sin.
|
||
|
const float sin_sign = forward ? 1.0f : -1.0f;
|
||
|
|
||
|
const int32_t * pos = (const int32_t *) src1->data;
|
||
|
|
||
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||
|
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
||
|
const int64_t p = pos[i2];
|
||
|
|
||
|
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
|
||
|
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
||
|
|
||
|
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
||
|
if (ir++ < ir0) continue;
|
||
|
if (ir > ir1) break;
|
||
|
|
||
|
if (!is_neox) {
|
||
|
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||
|
const float cos_theta = cache[i0 + 0];
|
||
|
const float sin_theta = cache[i0 + 1];
|
||
|
|
||
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||
|
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||
|
|
||
|
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||
|
const float x1 = GGML_FP16_TO_FP32(src[1]);
|
||
|
|
||
|
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||
|
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||
|
}
|
||
|
} else {
|
||
|
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||
|
const int64_t ic = i0/2;
|
||
|
|
||
|
const float cos_theta = cache[i0 + 0];
|
||
|
const float sin_theta = cache[i0 + 1];
|
||
|
|
||
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||
|
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||
|
|
||
|
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||
|
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
|
||
|
|
||
|
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||
|
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
||
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||
|
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||
|
|
||
|
dst_data[0] = src[0];
|
||
|
dst_data[1] = src[1];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_rope(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
ggml_compute_forward_rope_f16(params, dst, true);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_rope_f32(params, dst, true);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_rope_back
|
||
|
|
||
|
static void ggml_compute_forward_rope_back(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
ggml_compute_forward_rope_f16(params, dst, false);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_rope_f32(params, dst, false);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_conv_transpose_1d
|
||
|
|
||
|
static void ggml_compute_forward_conv_transpose_1d_f16_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nk = ne00*ne01*ne02;
|
||
|
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||
|
GGML_ASSERT(nb10 == sizeof(float));
|
||
|
|
||
|
if (ith == 0) {
|
||
|
memset(params->wdata, 0, params->wsize);
|
||
|
|
||
|
// permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
|
||
|
{
|
||
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
||
|
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
|
||
|
ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
dst_data[i00*ne02 + i02] = src[i00];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// permute source data (src1) from (L x Cin) to (Cin x L)
|
||
|
{
|
||
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
|
||
|
ggml_fp16_t * dst_data = wdata;
|
||
|
|
||
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||
|
const float * const src = (float *)((char *) src1->data + i11*nb11);
|
||
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
||
|
dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// need to zero dst since we are accumulating into it
|
||
|
memset(dst->data, 0, ggml_nbytes(dst));
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
|
||
|
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||
|
|
||
|
// total rows in dst
|
||
|
const int nr = ne1;
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
||
|
ggml_fp16_t * const wdata_src = wdata + nk;
|
||
|
|
||
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
||
|
float * dst_data = (float *)((char *) dst->data + i1*nb1);
|
||
|
ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
|
||
|
for (int i10 = 0; i10 < ne10; i10++) {
|
||
|
const int i1n = i10*ne11;
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
float v = 0;
|
||
|
ggml_vec_dot_f16(ne02, &v, 0,
|
||
|
(ggml_fp16_t *) wdata_src + i1n, 0,
|
||
|
(ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
|
||
|
dst_data[i10*s0 + i00] += v;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_conv_transpose_1d_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nk = ne00*ne01*ne02;
|
||
|
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
GGML_ASSERT(nb10 == sizeof(float));
|
||
|
|
||
|
if (ith == 0) {
|
||
|
memset(params->wdata, 0, params->wsize);
|
||
|
|
||
|
// prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
|
||
|
{
|
||
|
float * const wdata = (float *) params->wdata + 0;
|
||
|
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||
|
const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
|
||
|
float * dst_data = wdata + i01*ne00*ne02;
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
dst_data[i00*ne02 + i02] = src[i00];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// prepare source data (src1)
|
||
|
{
|
||
|
float * const wdata = (float *) params->wdata + nk;
|
||
|
float * dst_data = wdata;
|
||
|
|
||
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||
|
const float * const src = (float *)((char *) src1->data + i11*nb11);
|
||
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
||
|
dst_data[i10*ne11 + i11] = src[i10];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// need to zero dst since we are accumulating into it
|
||
|
memset(dst->data, 0, ggml_nbytes(dst));
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
|
||
|
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||
|
|
||
|
// total rows in dst
|
||
|
const int nr = ne1;
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
float * const wdata = (float *) params->wdata + 0;
|
||
|
float * const wdata_src = wdata + nk;
|
||
|
|
||
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
||
|
float * dst_data = (float *)((char *) dst->data + i1*nb1);
|
||
|
float * wdata_kernel = wdata + i1*ne02*ne00;
|
||
|
for (int i10 = 0; i10 < ne10; i10++) {
|
||
|
const int i1n = i10*ne11;
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
float v = 0;
|
||
|
ggml_vec_dot_f32(ne02, &v, 0,
|
||
|
wdata_src + i1n, 0,
|
||
|
wdata_kernel + i00*ne02, 0, 1);
|
||
|
dst_data[i10*s0 + i00] += v;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_conv_transpose_1d(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_conv_transpose_1d_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_im2col_f32
|
||
|
// src0: kernel [OC, IC, KH, KW]
|
||
|
// src1: image [N, IC, IH, IW]
|
||
|
// dst: result [N, OH, OW, IC*KH*KW]
|
||
|
static void ggml_compute_forward_im2col_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
||
|
|
||
|
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||
|
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||
|
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
||
|
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
||
|
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
||
|
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
||
|
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int64_t N = is_2D ? ne13 : ne12;
|
||
|
const int64_t IC = is_2D ? ne12 : ne11;
|
||
|
const int64_t IH = is_2D ? ne11 : 1;
|
||
|
const int64_t IW = ne10;
|
||
|
|
||
|
const int64_t KH = is_2D ? ne01 : 1;
|
||
|
const int64_t KW = ne00;
|
||
|
|
||
|
const int64_t OH = is_2D ? ne2 : 1;
|
||
|
const int64_t OW = ne1;
|
||
|
|
||
|
int ofs0 = is_2D ? nb13 : nb12;
|
||
|
int ofs1 = is_2D ? nb12 : nb11;
|
||
|
|
||
|
GGML_ASSERT(nb10 == sizeof(float));
|
||
|
|
||
|
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
|
||
|
{
|
||
|
float * const wdata = (float *) dst->data;
|
||
|
|
||
|
for (int64_t in = 0; in < N; in++) {
|
||
|
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
|
||
|
for (int64_t iow = 0; iow < OW; iow++) {
|
||
|
for (int64_t iic = ith; iic < IC; iic += nth) {
|
||
|
|
||
|
// micro kernel
|
||
|
float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
|
||
|
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
|
||
|
|
||
|
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
|
||
|
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
||
|
const int64_t iiw = iow*s0 + ikw*d0 - p0;
|
||
|
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
||
|
|
||
|
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||
|
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
|
||
|
} else {
|
||
|
dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// ggml_compute_forward_im2col_f16
|
||
|
// src0: kernel [OC, IC, KH, KW]
|
||
|
// src1: image [N, IC, IH, IW]
|
||
|
// dst: result [N, OH, OW, IC*KH*KW]
|
||
|
static void ggml_compute_forward_im2col_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
||
|
|
||
|
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||
|
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||
|
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
||
|
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
||
|
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
||
|
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
||
|
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int64_t N = is_2D ? ne13 : ne12;
|
||
|
const int64_t IC = is_2D ? ne12 : ne11;
|
||
|
const int64_t IH = is_2D ? ne11 : 1;
|
||
|
const int64_t IW = ne10;
|
||
|
|
||
|
const int64_t KH = is_2D ? ne01 : 1;
|
||
|
const int64_t KW = ne00;
|
||
|
|
||
|
const int64_t OH = is_2D ? ne2 : 1;
|
||
|
const int64_t OW = ne1;
|
||
|
|
||
|
int ofs0 = is_2D ? nb13 : nb12;
|
||
|
int ofs1 = is_2D ? nb12 : nb11;
|
||
|
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||
|
GGML_ASSERT(nb10 == sizeof(float));
|
||
|
|
||
|
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
|
||
|
{
|
||
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
|
||
|
|
||
|
for (int64_t in = 0; in < N; in++) {
|
||
|
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
|
||
|
for (int64_t iow = 0; iow < OW; iow++) {
|
||
|
for (int64_t iic = ith; iic < IC; iic += nth) {
|
||
|
|
||
|
// micro kernel
|
||
|
ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
|
||
|
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
|
||
|
|
||
|
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
|
||
|
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
||
|
const int64_t iiw = iow*s0 + ikw*d0 - p0;
|
||
|
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
||
|
|
||
|
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||
|
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
|
||
|
} else {
|
||
|
dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_im2col(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
switch (dst->type) {
|
||
|
case GGML_TYPE_F16:
|
||
|
{
|
||
|
ggml_compute_forward_im2col_f16(params, dst);
|
||
|
} break;
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_im2col_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_im2col_back_f32
|
||
|
|
||
|
static void ggml_compute_forward_im2col_back_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
||
|
|
||
|
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||
|
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||
|
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
||
|
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
||
|
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
||
|
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
||
|
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int64_t N = is_2D ? ne3 : ne2;
|
||
|
const int64_t IC = is_2D ? ne2 : ne1;
|
||
|
const int64_t IH = is_2D ? ne1 : 1;
|
||
|
const int64_t IW = ne0;
|
||
|
|
||
|
const int64_t KH = is_2D ? ne01 : 1;
|
||
|
const int64_t KW = ne00;
|
||
|
|
||
|
const int64_t OH = is_2D ? ne12 : 1;
|
||
|
const int64_t OW = ne11;
|
||
|
|
||
|
int ofs0 = is_2D ? nb3 : nb2;
|
||
|
int ofs1 = is_2D ? nb2 : nb1;
|
||
|
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
|
||
|
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
|
||
|
{
|
||
|
float * const wdata = (float *) dst->data;
|
||
|
|
||
|
for (int64_t in = 0; in < N; in++) {
|
||
|
for (int64_t iic = ith; iic < IC; iic += nth) {
|
||
|
for (int64_t iih = 0; iih < IH; iih++) {
|
||
|
for (int64_t iiw = 0; iiw < IW; iiw++) {
|
||
|
|
||
|
// micro kernel
|
||
|
float grad = 0.0f;
|
||
|
for (int64_t ikh = 0; ikh < KH; ikh++) {
|
||
|
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
||
|
// For s0 > 1 some values were skipped over in the forward pass.
|
||
|
// These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
|
||
|
const int64_t tmpw = (iiw + p0 - ikw*d0);
|
||
|
if (tmpw % s0 != 0) {
|
||
|
continue;
|
||
|
}
|
||
|
const int64_t iow = tmpw / s0;
|
||
|
|
||
|
// Equivalent logic as above except for s1.
|
||
|
int64_t ioh;
|
||
|
if (is_2D) {
|
||
|
const int64_t tmph = iih + p1 - ikh*d1;
|
||
|
|
||
|
if (tmph % s1 != 0) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
ioh = tmph / s1;
|
||
|
} else {
|
||
|
ioh = 0;
|
||
|
}
|
||
|
|
||
|
if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
const float * const src_data = (const float *) src1->data
|
||
|
+ (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
|
||
|
grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
|
||
|
}
|
||
|
}
|
||
|
float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
|
||
|
dst_data[iih*IW + iiw] = grad;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_conv_transpose_2d
|
||
|
|
||
|
static void ggml_compute_forward_conv_transpose_2d(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nk = ne00*ne01*ne02*ne03;
|
||
|
|
||
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||
|
GGML_ASSERT(nb10 == sizeof(float));
|
||
|
|
||
|
if (ith == 0) {
|
||
|
memset(params->wdata, 0, params->wsize);
|
||
|
|
||
|
// permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
|
||
|
{
|
||
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
||
|
|
||
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
|
||
|
ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
|
||
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||
|
dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
|
||
|
{
|
||
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
|
||
|
for (int i12 = 0; i12 < ne12; i12++) {
|
||
|
for (int i11 = 0; i11 < ne11; i11++) {
|
||
|
const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
|
||
|
ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
|
||
|
for (int i10 = 0; i10 < ne10; i10++) {
|
||
|
dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
memset(dst->data, 0, ggml_nbytes(dst));
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
|
||
|
const int32_t stride = ggml_get_op_params_i32(dst, 0);
|
||
|
|
||
|
// total patches in dst
|
||
|
const int np = ne2;
|
||
|
|
||
|
// patches per thread
|
||
|
const int dp = (np + nth - 1)/nth;
|
||
|
|
||
|
// patch range for this thread
|
||
|
const int ip0 = dp*ith;
|
||
|
const int ip1 = MIN(ip0 + dp, np);
|
||
|
|
||
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
||
|
ggml_fp16_t * const wdata_src = wdata + nk;
|
||
|
|
||
|
for (int i2 = ip0; i2 < ip1; i2++) { // Cout
|
||
|
float * dst_data = (float *)((char *) dst->data + i2*nb2);
|
||
|
ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
|
||
|
for (int i11 = 0; i11 < ne11; i11++) {
|
||
|
for (int i10 = 0; i10 < ne10; i10++) {
|
||
|
const int i1n = i11*ne10*ne12 + i10*ne12;
|
||
|
for (int i01 = 0; i01 < ne01; i01++) {
|
||
|
for (int i00 = 0; i00 < ne00; i00++) {
|
||
|
float v = 0;
|
||
|
ggml_vec_dot_f16(ne03, &v, 0,
|
||
|
wdata_src + i1n, 0,
|
||
|
wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
|
||
|
dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_pool_1d_sk_p0
|
||
|
|
||
|
static void ggml_compute_forward_pool_1d_sk_p0(
|
||
|
const struct ggml_compute_params * params,
|
||
|
const enum ggml_op_pool op,
|
||
|
const int k,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src = dst->src[0];
|
||
|
|
||
|
assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const char * cdata = (const char *)src->data;
|
||
|
const char * const data_end = cdata + ggml_nbytes(src);
|
||
|
float * drow = (float *)dst->data;
|
||
|
|
||
|
const int64_t rs = dst->ne[0];
|
||
|
|
||
|
while (cdata < data_end) {
|
||
|
const void * srow = (const void *)cdata;
|
||
|
int j = 0;
|
||
|
for (int64_t i = 0; i < rs; ++i) {
|
||
|
switch (op) {
|
||
|
case GGML_OP_POOL_AVG: drow[i] = 0; break;
|
||
|
case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
|
||
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
||
|
}
|
||
|
for (int ki = 0; ki < k; ++ki) {
|
||
|
const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
|
||
|
switch (op) {
|
||
|
case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
|
||
|
case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
|
||
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
||
|
}
|
||
|
++j;
|
||
|
}
|
||
|
switch (op) {
|
||
|
case GGML_OP_POOL_AVG: drow[i] /= k; break;
|
||
|
case GGML_OP_POOL_MAX: break;
|
||
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cdata += src->nb[1];
|
||
|
drow += rs;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_pool_1d
|
||
|
|
||
|
static void ggml_compute_forward_pool_1d(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const int32_t * opts = (const int32_t *)dst->op_params;
|
||
|
enum ggml_op_pool op = opts[0];
|
||
|
const int k0 = opts[1];
|
||
|
const int s0 = opts[2];
|
||
|
const int p0 = opts[3];
|
||
|
GGML_ASSERT(p0 == 0); // padding not supported
|
||
|
GGML_ASSERT(k0 == s0); // only s = k supported
|
||
|
|
||
|
ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_pool_2d
|
||
|
|
||
|
static void ggml_compute_forward_pool_2d(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src = dst->src[0];
|
||
|
|
||
|
assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const int32_t * opts = (const int32_t *)dst->op_params;
|
||
|
enum ggml_op_pool op = opts[0];
|
||
|
const int k0 = opts[1];
|
||
|
const int k1 = opts[2];
|
||
|
const int s0 = opts[3];
|
||
|
const int s1 = opts[4];
|
||
|
const int p0 = opts[5];
|
||
|
const int p1 = opts[6];
|
||
|
const char * cdata = (const char*)src->data;
|
||
|
const char * const data_end = cdata + ggml_nbytes(src);
|
||
|
|
||
|
const int64_t px = dst->ne[0];
|
||
|
const int64_t py = dst->ne[1];
|
||
|
const int64_t pa = px * py;
|
||
|
|
||
|
float * dplane = (float *)dst->data;
|
||
|
|
||
|
const int ka = k0 * k1;
|
||
|
const int offset0 = -p0;
|
||
|
const int offset1 = -p1;
|
||
|
|
||
|
while (cdata < data_end) {
|
||
|
for (int oy = 0; oy < py; ++oy) {
|
||
|
float * const drow = dplane + oy * px;
|
||
|
for (int ox = 0; ox < px; ++ox) {
|
||
|
float * const out = drow + ox;
|
||
|
switch (op) {
|
||
|
case GGML_OP_POOL_AVG: *out = 0; break;
|
||
|
case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
|
||
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
||
|
}
|
||
|
|
||
|
const int ix = offset0 + ox * s0;
|
||
|
const int iy = offset1 + oy * s1;
|
||
|
|
||
|
for (int ky = 0; ky < k1; ++ky) {
|
||
|
if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
|
||
|
const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
|
||
|
for (int kx = 0; kx < k0; ++kx) {
|
||
|
int j = ix + kx;
|
||
|
if (j < 0 || j >= src->ne[0]) continue;
|
||
|
const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
|
||
|
switch (op) {
|
||
|
case GGML_OP_POOL_AVG: *out += srow_j; break;
|
||
|
case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
|
||
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
switch (op) {
|
||
|
case GGML_OP_POOL_AVG: *out /= ka; break;
|
||
|
case GGML_OP_POOL_MAX: break;
|
||
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cdata += src->nb[2];
|
||
|
dplane += pa;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_pool_2d_back
|
||
|
|
||
|
static void ggml_compute_forward_pool_2d_back(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src = dst->src[0];
|
||
|
const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
|
||
|
|
||
|
assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const int32_t * opts = (const int32_t *)dst->op_params;
|
||
|
enum ggml_op_pool op = opts[0];
|
||
|
const int k0 = opts[1];
|
||
|
const int k1 = opts[2];
|
||
|
const int s0 = opts[3];
|
||
|
const int s1 = opts[4];
|
||
|
const int p0 = opts[5];
|
||
|
const int p1 = opts[6];
|
||
|
|
||
|
char * cdata = (char *) dst->data;
|
||
|
const char * cdataf = (const char *) dstf->data;
|
||
|
const char * const data_end = cdata + ggml_nbytes(dst);
|
||
|
|
||
|
GGML_ASSERT(params->ith == 0);
|
||
|
memset(cdata, 0, ggml_nbytes(dst));
|
||
|
|
||
|
const int64_t px = src->ne[0];
|
||
|
const int64_t py = src->ne[1];
|
||
|
const int64_t pa = px * py;
|
||
|
|
||
|
const float * splane = (const float *) src->data;
|
||
|
|
||
|
const int ka = k0 * k1;
|
||
|
const int offset0 = -p0;
|
||
|
const int offset1 = -p1;
|
||
|
|
||
|
while (cdata < data_end) {
|
||
|
for (int oy = 0; oy < py; ++oy) {
|
||
|
const float * const srow = splane + oy * px;
|
||
|
for (int ox = 0; ox < px; ++ox) {
|
||
|
const float grad0 = srow[ox];
|
||
|
|
||
|
const int ix = offset0 + ox * s0;
|
||
|
const int iy = offset1 + oy * s1;
|
||
|
|
||
|
if (op == GGML_OP_POOL_MAX) {
|
||
|
float maxval = -FLT_MAX;
|
||
|
int kxmax = -1;
|
||
|
int kymax = -1;
|
||
|
|
||
|
for (int ky = 0; ky < k1; ++ky) {
|
||
|
if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
|
||
|
continue;
|
||
|
}
|
||
|
const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
|
||
|
for (int kx = 0; kx < k0; ++kx) {
|
||
|
int j = ix + kx;
|
||
|
if (j < 0 || j >= dst->ne[0]) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
const float val = dst->type == GGML_TYPE_F32 ?
|
||
|
((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
|
||
|
if (val <= maxval) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
maxval = val;
|
||
|
kxmax = kx;
|
||
|
kymax = ky;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (kxmax == -1 || kymax == -1) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
|
||
|
const int j = ix + kxmax;
|
||
|
if (dst->type == GGML_TYPE_F32) {
|
||
|
((float *) drow)[j] += grad0;
|
||
|
} else {
|
||
|
((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
|
||
|
}
|
||
|
} else if (op == GGML_OP_POOL_AVG) {
|
||
|
const float grad = grad0 / ka;
|
||
|
|
||
|
for (int ky = 0; ky < k1; ++ky) {
|
||
|
if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
|
||
|
continue;
|
||
|
}
|
||
|
void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
|
||
|
for (int kx = 0; kx < k0; ++kx) {
|
||
|
int j = ix + kx;
|
||
|
if (j < 0 || j >= dst->ne[0]) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (dst->type == GGML_TYPE_F32) {
|
||
|
((float *) drow)[j] += grad;
|
||
|
} else {
|
||
|
((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
GGML_ASSERT(false);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cdata += dst->nb[2];
|
||
|
cdataf += dst->nb[2];
|
||
|
splane += pa;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_upscale
|
||
|
|
||
|
static void ggml_compute_forward_upscale_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
const float sf0 = (float)ne0/src0->ne[0];
|
||
|
const float sf1 = (float)ne1/src0->ne[1];
|
||
|
const float sf2 = (float)ne2/src0->ne[2];
|
||
|
const float sf3 = (float)ne3/src0->ne[3];
|
||
|
|
||
|
// TODO: optimize
|
||
|
|
||
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||
|
const int64_t i03 = i3 / sf3;
|
||
|
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
|
||
|
const int64_t i02 = i2 / sf2;
|
||
|
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
||
|
const int64_t i01 = i1 / sf1;
|
||
|
for (int64_t i0 = 0; i0 < ne0; i0++) {
|
||
|
const int64_t i00 = i0 / sf0;
|
||
|
|
||
|
const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||
|
float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
||
|
|
||
|
*y = *x;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_upscale(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_upscale_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// ggml_compute_forward_pad
|
||
|
|
||
|
static void ggml_compute_forward_pad_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
float * dst_ptr = (float *) dst->data;
|
||
|
|
||
|
// TODO: optimize
|
||
|
|
||
|
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||
|
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
||
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||
|
for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||
|
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||
|
|
||
|
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||
|
|
||
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||
|
dst_ptr[dst_idx] = *src_ptr;
|
||
|
} else {
|
||
|
dst_ptr[dst_idx] = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_pad(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_pad_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// ggml_compute_forward_arange
|
||
|
|
||
|
static void ggml_compute_forward_arange_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
GGML_ASSERT(dst->nb[0] == sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const float start = ggml_get_op_params_f32(dst, 0);
|
||
|
const float stop = ggml_get_op_params_f32(dst, 1);
|
||
|
const float step = ggml_get_op_params_f32(dst, 2);
|
||
|
|
||
|
const int64_t steps = (int64_t) ceilf((stop - start) / step);
|
||
|
|
||
|
GGML_ASSERT(ggml_nelements(dst) == steps);
|
||
|
|
||
|
for (int64_t i = ith; i < steps; i+= nth) {
|
||
|
float value = start + step * i;
|
||
|
((float *)dst->data)[i] = value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_arange(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
switch (dst->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_arange_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_timestep_embedding_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
const int dim = ggml_get_op_params_i32(dst, 0);
|
||
|
const int max_period = ggml_get_op_params_i32(dst, 1);
|
||
|
|
||
|
int half = dim / 2;
|
||
|
|
||
|
for (int64_t i = 0; i < ne00; i++) {
|
||
|
float * embed_data = (float *)((char *) dst->data + i*nb1);
|
||
|
for (int64_t j = ith; j < half; j += nth) {
|
||
|
float timestep = ((float *)src0->data)[i];
|
||
|
float freq = (float)expf(-logf(max_period) * j / half);
|
||
|
float arg = timestep * freq;
|
||
|
embed_data[j] = cosf(arg);
|
||
|
embed_data[j + half] = sinf(arg);
|
||
|
}
|
||
|
if (dim % 2 != 0 && ith == 0) {
|
||
|
embed_data[dim] = 0.f;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_timestep_embedding(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_timestep_embedding_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_argsort
|
||
|
|
||
|
static void ggml_compute_forward_argsort_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int64_t nr = ggml_nrows(src0);
|
||
|
|
||
|
enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
|
||
|
|
||
|
for (int64_t i = ith; i < nr; i += nth) {
|
||
|
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
|
||
|
const float * src_data = (float *)((char *) src0->data + i*nb01);
|
||
|
|
||
|
for (int64_t j = 0; j < ne0; j++) {
|
||
|
dst_data[j] = j;
|
||
|
}
|
||
|
|
||
|
// C doesn't have a functional sort, so we do a bubble sort instead
|
||
|
for (int64_t j = 0; j < ne0; j++) {
|
||
|
for (int64_t k = j + 1; k < ne0; k++) {
|
||
|
if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
|
||
|
(order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
|
||
|
int32_t tmp = dst_data[j];
|
||
|
dst_data[j] = dst_data[k];
|
||
|
dst_data[k] = tmp;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_argsort(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_argsort_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_flash_attn_ext
|
||
|
|
||
|
static void ggml_compute_forward_flash_attn_ext_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
const struct ggml_tensor * q,
|
||
|
const struct ggml_tensor * k,
|
||
|
const struct ggml_tensor * v,
|
||
|
const struct ggml_tensor * mask,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
|
||
|
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
|
||
|
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int64_t D = neq0;
|
||
|
const int64_t N = neq1;
|
||
|
|
||
|
GGML_ASSERT(ne0 == D);
|
||
|
GGML_ASSERT(ne2 == N);
|
||
|
|
||
|
// input tensor rows must be contiguous
|
||
|
GGML_ASSERT(nbq0 == ggml_type_size(q->type));
|
||
|
GGML_ASSERT(nbk0 == ggml_type_size(k->type));
|
||
|
GGML_ASSERT(nbv0 == ggml_type_size(v->type));
|
||
|
|
||
|
GGML_ASSERT(neq0 == D);
|
||
|
GGML_ASSERT(nek0 == D);
|
||
|
GGML_ASSERT(nev0 == D);
|
||
|
|
||
|
GGML_ASSERT(neq1 == N);
|
||
|
GGML_ASSERT(nev0 == D);
|
||
|
|
||
|
// dst cannot be transposed or permuted
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb0 <= nb1);
|
||
|
GGML_ASSERT(nb1 <= nb2);
|
||
|
GGML_ASSERT(nb2 <= nb3);
|
||
|
|
||
|
// broadcast factors
|
||
|
const int64_t rk2 = neq2/nek2;
|
||
|
const int64_t rk3 = neq3/nek3;
|
||
|
|
||
|
const int64_t rv2 = neq2/nev2;
|
||
|
const int64_t rv3 = neq3/nev3;
|
||
|
|
||
|
// parallelize by q rows using ggml_vec_dot_f32
|
||
|
|
||
|
// total rows in q
|
||
|
const int nr = neq1*neq2*neq3;
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
float scale = 1.0f;
|
||
|
float max_bias = 0.0f;
|
||
|
float logit_softcap = 0.0f;
|
||
|
|
||
|
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
||
|
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
||
|
memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
|
||
|
|
||
|
if (logit_softcap != 0) {
|
||
|
scale /= logit_softcap;
|
||
|
}
|
||
|
|
||
|
const uint32_t n_head = neq2;
|
||
|
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
|
||
|
|
||
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||
|
|
||
|
enum ggml_type const k_vec_dot_type = type_traits_cpu[k->type].vec_dot_type;
|
||
|
ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits(k_vec_dot_type)->from_float;
|
||
|
ggml_vec_dot_t const kq_vec_dot = type_traits_cpu[k->type].vec_dot;
|
||
|
ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
|
||
|
|
||
|
GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type");
|
||
|
GGML_ASSERT(v_to_float && "fattn: unsupported V-type");
|
||
|
|
||
|
// loop over n_batch and n_head
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// q indices
|
||
|
const int iq3 = ir/(neq2*neq1);
|
||
|
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
|
||
|
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
|
||
|
|
||
|
const uint32_t h = iq2; // head index
|
||
|
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
|
||
|
|
||
|
float S = 0.0f; // sum
|
||
|
float M = -INFINITY; // maximum KQ value
|
||
|
|
||
|
float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
|
||
|
float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
|
||
|
ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
|
||
|
ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
|
||
|
|
||
|
if (v->type == GGML_TYPE_F16) {
|
||
|
memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
|
||
|
} else {
|
||
|
memset(VKQ32, 0, D*sizeof(float));
|
||
|
}
|
||
|
|
||
|
const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
|
||
|
|
||
|
// k indices
|
||
|
const int ik3 = iq3 / rk3;
|
||
|
const int ik2 = iq2 / rk2;
|
||
|
|
||
|
// v indices
|
||
|
const int iv3 = iq3 / rv3;
|
||
|
const int iv2 = iq2 / rv2;
|
||
|
|
||
|
const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
|
||
|
q_to_vec_dot(pq, Q_q, D);
|
||
|
|
||
|
// online softmax / attention
|
||
|
// loop over n_kv and n_head_kv
|
||
|
// ref: https://arxiv.org/pdf/2112.05682.pdf
|
||
|
for (int64_t ic = 0; ic < nek1; ++ic) {
|
||
|
const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
|
||
|
if (mv == -INFINITY) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
float s; // KQ value
|
||
|
|
||
|
const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
|
||
|
kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
|
||
|
|
||
|
s = s*scale; // scale KQ value
|
||
|
|
||
|
if (logit_softcap != 0.0f) {
|
||
|
s = logit_softcap*tanhf(s);
|
||
|
}
|
||
|
|
||
|
s += mv; // apply mask
|
||
|
|
||
|
const float Mold = M;
|
||
|
|
||
|
float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
|
||
|
float vs = 1.0f; // post-softmax KQ value, expf(s - M)
|
||
|
|
||
|
const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
|
||
|
|
||
|
if (v->type == GGML_TYPE_F16) {
|
||
|
if (s > M) {
|
||
|
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
|
||
|
M = s;
|
||
|
ms = expf(Mold - M);
|
||
|
|
||
|
// V = V*expf(Mold - M)
|
||
|
ggml_vec_scale_f16(D, VKQ16, ms);
|
||
|
} else {
|
||
|
// no new maximum, ms == 1.0f, vs != 1.0f
|
||
|
vs = expf(s - M);
|
||
|
}
|
||
|
|
||
|
// V += v*expf(s - M)
|
||
|
ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
|
||
|
} else {
|
||
|
if (s > M) {
|
||
|
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
|
||
|
M = s;
|
||
|
ms = expf(Mold - M);
|
||
|
|
||
|
// V = V*expf(Mold - M)
|
||
|
ggml_vec_scale_f32(D, VKQ32, ms);
|
||
|
} else {
|
||
|
// no new maximum, ms == 1.0f, vs != 1.0f
|
||
|
vs = expf(s - M);
|
||
|
}
|
||
|
|
||
|
v_to_float(v_data, V32, D);
|
||
|
|
||
|
// V += v*expf(s - M)
|
||
|
ggml_vec_mad_f32(D, VKQ32, V32, vs);
|
||
|
}
|
||
|
|
||
|
S = S*ms + vs; // scale and increment sum with partial sum
|
||
|
}
|
||
|
|
||
|
if (v->type == GGML_TYPE_F16) {
|
||
|
for (int64_t d = 0; d < D; ++d) {
|
||
|
VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// V /= S
|
||
|
const float S_inv = 1.0f/S;
|
||
|
ggml_vec_scale_f32(D, VKQ32, S_inv);
|
||
|
|
||
|
// dst indices
|
||
|
const int i1 = iq1;
|
||
|
const int i2 = iq2;
|
||
|
const int i3 = iq3;
|
||
|
|
||
|
// original
|
||
|
//memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
|
||
|
|
||
|
// permute(0, 2, 1, 3)
|
||
|
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_flash_attn_ext(
|
||
|
const struct ggml_compute_params * params,
|
||
|
const struct ggml_tensor * q,
|
||
|
const struct ggml_tensor * k,
|
||
|
const struct ggml_tensor * v,
|
||
|
const struct ggml_tensor * mask,
|
||
|
struct ggml_tensor * dst) {
|
||
|
switch (dst->op_params[3]) {
|
||
|
case GGML_PREC_DEFAULT:
|
||
|
case GGML_PREC_F32:
|
||
|
{
|
||
|
// uses F32 accumulators
|
||
|
ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_flash_attn_back
|
||
|
|
||
|
static void ggml_compute_forward_flash_attn_back_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
const bool masked,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * q = dst->src[0];
|
||
|
const struct ggml_tensor * k = dst->src[1];
|
||
|
const struct ggml_tensor * v = dst->src[2];
|
||
|
const struct ggml_tensor * d = dst->src[3];
|
||
|
|
||
|
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
|
||
|
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
|
||
|
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
|
||
|
GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
||
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int64_t D = neq0;
|
||
|
const int64_t N = neq1;
|
||
|
const int64_t P = nek1 - N;
|
||
|
const int64_t M = P + N;
|
||
|
|
||
|
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
|
||
|
const int mxDM = MAX(D, Mup);
|
||
|
|
||
|
// GGML_ASSERT(ne0 == D);
|
||
|
// GGML_ASSERT(ne1 == N);
|
||
|
GGML_ASSERT(P >= 0);
|
||
|
|
||
|
GGML_ASSERT(nbq0 == sizeof(float));
|
||
|
GGML_ASSERT(nbk0 == sizeof(float));
|
||
|
GGML_ASSERT(nbv0 == sizeof(float));
|
||
|
|
||
|
GGML_ASSERT(neq0 == D);
|
||
|
GGML_ASSERT(nek0 == D);
|
||
|
GGML_ASSERT(nev1 == D);
|
||
|
GGML_ASSERT(ned0 == D);
|
||
|
|
||
|
GGML_ASSERT(neq1 == N);
|
||
|
GGML_ASSERT(nek1 == N + P);
|
||
|
GGML_ASSERT(nev1 == D);
|
||
|
GGML_ASSERT(ned1 == N);
|
||
|
|
||
|
// dst cannot be transposed or permuted
|
||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||
|
GGML_ASSERT(nb0 <= nb1);
|
||
|
GGML_ASSERT(nb1 <= nb2);
|
||
|
GGML_ASSERT(nb2 <= nb3);
|
||
|
|
||
|
if (ith == 0) {
|
||
|
memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
|
||
|
const int64_t elem_q = ggml_nelements(q);
|
||
|
const int64_t elem_k = ggml_nelements(k);
|
||
|
|
||
|
enum ggml_type result_type = dst->type;
|
||
|
GGML_ASSERT(ggml_blck_size(result_type) == 1);
|
||
|
const size_t tsize = ggml_type_size(result_type);
|
||
|
|
||
|
const size_t offs_q = 0;
|
||
|
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
|
||
|
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
|
||
|
|
||
|
void * grad_q = (char *) dst->data;
|
||
|
void * grad_k = (char *) dst->data + offs_k;
|
||
|
void * grad_v = (char *) dst->data + offs_v;
|
||
|
|
||
|
const size_t nbgq1 = nb0*neq0;
|
||
|
const size_t nbgq2 = nb0*neq0*neq1;
|
||
|
const size_t nbgq3 = nb0*neq0*neq1*neq2;
|
||
|
|
||
|
const size_t nbgk1 = nb0*nek0;
|
||
|
const size_t nbgk2 = nb0*nek0*nek1;
|
||
|
const size_t nbgk3 = nb0*nek0*nek1*neq2;
|
||
|
|
||
|
const size_t nbgv1 = nb0*nev0;
|
||
|
const size_t nbgv2 = nb0*nev0*nev1;
|
||
|
const size_t nbgv3 = nb0*nev0*nev1*neq2;
|
||
|
|
||
|
// parallelize by k rows using ggml_vec_dot_f32
|
||
|
|
||
|
// total rows in k
|
||
|
const int nr = nek2*nek3;
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
const float scale = 1.0f/sqrtf(D);
|
||
|
|
||
|
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
|
||
|
|
||
|
// how often k2 (and v2) is repeated in q2
|
||
|
int nrep = neq2/nek2;
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
// q indices
|
||
|
const int ik3 = ir/(nek2);
|
||
|
const int ik2 = ir - ik3*nek2;
|
||
|
|
||
|
const int iq3 = ik3;
|
||
|
const int id3 = ik3;
|
||
|
const int iv3 = ik3;
|
||
|
const int iv2 = ik2;
|
||
|
|
||
|
for (int irep = 0; irep < nrep; ++irep) {
|
||
|
const int iq2 = ik2 + irep*nek2;
|
||
|
const int id2 = iq2;
|
||
|
|
||
|
// (ik2 + irep*nek2) % nek2 == ik2
|
||
|
for (int iq1 = 0; iq1 < neq1; ++iq1) {
|
||
|
const int id1 = iq1;
|
||
|
|
||
|
// not sure about CACHE_LINE_SIZE_F32..
|
||
|
// - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
|
||
|
float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
|
||
|
float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
|
||
|
|
||
|
for (int i = M; i < Mup; ++i) {
|
||
|
S[i] = -INFINITY;
|
||
|
}
|
||
|
|
||
|
const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
|
||
|
for (int64_t ic = 0; ic < masked_begin; ++ic) {
|
||
|
// k indices
|
||
|
const int ik1 = ic;
|
||
|
|
||
|
// S indices
|
||
|
const int i1 = ik1;
|
||
|
|
||
|
ggml_vec_dot_f32(neq0,
|
||
|
S + i1, 0,
|
||
|
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
|
||
|
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
|
||
|
}
|
||
|
|
||
|
// scale
|
||
|
ggml_vec_scale_f32(masked_begin, S, scale);
|
||
|
|
||
|
for (int64_t i = masked_begin; i < M; i++) {
|
||
|
S[i] = -INFINITY;
|
||
|
}
|
||
|
|
||
|
// softmax
|
||
|
// exclude known -INF S[..] values from max and loop
|
||
|
// dont forget to set their SM values to zero
|
||
|
{
|
||
|
float max = -INFINITY;
|
||
|
ggml_vec_max_f32(masked_begin, &max, S);
|
||
|
|
||
|
ggml_float sum = 0.0;
|
||
|
{
|
||
|
#ifdef GGML_SOFT_MAX_ACCELERATE
|
||
|
max = -max;
|
||
|
vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
|
||
|
vvexpf(SM, SM, &Mup);
|
||
|
ggml_vec_sum_f32(Mup, &sum, SM);
|
||
|
#else
|
||
|
sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
assert(sum > 0.0);
|
||
|
|
||
|
sum = 1.0/sum;
|
||
|
ggml_vec_scale_f32(masked_begin, SM, sum);
|
||
|
|
||
|
}
|
||
|
|
||
|
// step-by-step explanation
|
||
|
{
|
||
|
// forward-process shape grads from backward process
|
||
|
// parallel_for ik2,ik3:
|
||
|
// for irep:
|
||
|
// iq2 = ik2 + irep*nek2
|
||
|
// k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
|
||
|
// q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
|
||
|
// v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
|
||
|
// for iq1:
|
||
|
// kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
|
||
|
// qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
|
||
|
// vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
|
||
|
// S0 = -Inf [D,1,1,1]
|
||
|
// ~S1[i] = dot(kcur[:D,i], qcur)
|
||
|
// S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
|
||
|
// S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
|
||
|
// S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
|
||
|
// S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
|
||
|
// ~S5[i] = dot(vcur[:,i], S4)
|
||
|
// S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
|
||
|
// ~dst[i,iq1,iq2,iq3] = S5[i] ^
|
||
|
// dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
|
||
|
// dst backward-/ grad[dst] = d
|
||
|
//
|
||
|
// output gradients with their dependencies:
|
||
|
//
|
||
|
// grad[kcur] = grad[S1].T @ qcur
|
||
|
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
|
||
|
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
|
||
|
// grad[S4] = grad[S5] @ vcur
|
||
|
// grad[S4] = d[:D,id1,id2,id3] @ vcur
|
||
|
// grad[qcur] = grad[S1] @ kcur
|
||
|
// grad[vcur] = grad[S5].T @ S4
|
||
|
// grad[vcur] = d[:D,id1,id2,id3].T @ S4
|
||
|
//
|
||
|
// in post-order:
|
||
|
//
|
||
|
// S1 = qcur @ kcur.T
|
||
|
// S2 = S1 * scale
|
||
|
// S3 = diag_mask_inf(S2, P)
|
||
|
// S4 = softmax(S3)
|
||
|
// grad[S4] = d[:D,id1,id2,id3] @ vcur
|
||
|
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
|
||
|
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
|
||
|
// grad[qcur] = grad[S1] @ kcur
|
||
|
// grad[kcur] = grad[S1].T @ qcur
|
||
|
// grad[vcur] = d[:D,id1,id2,id3].T @ S4
|
||
|
//
|
||
|
// using less variables (SM=S4):
|
||
|
//
|
||
|
// S = diag_mask_inf(qcur @ kcur.T * scale, P)
|
||
|
// SM = softmax(S)
|
||
|
// S = d[:D,iq1,iq2,iq3] @ vcur
|
||
|
// dot_SM_gradSM = dot(SM, S)
|
||
|
// S = SM * (S - dot(SM, S))
|
||
|
// S = diag_mask_zero(S, P) * scale
|
||
|
//
|
||
|
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
|
||
|
// grad[k][:D,:M,ik2,ik3] += S.T @ qcur
|
||
|
// grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
|
||
|
}
|
||
|
|
||
|
// S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
|
||
|
// S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
|
||
|
// for ic:
|
||
|
// S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
|
||
|
// exclude known future zero S[..] values from operation
|
||
|
ggml_vec_set_f32(masked_begin, S, 0);
|
||
|
for (int64_t ic = 0; ic < D; ++ic) {
|
||
|
ggml_vec_mad_f32(masked_begin,
|
||
|
S,
|
||
|
(float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
|
||
|
*(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
|
||
|
}
|
||
|
|
||
|
// S = SM * (S - dot(SM, S))
|
||
|
float dot_SM_gradSM = 0;
|
||
|
ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
|
||
|
ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
|
||
|
ggml_vec_mul_f32 (masked_begin, S, S, SM);
|
||
|
|
||
|
// S = diag_mask_zero(S, P) * scale
|
||
|
// already done by above ggml_vec_set_f32
|
||
|
|
||
|
// exclude known zero S[..] values from operation
|
||
|
ggml_vec_scale_f32(masked_begin, S, scale);
|
||
|
|
||
|
// S shape [M,1]
|
||
|
// SM shape [M,1]
|
||
|
// kcur shape [D,M]
|
||
|
// qcur shape [D,1]
|
||
|
// vcur shape [M,D]
|
||
|
|
||
|
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
|
||
|
// grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
|
||
|
// for ic:
|
||
|
// grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
|
||
|
// exclude known zero S[..] values from loop
|
||
|
for (int64_t ic = 0; ic < masked_begin; ++ic) {
|
||
|
ggml_vec_mad_f32(D,
|
||
|
(float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
|
||
|
(float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
|
||
|
S[ic]);
|
||
|
}
|
||
|
|
||
|
// grad[k][:D,:M,iq2,iq3] += S.T @ qcur
|
||
|
// for ic:
|
||
|
// grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
|
||
|
// grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
|
||
|
// exclude known zero S[..] values from loop
|
||
|
for (int64_t ic = 0; ic < masked_begin; ++ic) {
|
||
|
ggml_vec_mad_f32(D,
|
||
|
(float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
|
||
|
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
|
||
|
S[ic]);
|
||
|
}
|
||
|
|
||
|
// grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
|
||
|
// for ic:
|
||
|
// grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
|
||
|
// grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
|
||
|
// exclude known zero SM[..] values from mad
|
||
|
for (int64_t ic = 0; ic < D; ++ic) {
|
||
|
ggml_vec_mad_f32(masked_begin,
|
||
|
(float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
|
||
|
SM,
|
||
|
*(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_flash_attn_back(
|
||
|
const struct ggml_compute_params * params,
|
||
|
const bool masked,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * q = dst->src[0];
|
||
|
|
||
|
switch (q->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_ssm_conv
|
||
|
|
||
|
static void ggml_compute_forward_ssm_conv_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
const struct ggml_tensor * src0 = dst->src[0]; // conv_x
|
||
|
const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nc = src1->ne[0]; // d_conv
|
||
|
const int ncs = src0->ne[0]; // d_conv - 1 + n_t
|
||
|
const int nr = src0->ne[1]; // d_inner
|
||
|
const int n_t = dst->ne[1]; // tokens per sequence
|
||
|
const int n_s = dst->ne[2]; // number of sequences in the batch
|
||
|
|
||
|
GGML_ASSERT( dst->ne[0] == nr);
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
const int ir = ir1 - ir0;
|
||
|
|
||
|
for (int i3 = 0; i3 < n_s; ++i3) {
|
||
|
for (int i2 = 0; i2 < n_t; ++i2) {
|
||
|
// {d_conv - 1 + n_t, d_inner, n_seqs}
|
||
|
// sliding window
|
||
|
const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
|
||
|
const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
|
||
|
float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
|
||
|
|
||
|
// TODO: transpose the output for smaller strides for big batches?
|
||
|
// d_inner
|
||
|
for (int i1 = 0; i1 < ir; ++i1) {
|
||
|
// rowwise dot product
|
||
|
// NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
|
||
|
float sumf = 0.0f;
|
||
|
|
||
|
// d_conv
|
||
|
for (int i0 = 0; i0 < nc; ++i0) {
|
||
|
sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
|
||
|
}
|
||
|
x[i1] = sumf;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_ssm_conv(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
switch (dst->src[0]->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_ssm_conv_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_ssm_scan
|
||
|
|
||
|
static void ggml_compute_forward_ssm_scan_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
const struct ggml_tensor * src0 = dst->src[0]; // s
|
||
|
const struct ggml_tensor * src1 = dst->src[1]; // x
|
||
|
const struct ggml_tensor * src2 = dst->src[2]; // dt
|
||
|
const struct ggml_tensor * src3 = dst->src[3]; // A
|
||
|
const struct ggml_tensor * src4 = dst->src[4]; // B
|
||
|
const struct ggml_tensor * src5 = dst->src[5]; // C
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int64_t nc = src0->ne[0]; // d_state
|
||
|
const int64_t nr = src0->ne[1]; // d_inner
|
||
|
const int64_t n_t = src1->ne[1]; // number of tokens per sequence
|
||
|
const int64_t n_s = src0->ne[2]; // number of sequences in the batch
|
||
|
|
||
|
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
|
||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src2->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src3->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src4->nb[0] == sizeof(float));
|
||
|
GGML_ASSERT(src5->nb[0] == sizeof(float));
|
||
|
// required for the dot product between s and C
|
||
|
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
|
||
|
// required for per-sequence offsets for states
|
||
|
GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
|
||
|
// required to get correct offset for state destination (i.e. src1->nb[3])
|
||
|
GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
const int ir = ir1 - ir0;
|
||
|
|
||
|
for (int i3 = 0; i3 < n_s; ++i3) {
|
||
|
for (int i2 = 0; i2 < n_t; ++i2) {
|
||
|
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||
|
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||
|
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||
|
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||
|
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||
|
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||
|
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||
|
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||
|
|
||
|
// use the output as the source for the next token-wise iterations
|
||
|
if (i2 > 0) { s0 = s; }
|
||
|
|
||
|
// d_inner
|
||
|
for (int i1 = 0; i1 < ir; ++i1) {
|
||
|
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
|
||
|
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||
|
float x_dt = x[i1] * dt_soft_plus;
|
||
|
float sumf = 0.0f;
|
||
|
// d_state
|
||
|
for (int i0 = 0; i0 < nc; ++i0) {
|
||
|
int i = i0 + i1*nc;
|
||
|
// state = prev_state * dA + dB * x
|
||
|
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
||
|
// y = rowwise_dotprod(state, C)
|
||
|
sumf += state * C[i0];
|
||
|
s[i] = state;
|
||
|
}
|
||
|
y[i1] = sumf;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_ssm_scan(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
switch (dst->src[0]->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_ssm_scan_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_win_part
|
||
|
|
||
|
static void ggml_compute_forward_win_part_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
UNUSED(params);
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
||
|
|
||
|
const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
|
||
|
const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
|
||
|
const int32_t w = ((const int32_t *)(dst->op_params))[2];
|
||
|
|
||
|
assert(ne00 == ne0);
|
||
|
assert(ne3 == nep0*nep1);
|
||
|
|
||
|
// TODO: optimize / multi-thread
|
||
|
for (int py = 0; py < nep1; ++py) {
|
||
|
for (int px = 0; px < nep0; ++px) {
|
||
|
const int64_t i3 = py*nep0 + px;
|
||
|
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||
|
for (int64_t i1 = 0; i1 < ne1; ++i1) {
|
||
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||
|
const int64_t i02 = py*w + i2;
|
||
|
const int64_t i01 = px*w + i1;
|
||
|
const int64_t i00 = i0;
|
||
|
|
||
|
const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
|
||
|
const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
|
||
|
|
||
|
if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
|
||
|
((float *) dst->data)[i] = 0.0f;
|
||
|
} else {
|
||
|
((float *) dst->data)[i] = ((float *) src0->data)[j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_win_part(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_win_part_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_win_unpart
|
||
|
|
||
|
static void ggml_compute_forward_win_unpart_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
UNUSED(params);
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
|
||
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
||
|
|
||
|
const int32_t w = ((const int32_t *)(dst->op_params))[0];
|
||
|
|
||
|
// padding
|
||
|
const int px = (w - ne1%w)%w;
|
||
|
//const int py = (w - ne2%w)%w;
|
||
|
|
||
|
const int npx = (px + ne1)/w;
|
||
|
//const int npy = (py + ne2)/w;
|
||
|
|
||
|
assert(ne0 == ne00);
|
||
|
|
||
|
// TODO: optimize / multi-thread
|
||
|
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||
|
for (int64_t i1 = 0; i1 < ne1; ++i1) {
|
||
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||
|
const int ip2 = i2/w;
|
||
|
const int ip1 = i1/w;
|
||
|
|
||
|
const int64_t i02 = i2%w;
|
||
|
const int64_t i01 = i1%w;
|
||
|
const int64_t i00 = i0;
|
||
|
|
||
|
const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
|
||
|
const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
|
||
|
|
||
|
((float *) dst->data)[j] = ((float *) src0->data)[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_win_unpart(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_win_unpart_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//gmml_compute_forward_unary
|
||
|
|
||
|
static void ggml_compute_forward_unary(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const enum ggml_unary_op op = ggml_get_unary_op(dst);
|
||
|
|
||
|
switch (op) {
|
||
|
case GGML_UNARY_OP_ABS:
|
||
|
{
|
||
|
ggml_compute_forward_abs(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_SGN:
|
||
|
{
|
||
|
ggml_compute_forward_sgn(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_NEG:
|
||
|
{
|
||
|
ggml_compute_forward_neg(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_STEP:
|
||
|
{
|
||
|
ggml_compute_forward_step(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_TANH:
|
||
|
{
|
||
|
ggml_compute_forward_tanh(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_ELU:
|
||
|
{
|
||
|
ggml_compute_forward_elu(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_RELU:
|
||
|
{
|
||
|
ggml_compute_forward_relu(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_SIGMOID:
|
||
|
{
|
||
|
ggml_compute_forward_sigmoid(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_GELU:
|
||
|
{
|
||
|
ggml_compute_forward_gelu(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_GELU_QUICK:
|
||
|
{
|
||
|
ggml_compute_forward_gelu_quick(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_SILU:
|
||
|
{
|
||
|
ggml_compute_forward_silu(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_HARDSWISH:
|
||
|
{
|
||
|
ggml_compute_forward_hardswish(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_HARDSIGMOID:
|
||
|
{
|
||
|
ggml_compute_forward_hardsigmoid(params, dst);
|
||
|
} break;
|
||
|
case GGML_UNARY_OP_EXP:
|
||
|
{
|
||
|
ggml_compute_forward_exp(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_get_rel_pos
|
||
|
|
||
|
static void ggml_compute_forward_get_rel_pos_f16(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
UNUSED(params);
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
|
||
|
const int64_t w = ne1;
|
||
|
|
||
|
ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
|
||
|
ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
|
||
|
|
||
|
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||
|
for (int64_t i1 = 0; i1 < ne1; ++i1) {
|
||
|
const int64_t pos = (w - i1 - 1) + i2;
|
||
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||
|
dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_get_rel_pos(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F16:
|
||
|
case GGML_TYPE_BF16:
|
||
|
{
|
||
|
ggml_compute_forward_get_rel_pos_f16(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_add_rel_pos
|
||
|
|
||
|
static void ggml_compute_forward_add_rel_pos_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
const struct ggml_tensor * src2 = dst->src[2];
|
||
|
|
||
|
const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
|
||
|
if (!inplace) {
|
||
|
if (params->ith == 0) {
|
||
|
memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
|
||
|
}
|
||
|
ggml_barrier(params->threadpool);
|
||
|
}
|
||
|
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
|
||
|
|
||
|
float * src1_data = (float *) src1->data;
|
||
|
float * src2_data = (float *) src2->data;
|
||
|
float * dst_data = (float *) dst->data;
|
||
|
|
||
|
const int64_t ne10 = src1->ne[0];
|
||
|
const int64_t ne11 = src1->ne[1];
|
||
|
const int64_t ne12 = src1->ne[2];
|
||
|
const int64_t ne13 = src1->ne[3];
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
// total patches in dst
|
||
|
const int np = ne13;
|
||
|
|
||
|
// patches per thread
|
||
|
const int dp = (np + nth - 1)/nth;
|
||
|
|
||
|
// patch range for this thread
|
||
|
const int ip0 = dp*ith;
|
||
|
const int ip1 = MIN(ip0 + dp, np);
|
||
|
|
||
|
for (int64_t i13 = ip0; i13 < ip1; ++i13) {
|
||
|
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||
|
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||
|
const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
|
||
|
for (int64_t i10 = 0; i10 < ne10; ++i10) {
|
||
|
const int64_t jp0 = jp1 + i10;
|
||
|
const float src1_e = src1_data[jp0];
|
||
|
const float src2_e = src2_data[jp0];
|
||
|
|
||
|
const int64_t jdh = jp0 * ne10;
|
||
|
const int64_t jdw = jdh - (ne10 - 1) * i10;
|
||
|
|
||
|
for (int64_t j = 0; j < ne10; ++j) {
|
||
|
dst_data[jdh + j ] += src2_e;
|
||
|
dst_data[jdw + j*ne10] += src1_e;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_add_rel_pos(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_add_rel_pos_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_rwkv_wkv
|
||
|
|
||
|
static void ggml_compute_forward_rwkv_wkv_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
const size_t T = dst->src[1]->ne[3];
|
||
|
const size_t C = dst->ne[0];
|
||
|
const size_t H = dst->src[1]->ne[2];
|
||
|
const size_t n_seqs = dst->src[5]->ne[1];
|
||
|
|
||
|
float * dst_data = (float *) dst->data;
|
||
|
float * state = ((float *) dst->data) + C * T;
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
memset(dst_data, 0, T * C * sizeof(float));
|
||
|
|
||
|
float * k = (float *) dst->src[0]->data;
|
||
|
float * v = (float *) dst->src[1]->data;
|
||
|
float * r = (float *) dst->src[2]->data;
|
||
|
float * time_faaaa = (float *) dst->src[3]->data;
|
||
|
float * time_decay = (float *) dst->src[4]->data;
|
||
|
|
||
|
size_t t_stride = H * (C / H);
|
||
|
|
||
|
size_t h_stride = C / H;
|
||
|
size_t h_stride_2d = (C / H) * (C / H);
|
||
|
|
||
|
// basically fused operations:
|
||
|
// dst = r @ (time_faaaa * (k @ v) + state),
|
||
|
// state = time_decay * state + (k @ v),
|
||
|
// recursive through each token
|
||
|
for (size_t t = 0; t < T; t++) {
|
||
|
size_t t_offset = t * t_stride;
|
||
|
size_t state_offset = (C / H) * C * (t / (T / n_seqs));
|
||
|
float * state_cur = state + state_offset;
|
||
|
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
|
||
|
|
||
|
for (size_t h = 0; h < H; h++) {
|
||
|
size_t h_offset = h * h_stride;
|
||
|
size_t t_h_offset = t_offset + h_offset;
|
||
|
size_t h_2d_offset = h * h_stride_2d;
|
||
|
|
||
|
for (size_t i = 0; i < C / H; i++) {
|
||
|
size_t t_h_i_offset = t_h_offset + i;
|
||
|
size_t h_i_offset = h_offset + i;
|
||
|
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
||
|
|
||
|
float k_val = k[t_h_i_offset];
|
||
|
float r_val = r[t_h_i_offset];
|
||
|
float time_faaaa_val = time_faaaa[h_i_offset];
|
||
|
// RWKV v6: different time_decay for each token.
|
||
|
float time_decay_val = time_decay[t_h_i_offset];
|
||
|
|
||
|
for (size_t j = 0; j < C / H; j ++) {
|
||
|
size_t t_h_j_offset = t_h_offset + j;
|
||
|
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||
|
|
||
|
float v_val = v[t_h_j_offset];
|
||
|
float kv_val = v_val * k_val;
|
||
|
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||
|
float temp_val = kv_val * time_faaaa_val + prev_state_val;
|
||
|
dst_data[t_h_j_offset] += temp_val * r_val;
|
||
|
state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_rwkv_wkv(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_rwkv_wkv_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_map_unary
|
||
|
|
||
|
static void ggml_compute_forward_map_unary_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const ggml_unary_op_f32_t fun) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
fun(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_map_unary(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const ggml_unary_op_f32_t fun) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_map_unary_f32(params, dst, fun);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_map_binary
|
||
|
|
||
|
static void ggml_compute_forward_map_binary_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const ggml_binary_op_f32_t fun) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(ggml_is_contiguous_1(src0));
|
||
|
assert(ggml_is_contiguous_1(src1));
|
||
|
assert(ggml_is_contiguous_1(dst));
|
||
|
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int n = ggml_nrows(src0);
|
||
|
const int nc = src0->ne[0];
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
fun(nc,
|
||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||
|
(float *) ((char *) src0->data + i*(src0->nb[1])),
|
||
|
(float *) ((char *) src1->data + i*(src1->nb[1])));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_map_binary(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const ggml_binary_op_f32_t fun) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_map_binary_f32(params, dst, fun);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_map_custom1
|
||
|
|
||
|
static void ggml_compute_forward_map_custom1_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const ggml_custom1_op_f32_t fun) {
|
||
|
|
||
|
const struct ggml_tensor * a = dst->src[0];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
fun(dst, a);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_map_custom2
|
||
|
|
||
|
static void ggml_compute_forward_map_custom2_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const ggml_custom2_op_f32_t fun) {
|
||
|
|
||
|
const struct ggml_tensor * a = dst->src[0];
|
||
|
const struct ggml_tensor * b = dst->src[1];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
fun(dst, a, b);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_map_custom3
|
||
|
|
||
|
static void ggml_compute_forward_map_custom3_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst,
|
||
|
const ggml_custom3_op_f32_t fun) {
|
||
|
|
||
|
const struct ggml_tensor * a = dst->src[0];
|
||
|
const struct ggml_tensor * b = dst->src[1];
|
||
|
const struct ggml_tensor * c = dst->src[1];
|
||
|
|
||
|
if (params->ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
fun(dst, a, b, c);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_map_custom1
|
||
|
|
||
|
static void ggml_compute_forward_map_custom1(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * a = dst->src[0];
|
||
|
|
||
|
struct ggml_map_custom1_op_params p;
|
||
|
memcpy(&p, dst->op_params, sizeof(p));
|
||
|
|
||
|
p.fun(dst, a, params->ith, params->nth, p.userdata);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_map_custom2
|
||
|
|
||
|
static void ggml_compute_forward_map_custom2(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * a = dst->src[0];
|
||
|
const struct ggml_tensor * b = dst->src[1];
|
||
|
|
||
|
struct ggml_map_custom2_op_params p;
|
||
|
memcpy(&p, dst->op_params, sizeof(p));
|
||
|
|
||
|
p.fun(dst, a, b, params->ith, params->nth, p.userdata);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_map_custom3
|
||
|
|
||
|
static void ggml_compute_forward_map_custom3(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * a = dst->src[0];
|
||
|
const struct ggml_tensor * b = dst->src[1];
|
||
|
const struct ggml_tensor * c = dst->src[2];
|
||
|
|
||
|
struct ggml_map_custom3_op_params p;
|
||
|
memcpy(&p, dst->op_params, sizeof(p));
|
||
|
|
||
|
p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_cross_entropy_loss
|
||
|
|
||
|
static void ggml_compute_forward_cross_entropy_loss_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||
|
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
||
|
GGML_ASSERT(ggml_is_scalar(dst));
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
// TODO: handle transposed/permuted matrices
|
||
|
const int64_t nc = src0->ne[0];
|
||
|
const int64_t nr = ggml_nrows(src0);
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
float * sums = (float *) params->wdata;
|
||
|
float * st = ((float *) params->wdata) + nth + ith*nc;
|
||
|
float sum_thread = 0.0f;
|
||
|
|
||
|
GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
|
||
|
|
||
|
// rows per thread
|
||
|
const int64_t dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int64_t ir0 = dr*ith;
|
||
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
for (int64_t i1 = ir0; i1 < ir1; ++i1) {
|
||
|
const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
|
||
|
const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int64_t i = 0; i < nc; ++i) {
|
||
|
//printf("p[%d] = %f\n", i, p[i]);
|
||
|
assert(!isnan(s0[i]));
|
||
|
assert(!isnan(s1[i]));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
float max = -INFINITY;
|
||
|
ggml_vec_max_f32(nc, &max, s0);
|
||
|
const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
|
||
|
assert(sum_softmax >= 0.0);
|
||
|
|
||
|
ggml_vec_add1_f32(nc, st, st, -sum_softmax);
|
||
|
ggml_vec_mul_f32(nc, st, st, s1);
|
||
|
|
||
|
float sum_st = 0.0f;
|
||
|
ggml_vec_sum_f32(nc, &sum_st, st);
|
||
|
sum_thread += sum_st;
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int64_t i = 0; i < nc; ++i) {
|
||
|
assert(!isnan(st[i]));
|
||
|
assert(!isinf(st[i]));
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
sums[ith] = sum_thread;
|
||
|
ggml_barrier(params->threadpool);
|
||
|
|
||
|
if (ith == 0) {
|
||
|
float * dp = (float *) dst->data;
|
||
|
ggml_vec_sum_f32(nth, dp, sums);
|
||
|
dp[0] *= -1.0f / (float) nr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_cross_entropy_loss(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_cross_entropy_loss_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ggml_compute_forward_cross_entropy_loss_back
|
||
|
|
||
|
static void ggml_compute_forward_cross_entropy_loss_back_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
const struct ggml_tensor * opt0 = dst->src[2];
|
||
|
|
||
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
||
|
GGML_ASSERT(ggml_is_contiguous(opt0));
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||
|
|
||
|
const int64_t ith = params->ith;
|
||
|
const int64_t nth = params->nth;
|
||
|
|
||
|
// TODO: handle transposed/permuted matrices
|
||
|
const int64_t nc = src0->ne[0];
|
||
|
const int64_t nr = ggml_nrows(src0);
|
||
|
|
||
|
// rows per thread
|
||
|
const int64_t dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int64_t ir0 = dr*ith;
|
||
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
|
||
|
|
||
|
for (int64_t i1 = ir0; i1 < ir1; i1++) {
|
||
|
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
|
||
|
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
|
||
|
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int64_t i = 0; i < nc; ++i) {
|
||
|
//printf("p[%d] = %f\n", i, p[i]);
|
||
|
assert(!isnan(s0[i]));
|
||
|
assert(!isnan(s1[i]));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// soft_max
|
||
|
float max = -INFINITY;
|
||
|
ggml_vec_max_f32(nc, &max, s0);
|
||
|
ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
|
||
|
assert(sum > 0.0);
|
||
|
ggml_vec_scale_f32(nc, ds0, 1.0/sum);
|
||
|
|
||
|
// grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
|
||
|
ggml_vec_sub_f32(nc, ds0, ds0, s1);
|
||
|
ggml_vec_scale_f32(nc, ds0, d_by_nr);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (int64_t i = 0; i < nc; ++i) {
|
||
|
assert(!isnan(ds0[i]));
|
||
|
assert(!isinf(ds0[i]));
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_cross_entropy_loss_back(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_opt_step_adamw_f32(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
const struct ggml_tensor * src0_grad = dst->src[1];
|
||
|
const struct ggml_tensor * src0_grad_m = dst->src[2];
|
||
|
const struct ggml_tensor * src0_grad_v = dst->src[3];
|
||
|
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
|
||
|
|
||
|
const int ith = params->ith;
|
||
|
const int nth = params->nth;
|
||
|
|
||
|
const int nr = ggml_nrows(src0);
|
||
|
|
||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||
|
GGML_ASSERT(nb00 == sizeof(float));
|
||
|
|
||
|
// rows per thread
|
||
|
const int dr = (nr + nth - 1)/nth;
|
||
|
|
||
|
// row range for this thread
|
||
|
const int ir0 = dr*ith;
|
||
|
const int ir1 = MIN(ir0 + dr, nr);
|
||
|
|
||
|
/* const float gnorm = 1.0f; */
|
||
|
int64_t iter; memcpy(&iter, &dst->op_params[0], sizeof(int64_t));
|
||
|
const float alpha = ggml_get_op_params_f32(dst, 2);
|
||
|
const float beta1 = ggml_get_op_params_f32(dst, 3);
|
||
|
const float beta2 = ggml_get_op_params_f32(dst, 4);
|
||
|
const float eps = ggml_get_op_params_f32(dst, 5);
|
||
|
const float wd = ggml_get_op_params_f32(dst, 6);
|
||
|
|
||
|
const float beta1h = alpha/(1.0f - powf(beta1, iter));
|
||
|
const float beta2h = 1.0f/(1.0f - powf(beta2, iter));
|
||
|
|
||
|
for (int ir = ir0; ir < ir1; ++ir) {
|
||
|
const int64_t i03 = ir/(ne02*ne01);
|
||
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||
|
|
||
|
const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
|
||
|
|
||
|
float * w = (float *) ((char *) src0->data + offset); // weight
|
||
|
const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
|
||
|
float * m = (float *) ((char *) src0_grad_m->data + offset);
|
||
|
float * v = (float *) ((char *) src0_grad_v->data + offset);
|
||
|
|
||
|
for (int i00 = 0; i00 < ne00; ++i00) {
|
||
|
m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
|
||
|
v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
|
||
|
|
||
|
const float mh = m[i00]*beta1h;
|
||
|
const float vh = sqrtf(v[i00]*beta2h) + eps;
|
||
|
|
||
|
// The weight decay is applied independently of the Adam momenta m and v.
|
||
|
// This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
|
||
|
// See: https://arxiv.org/pdf/1711.05101v3.pdf
|
||
|
w[i00] = w[i00]*(1.0f - alpha*wd) - mh/vh;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ggml_barrier(params->threadpool);
|
||
|
if (ith != 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
iter++;
|
||
|
memcpy(&dst->op_params[0], &iter, sizeof(int64_t));
|
||
|
}
|
||
|
|
||
|
static void ggml_compute_forward_opt_step_adamw(
|
||
|
const struct ggml_compute_params * params,
|
||
|
struct ggml_tensor * dst) {
|
||
|
|
||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||
|
|
||
|
switch (src0->type) {
|
||
|
case GGML_TYPE_F32:
|
||
|
{
|
||
|
ggml_compute_forward_opt_step_adamw_f32(params, dst);
|
||
|
} break;
|
||
|
default:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/////////////////////////////////
|
||
|
|
||
|
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
|
||
|
GGML_ASSERT(params);
|
||
|
|
||
|
if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch (tensor->op) {
|
||
|
case GGML_OP_DUP:
|
||
|
{
|
||
|
ggml_compute_forward_dup(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_ADD:
|
||
|
{
|
||
|
ggml_compute_forward_add(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_ADD1:
|
||
|
{
|
||
|
ggml_compute_forward_add1(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_ACC:
|
||
|
{
|
||
|
ggml_compute_forward_acc(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SUB:
|
||
|
{
|
||
|
ggml_compute_forward_sub(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_MUL:
|
||
|
{
|
||
|
ggml_compute_forward_mul(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_DIV:
|
||
|
{
|
||
|
ggml_compute_forward_div(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SQR:
|
||
|
{
|
||
|
ggml_compute_forward_sqr(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SQRT:
|
||
|
{
|
||
|
ggml_compute_forward_sqrt(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_LOG:
|
||
|
{
|
||
|
ggml_compute_forward_log(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SIN:
|
||
|
{
|
||
|
ggml_compute_forward_sin(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_COS:
|
||
|
{
|
||
|
ggml_compute_forward_cos(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SUM:
|
||
|
{
|
||
|
ggml_compute_forward_sum(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SUM_ROWS:
|
||
|
{
|
||
|
ggml_compute_forward_sum_rows(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_MEAN:
|
||
|
{
|
||
|
ggml_compute_forward_mean(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_ARGMAX:
|
||
|
{
|
||
|
ggml_compute_forward_argmax(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_COUNT_EQUAL:
|
||
|
{
|
||
|
ggml_compute_forward_count_equal(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_REPEAT:
|
||
|
{
|
||
|
ggml_compute_forward_repeat(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_REPEAT_BACK:
|
||
|
{
|
||
|
ggml_compute_forward_repeat_back(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_CONCAT:
|
||
|
{
|
||
|
ggml_compute_forward_concat(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SILU_BACK:
|
||
|
{
|
||
|
ggml_compute_forward_silu_back(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_NORM:
|
||
|
{
|
||
|
ggml_compute_forward_norm(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_RMS_NORM:
|
||
|
{
|
||
|
ggml_compute_forward_rms_norm(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_RMS_NORM_BACK:
|
||
|
{
|
||
|
ggml_compute_forward_rms_norm_back(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_GROUP_NORM:
|
||
|
{
|
||
|
ggml_compute_forward_group_norm(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_MUL_MAT:
|
||
|
{
|
||
|
ggml_compute_forward_mul_mat(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_MUL_MAT_ID:
|
||
|
{
|
||
|
ggml_compute_forward_mul_mat_id(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_OUT_PROD:
|
||
|
{
|
||
|
ggml_compute_forward_out_prod(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SCALE:
|
||
|
{
|
||
|
ggml_compute_forward_scale(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SET:
|
||
|
{
|
||
|
ggml_compute_forward_set(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_CPY:
|
||
|
{
|
||
|
ggml_compute_forward_cpy(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_CONT:
|
||
|
{
|
||
|
ggml_compute_forward_cont(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_RESHAPE:
|
||
|
{
|
||
|
ggml_compute_forward_reshape(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_VIEW:
|
||
|
{
|
||
|
ggml_compute_forward_view(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_PERMUTE:
|
||
|
{
|
||
|
ggml_compute_forward_permute(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_TRANSPOSE:
|
||
|
{
|
||
|
ggml_compute_forward_transpose(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_GET_ROWS:
|
||
|
{
|
||
|
ggml_compute_forward_get_rows(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_GET_ROWS_BACK:
|
||
|
{
|
||
|
ggml_compute_forward_get_rows_back(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_DIAG:
|
||
|
{
|
||
|
ggml_compute_forward_diag(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_DIAG_MASK_INF:
|
||
|
{
|
||
|
ggml_compute_forward_diag_mask_inf(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_DIAG_MASK_ZERO:
|
||
|
{
|
||
|
ggml_compute_forward_diag_mask_zero(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SOFT_MAX:
|
||
|
{
|
||
|
ggml_compute_forward_soft_max(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SOFT_MAX_BACK:
|
||
|
{
|
||
|
ggml_compute_forward_soft_max_back(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_ROPE:
|
||
|
{
|
||
|
ggml_compute_forward_rope(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_ROPE_BACK:
|
||
|
{
|
||
|
ggml_compute_forward_rope_back(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_CLAMP:
|
||
|
{
|
||
|
ggml_compute_forward_clamp(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_CONV_TRANSPOSE_1D:
|
||
|
{
|
||
|
ggml_compute_forward_conv_transpose_1d(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_IM2COL:
|
||
|
{
|
||
|
ggml_compute_forward_im2col(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_IM2COL_BACK:
|
||
|
{
|
||
|
ggml_compute_forward_im2col_back_f32(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_CONV_TRANSPOSE_2D:
|
||
|
{
|
||
|
ggml_compute_forward_conv_transpose_2d(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_POOL_1D:
|
||
|
{
|
||
|
ggml_compute_forward_pool_1d(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_POOL_2D:
|
||
|
{
|
||
|
ggml_compute_forward_pool_2d(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_POOL_2D_BACK:
|
||
|
{
|
||
|
ggml_compute_forward_pool_2d_back(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_UPSCALE:
|
||
|
{
|
||
|
ggml_compute_forward_upscale(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_PAD:
|
||
|
{
|
||
|
ggml_compute_forward_pad(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_ARANGE:
|
||
|
{
|
||
|
ggml_compute_forward_arange(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
||
|
{
|
||
|
ggml_compute_forward_timestep_embedding(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_ARGSORT:
|
||
|
{
|
||
|
ggml_compute_forward_argsort(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_LEAKY_RELU:
|
||
|
{
|
||
|
ggml_compute_forward_leaky_relu(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_FLASH_ATTN_EXT:
|
||
|
{
|
||
|
ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
|
||
|
} break;
|
||
|
case GGML_OP_FLASH_ATTN_BACK:
|
||
|
{
|
||
|
int32_t t = ggml_get_op_params_i32(tensor, 0);
|
||
|
GGML_ASSERT(t == 0 || t == 1);
|
||
|
bool masked = t != 0;
|
||
|
ggml_compute_forward_flash_attn_back(params, masked, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SSM_CONV:
|
||
|
{
|
||
|
ggml_compute_forward_ssm_conv(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_SSM_SCAN:
|
||
|
{
|
||
|
ggml_compute_forward_ssm_scan(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_WIN_PART:
|
||
|
{
|
||
|
ggml_compute_forward_win_part(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_WIN_UNPART:
|
||
|
{
|
||
|
ggml_compute_forward_win_unpart(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_UNARY:
|
||
|
{
|
||
|
ggml_compute_forward_unary(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_GET_REL_POS:
|
||
|
{
|
||
|
ggml_compute_forward_get_rel_pos(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_ADD_REL_POS:
|
||
|
{
|
||
|
ggml_compute_forward_add_rel_pos(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_RWKV_WKV:
|
||
|
{
|
||
|
ggml_compute_forward_rwkv_wkv(params, tensor);
|
||
|
} break;
|
||
|
case GGML_OP_MAP_UNARY:
|
||
|
{
|
||
|
ggml_unary_op_f32_t fun;
|
||
|
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||
|
ggml_compute_forward_map_unary(params, tensor, fun);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_MAP_BINARY:
|
||
|
{
|
||
|
ggml_binary_op_f32_t fun;
|
||
|
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||
|
ggml_compute_forward_map_binary(params, tensor, fun);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_MAP_CUSTOM1_F32:
|
||
|
{
|
||
|
ggml_custom1_op_f32_t fun;
|
||
|
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||
|
ggml_compute_forward_map_custom1_f32(params, tensor, fun);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_MAP_CUSTOM2_F32:
|
||
|
{
|
||
|
ggml_custom2_op_f32_t fun;
|
||
|
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||
|
ggml_compute_forward_map_custom2_f32(params, tensor, fun);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_MAP_CUSTOM3_F32:
|
||
|
{
|
||
|
ggml_custom3_op_f32_t fun;
|
||
|
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||
|
ggml_compute_forward_map_custom3_f32(params, tensor, fun);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_MAP_CUSTOM1:
|
||
|
{
|
||
|
ggml_compute_forward_map_custom1(params, tensor);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_MAP_CUSTOM2:
|
||
|
{
|
||
|
ggml_compute_forward_map_custom2(params, tensor);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_MAP_CUSTOM3:
|
||
|
{
|
||
|
ggml_compute_forward_map_custom3(params, tensor);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||
|
{
|
||
|
ggml_compute_forward_cross_entropy_loss(params, tensor);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||
|
{
|
||
|
ggml_compute_forward_cross_entropy_loss_back(params, tensor);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_OPT_STEP_ADAMW:
|
||
|
{
|
||
|
ggml_compute_forward_opt_step_adamw(params, tensor);
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_NONE:
|
||
|
{
|
||
|
// nop
|
||
|
} break;
|
||
|
case GGML_OP_COUNT:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Android's libc implementation "bionic" does not support setting affinity
|
||
|
#if defined(__gnu_linux__)
|
||
|
static void set_numa_thread_affinity(int thread_n) {
|
||
|
if (!ggml_is_numa()) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
int node_num;
|
||
|
int rv;
|
||
|
size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
|
||
|
|
||
|
switch(g_state.numa.numa_strategy) {
|
||
|
case GGML_NUMA_STRATEGY_DISTRIBUTE:
|
||
|
// run thread on node_num thread_n / (threads per node)
|
||
|
node_num = thread_n % g_state.numa.n_nodes;
|
||
|
break;
|
||
|
case GGML_NUMA_STRATEGY_ISOLATE:
|
||
|
// run thread on current_node
|
||
|
node_num = g_state.numa.current_node;
|
||
|
break;
|
||
|
case GGML_NUMA_STRATEGY_NUMACTL:
|
||
|
// use the cpuset that numactl gave us
|
||
|
rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
|
||
|
if (rv) {
|
||
|
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
|
||
|
}
|
||
|
return;
|
||
|
default:
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
|
||
|
|
||
|
cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
|
||
|
CPU_ZERO_S(setsize, cpus);
|
||
|
for (size_t i = 0; i < node->n_cpus; ++i) {
|
||
|
CPU_SET_S(node->cpus[i], setsize, cpus);
|
||
|
}
|
||
|
|
||
|
rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
|
||
|
if (rv) {
|
||
|
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
|
||
|
}
|
||
|
|
||
|
CPU_FREE(cpus);
|
||
|
}
|
||
|
|
||
|
static void clear_numa_thread_affinity(void) {
|
||
|
if (!ggml_is_numa()) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
|
||
|
|
||
|
cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
|
||
|
CPU_ZERO_S(setsize, cpus);
|
||
|
for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
|
||
|
CPU_SET_S(i, setsize, cpus);
|
||
|
}
|
||
|
|
||
|
int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
|
||
|
if (rv) {
|
||
|
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
|
||
|
}
|
||
|
|
||
|
CPU_FREE(cpus);
|
||
|
}
|
||
|
#else
|
||
|
// TODO: Windows etc.
|
||
|
// (the linux implementation may also work on BSD, someone should test)
|
||
|
static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
|
||
|
static void clear_numa_thread_affinity(void) {}
|
||
|
#endif
|
||
|
|
||
|
static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||
|
int n_tasks = 0;
|
||
|
|
||
|
if (ggml_is_empty(node)) {
|
||
|
// no need to multi-thread a no-op
|
||
|
n_tasks = 1;
|
||
|
return n_tasks;
|
||
|
}
|
||
|
|
||
|
switch (node->op) {
|
||
|
case GGML_OP_CPY:
|
||
|
case GGML_OP_DUP:
|
||
|
case GGML_OP_CONT:
|
||
|
case GGML_OP_ADD:
|
||
|
case GGML_OP_ADD1:
|
||
|
case GGML_OP_ACC:
|
||
|
{
|
||
|
n_tasks = n_threads;
|
||
|
} break;
|
||
|
case GGML_OP_SUB:
|
||
|
case GGML_OP_SQR:
|
||
|
case GGML_OP_SQRT:
|
||
|
case GGML_OP_LOG:
|
||
|
case GGML_OP_SIN:
|
||
|
case GGML_OP_COS:
|
||
|
case GGML_OP_SUM:
|
||
|
case GGML_OP_SUM_ROWS:
|
||
|
case GGML_OP_MEAN:
|
||
|
case GGML_OP_ARGMAX:
|
||
|
{
|
||
|
n_tasks = 1;
|
||
|
} break;
|
||
|
case GGML_OP_COUNT_EQUAL:
|
||
|
{
|
||
|
n_tasks = n_threads;
|
||
|
} break;
|
||
|
case GGML_OP_REPEAT:
|
||
|
case GGML_OP_REPEAT_BACK:
|
||
|
case GGML_OP_LEAKY_RELU:
|
||
|
{
|
||
|
n_tasks = 1;
|
||
|
} break;
|
||
|
case GGML_OP_UNARY:
|
||
|
switch (ggml_get_unary_op(node)) {
|
||
|
case GGML_UNARY_OP_ABS:
|
||
|
case GGML_UNARY_OP_SGN:
|
||
|
case GGML_UNARY_OP_NEG:
|
||
|
case GGML_UNARY_OP_STEP:
|
||
|
case GGML_UNARY_OP_TANH:
|
||
|
case GGML_UNARY_OP_ELU:
|
||
|
case GGML_UNARY_OP_RELU:
|
||
|
case GGML_UNARY_OP_SIGMOID:
|
||
|
case GGML_UNARY_OP_HARDSWISH:
|
||
|
case GGML_UNARY_OP_HARDSIGMOID:
|
||
|
case GGML_UNARY_OP_EXP:
|
||
|
{
|
||
|
n_tasks = 1;
|
||
|
} break;
|
||
|
|
||
|
case GGML_UNARY_OP_GELU:
|
||
|
case GGML_UNARY_OP_GELU_QUICK:
|
||
|
case GGML_UNARY_OP_SILU:
|
||
|
{
|
||
|
n_tasks = n_threads;
|
||
|
} break;
|
||
|
default:
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
break;
|
||
|
case GGML_OP_SILU_BACK:
|
||
|
case GGML_OP_MUL:
|
||
|
case GGML_OP_DIV:
|
||
|
case GGML_OP_NORM:
|
||
|
case GGML_OP_RMS_NORM:
|
||
|
case GGML_OP_RMS_NORM_BACK:
|
||
|
case GGML_OP_GROUP_NORM:
|
||
|
case GGML_OP_CONCAT:
|
||
|
case GGML_OP_MUL_MAT:
|
||
|
case GGML_OP_MUL_MAT_ID:
|
||
|
case GGML_OP_OUT_PROD:
|
||
|
{
|
||
|
n_tasks = n_threads;
|
||
|
} break;
|
||
|
case GGML_OP_GET_ROWS:
|
||
|
{
|
||
|
// FIXME: get_rows can use additional threads, but the cost of launching additional threads
|
||
|
// decreases performance with GPU offloading
|
||
|
//n_tasks = n_threads;
|
||
|
n_tasks = 1;
|
||
|
} break;
|
||
|
case GGML_OP_SCALE:
|
||
|
case GGML_OP_SET:
|
||
|
case GGML_OP_RESHAPE:
|
||
|
case GGML_OP_VIEW:
|
||
|
case GGML_OP_PERMUTE:
|
||
|
case GGML_OP_TRANSPOSE:
|
||
|
case GGML_OP_GET_ROWS_BACK:
|
||
|
case GGML_OP_DIAG:
|
||
|
{
|
||
|
n_tasks = 1;
|
||
|
} break;
|
||
|
case GGML_OP_DIAG_MASK_ZERO:
|
||
|
case GGML_OP_DIAG_MASK_INF:
|
||
|
case GGML_OP_SOFT_MAX_BACK:
|
||
|
case GGML_OP_ROPE:
|
||
|
case GGML_OP_ROPE_BACK:
|
||
|
case GGML_OP_ADD_REL_POS:
|
||
|
{
|
||
|
n_tasks = n_threads;
|
||
|
} break;
|
||
|
case GGML_OP_CLAMP:
|
||
|
{
|
||
|
n_tasks = 1; //TODO
|
||
|
} break;
|
||
|
case GGML_OP_SOFT_MAX:
|
||
|
{
|
||
|
n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
|
||
|
} break;
|
||
|
case GGML_OP_IM2COL:
|
||
|
case GGML_OP_IM2COL_BACK:
|
||
|
case GGML_OP_CONV_TRANSPOSE_1D:
|
||
|
case GGML_OP_CONV_TRANSPOSE_2D:
|
||
|
{
|
||
|
n_tasks = n_threads;
|
||
|
} break;
|
||
|
case GGML_OP_POOL_1D:
|
||
|
case GGML_OP_POOL_2D:
|
||
|
case GGML_OP_POOL_2D_BACK:
|
||
|
{
|
||
|
n_tasks = 1;
|
||
|
} break;
|
||
|
case GGML_OP_UPSCALE:
|
||
|
case GGML_OP_PAD:
|
||
|
case GGML_OP_ARANGE:
|
||
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
||
|
case GGML_OP_ARGSORT:
|
||
|
case GGML_OP_FLASH_ATTN_EXT:
|
||
|
case GGML_OP_FLASH_ATTN_BACK:
|
||
|
case GGML_OP_SSM_CONV:
|
||
|
case GGML_OP_SSM_SCAN:
|
||
|
{
|
||
|
n_tasks = n_threads;
|
||
|
} break;
|
||
|
case GGML_OP_WIN_PART:
|
||
|
case GGML_OP_WIN_UNPART:
|
||
|
case GGML_OP_GET_REL_POS:
|
||
|
case GGML_OP_RWKV_WKV:
|
||
|
case GGML_OP_MAP_UNARY:
|
||
|
case GGML_OP_MAP_BINARY:
|
||
|
case GGML_OP_MAP_CUSTOM1_F32:
|
||
|
case GGML_OP_MAP_CUSTOM2_F32:
|
||
|
case GGML_OP_MAP_CUSTOM3_F32:
|
||
|
{
|
||
|
n_tasks = 1;
|
||
|
} break;
|
||
|
case GGML_OP_MAP_CUSTOM1:
|
||
|
{
|
||
|
struct ggml_map_custom1_op_params p;
|
||
|
memcpy(&p, node->op_params, sizeof(p));
|
||
|
if (p.n_tasks == GGML_N_TASKS_MAX) {
|
||
|
n_tasks = n_threads;
|
||
|
} else {
|
||
|
n_tasks = MIN(p.n_tasks, n_threads);
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_OP_MAP_CUSTOM2:
|
||
|
{
|
||
|
struct ggml_map_custom2_op_params p;
|
||
|
memcpy(&p, node->op_params, sizeof(p));
|
||
|
if (p.n_tasks == GGML_N_TASKS_MAX) {
|
||
|
n_tasks = n_threads;
|
||
|
} else {
|
||
|
n_tasks = MIN(p.n_tasks, n_threads);
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_OP_MAP_CUSTOM3:
|
||
|
{
|
||
|
struct ggml_map_custom3_op_params p;
|
||
|
memcpy(&p, node->op_params, sizeof(p));
|
||
|
if (p.n_tasks == GGML_N_TASKS_MAX) {
|
||
|
n_tasks = n_threads;
|
||
|
} else {
|
||
|
n_tasks = MIN(p.n_tasks, n_threads);
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||
|
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||
|
case GGML_OP_OPT_STEP_ADAMW:
|
||
|
{
|
||
|
n_tasks = n_threads;
|
||
|
} break;
|
||
|
case GGML_OP_NONE:
|
||
|
{
|
||
|
n_tasks = 1;
|
||
|
} break;
|
||
|
case GGML_OP_COUNT:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
fprintf(stderr, "%s: op not implemented: ", __func__);
|
||
|
if (node->op < GGML_OP_COUNT) {
|
||
|
fprintf(stderr, "%s\n", ggml_op_name(node->op));
|
||
|
} else {
|
||
|
fprintf(stderr, "%d\n", node->op);
|
||
|
}
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
assert(n_tasks > 0);
|
||
|
|
||
|
return n_tasks;
|
||
|
}
|
||
|
|
||
|
static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
|
||
|
|
||
|
#if defined(_WIN32)
|
||
|
#include "windows.h"
|
||
|
|
||
|
// TODO: support > 64 CPUs
|
||
|
bool ggml_thread_apply_affinity(bool * mask) {
|
||
|
HANDLE h = GetCurrentThread();
|
||
|
uint64_t bitmask = 0ULL;
|
||
|
|
||
|
assert(GGML_MAX_N_THREADS >= 64);
|
||
|
|
||
|
for (int32_t i = 0; i < 8; i++) {
|
||
|
int32_t idx = i * 8;
|
||
|
uint8_t val = 0;
|
||
|
val |= mask[idx + 0] << 0;
|
||
|
val |= mask[idx + 1] << 1;
|
||
|
val |= mask[idx + 2] << 2;
|
||
|
val |= mask[idx + 3] << 3;
|
||
|
val |= mask[idx + 4] << 4;
|
||
|
val |= mask[idx + 5] << 5;
|
||
|
val |= mask[idx + 6] << 6;
|
||
|
val |= mask[idx + 7] << 7;
|
||
|
bitmask |= (uint64_t)val << idx;
|
||
|
}
|
||
|
|
||
|
for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
|
||
|
if (mask[i]) {
|
||
|
fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
DWORD_PTR m = (DWORD_PTR)bitmask;
|
||
|
|
||
|
m = SetThreadAffinityMask(h, m);
|
||
|
|
||
|
return m != 0;
|
||
|
}
|
||
|
|
||
|
static bool ggml_thread_apply_priority(int32_t prio) {
|
||
|
// Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
|
||
|
// This is up to the applications.
|
||
|
DWORD p = THREAD_PRIORITY_NORMAL;
|
||
|
switch (prio) {
|
||
|
case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
|
||
|
case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
|
||
|
case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
|
||
|
case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
|
||
|
}
|
||
|
|
||
|
if (prio == GGML_SCHED_PRIO_NORMAL) {
|
||
|
// Keep inherited policy/priority
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (!SetThreadPriority(GetCurrentThread(), p)) {
|
||
|
fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#elif defined(__APPLE__)
|
||
|
#include <sys/types.h>
|
||
|
#include <sys/resource.h>
|
||
|
|
||
|
static bool ggml_thread_apply_affinity(const bool * mask) {
|
||
|
// Not supported on Apple platforms
|
||
|
UNUSED(mask);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool ggml_thread_apply_priority(int32_t prio) {
|
||
|
struct sched_param p;
|
||
|
int32_t policy = SCHED_OTHER;
|
||
|
switch (prio) {
|
||
|
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
|
||
|
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
|
||
|
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
|
||
|
case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
|
||
|
}
|
||
|
|
||
|
if (prio == GGML_SCHED_PRIO_NORMAL) {
|
||
|
// Keep inherited policy/priority
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
|
||
|
if (err != 0) {
|
||
|
fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#elif defined(__gnu_linux__)
|
||
|
// TODO: this may not work on BSD, to be verified
|
||
|
|
||
|
static bool ggml_thread_apply_affinity(const bool * mask) {
|
||
|
cpu_set_t cpuset;
|
||
|
int err;
|
||
|
|
||
|
CPU_ZERO(&cpuset);
|
||
|
|
||
|
for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
|
||
|
if (mask[i]) {
|
||
|
GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
|
||
|
CPU_SET(i, &cpuset);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef __ANDROID__
|
||
|
err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
|
||
|
if (err < 0) {
|
||
|
err = errno;
|
||
|
}
|
||
|
#else
|
||
|
err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
|
||
|
#endif
|
||
|
if (err != 0) {
|
||
|
fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool ggml_thread_apply_priority(int32_t prio) {
|
||
|
struct sched_param p;
|
||
|
int32_t policy = SCHED_OTHER;
|
||
|
switch (prio) {
|
||
|
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
|
||
|
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
|
||
|
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
|
||
|
case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
|
||
|
}
|
||
|
|
||
|
if (prio == GGML_SCHED_PRIO_NORMAL) {
|
||
|
// Keep inherited policy/priority
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
|
||
|
if (err != 0) {
|
||
|
fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#else // unsupported platforms
|
||
|
|
||
|
static bool ggml_thread_apply_affinity(const bool * mask) {
|
||
|
UNUSED(mask);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool ggml_thread_apply_priority(int32_t prio) {
|
||
|
UNUSED(prio);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static bool ggml_thread_cpumask_is_valid(const bool * mask) {
|
||
|
for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
|
||
|
if (mask[i]) { return true; }
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
|
||
|
if (!strict) {
|
||
|
memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
|
||
|
return;
|
||
|
} else {
|
||
|
memset(local_mask, 0, GGML_MAX_N_THREADS);
|
||
|
int32_t base_idx = *iter;
|
||
|
for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
|
||
|
int32_t idx = base_idx + i;
|
||
|
if (idx >= GGML_MAX_N_THREADS) {
|
||
|
// Just a cheaper modulo
|
||
|
idx -= GGML_MAX_N_THREADS;
|
||
|
}
|
||
|
if (global_mask[idx]) {
|
||
|
local_mask[idx] = 1;
|
||
|
*iter = idx + 1;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
|
||
|
if (!threadpool) return;
|
||
|
|
||
|
const int n_threads = threadpool->n_threads_max;
|
||
|
|
||
|
#ifndef GGML_USE_OPENMP
|
||
|
struct ggml_compute_state* workers = threadpool->workers;
|
||
|
|
||
|
ggml_mutex_lock(&threadpool->mutex);
|
||
|
|
||
|
threadpool->stop = true;
|
||
|
threadpool->pause = false;
|
||
|
|
||
|
ggml_cond_broadcast(&threadpool->cond);
|
||
|
ggml_mutex_unlock(&threadpool->mutex);
|
||
|
|
||
|
for (int j = 1; j < n_threads; j++) {
|
||
|
int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
|
||
|
GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
|
||
|
UNUSED(rc);
|
||
|
}
|
||
|
|
||
|
ggml_mutex_destroy(&threadpool->mutex);
|
||
|
ggml_cond_destroy(&threadpool->cond);
|
||
|
#endif // GGML_USE_OPENMP
|
||
|
|
||
|
const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads;
|
||
|
ggml_aligned_free(threadpool->workers, workers_size);
|
||
|
ggml_aligned_free(threadpool, sizeof(struct ggml_threadpool));
|
||
|
}
|
||
|
|
||
|
#ifndef GGML_USE_OPENMP
|
||
|
// pause/resume must be called under mutex
|
||
|
static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
|
||
|
GGML_PRINT_DEBUG("Pausing threadpool\n");
|
||
|
threadpool->pause = true;
|
||
|
ggml_cond_broadcast(&threadpool->cond);
|
||
|
}
|
||
|
|
||
|
static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
|
||
|
GGML_PRINT_DEBUG("Resuming threadpool\n");
|
||
|
threadpool->pause = false;
|
||
|
ggml_cond_broadcast(&threadpool->cond);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
|
||
|
#ifndef GGML_USE_OPENMP
|
||
|
ggml_mutex_lock(&threadpool->mutex);
|
||
|
if (!threadpool->pause) {
|
||
|
ggml_threadpool_pause_locked(threadpool);
|
||
|
}
|
||
|
ggml_mutex_unlock(&threadpool->mutex);
|
||
|
#else
|
||
|
UNUSED(threadpool);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
|
||
|
#ifndef GGML_USE_OPENMP
|
||
|
ggml_mutex_lock(&threadpool->mutex);
|
||
|
if (threadpool->pause) {
|
||
|
ggml_threadpool_resume_locked(threadpool);
|
||
|
}
|
||
|
ggml_mutex_unlock(&threadpool->mutex);
|
||
|
#else
|
||
|
UNUSED(threadpool);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
struct ggml_cplan ggml_graph_plan(
|
||
|
const struct ggml_cgraph * cgraph,
|
||
|
int n_threads,
|
||
|
struct ggml_threadpool * threadpool) {
|
||
|
|
||
|
if (threadpool == NULL) {
|
||
|
//GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
|
||
|
}
|
||
|
if (n_threads <= 0) {
|
||
|
n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
|
||
|
}
|
||
|
|
||
|
size_t work_size = 0;
|
||
|
|
||
|
struct ggml_cplan cplan;
|
||
|
memset(&cplan, 0, sizeof(struct ggml_cplan));
|
||
|
|
||
|
int max_tasks = 1;
|
||
|
|
||
|
// thread scheduling for the different operations + work buffer size estimation
|
||
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||
|
struct ggml_tensor * node = cgraph->nodes[i];
|
||
|
|
||
|
const int n_tasks = ggml_get_n_tasks(node, n_threads);
|
||
|
|
||
|
max_tasks = MAX(max_tasks, n_tasks);
|
||
|
|
||
|
size_t cur = 0;
|
||
|
|
||
|
switch (node->op) {
|
||
|
case GGML_OP_CPY:
|
||
|
case GGML_OP_DUP:
|
||
|
{
|
||
|
if (ggml_is_quantized(node->type) ||
|
||
|
// F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
|
||
|
(node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
|
||
|
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
|
||
|
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_OP_ADD:
|
||
|
case GGML_OP_ADD1:
|
||
|
{
|
||
|
if (ggml_is_quantized(node->src[0]->type)) {
|
||
|
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_OP_ACC:
|
||
|
{
|
||
|
if (ggml_is_quantized(node->src[0]->type)) {
|
||
|
cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_OP_COUNT_EQUAL:
|
||
|
{
|
||
|
cur = ggml_type_size(node->type)*n_tasks;
|
||
|
} break;
|
||
|
case GGML_OP_MUL_MAT:
|
||
|
{
|
||
|
const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type;
|
||
|
|
||
|
if (node->src[1]->type != vec_dot_type) {
|
||
|
cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_OP_MUL_MAT_ID:
|
||
|
{
|
||
|
cur = 0;
|
||
|
const struct ggml_tensor * src0 = node->src[0];
|
||
|
const struct ggml_tensor * src1 = node->src[1];
|
||
|
const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
|
||
|
if (src1->type != vec_dot_type) {
|
||
|
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
|
||
|
}
|
||
|
const int n_as = src0->ne[2];
|
||
|
cur += GGML_PAD(cur, sizeof(int64_t)); // align
|
||
|
cur += n_as * sizeof(int64_t); // matrix_row_counts
|
||
|
cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
|
||
|
} break;
|
||
|
case GGML_OP_OUT_PROD:
|
||
|
{
|
||
|
if (ggml_is_quantized(node->src[0]->type)) {
|
||
|
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_OP_SOFT_MAX:
|
||
|
case GGML_OP_ROPE:
|
||
|
{
|
||
|
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
|
||
|
} break;
|
||
|
case GGML_OP_CONV_TRANSPOSE_1D:
|
||
|
{
|
||
|
GGML_ASSERT(node->src[0]->ne[3] == 1);
|
||
|
GGML_ASSERT(node->src[1]->ne[2] == 1);
|
||
|
GGML_ASSERT(node->src[1]->ne[3] == 1);
|
||
|
|
||
|
const int64_t ne00 = node->src[0]->ne[0]; // K
|
||
|
const int64_t ne01 = node->src[0]->ne[1]; // Cout
|
||
|
const int64_t ne02 = node->src[0]->ne[2]; // Cin
|
||
|
|
||
|
const int64_t ne10 = node->src[1]->ne[0]; // L
|
||
|
const int64_t ne11 = node->src[1]->ne[1]; // Cin
|
||
|
|
||
|
if ((node->src[0]->type == GGML_TYPE_F16 ||
|
||
|
node->src[0]->type == GGML_TYPE_BF16) &&
|
||
|
node->src[1]->type == GGML_TYPE_F32) {
|
||
|
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
|
||
|
cur += sizeof(ggml_fp16_t)*ne10*ne11;
|
||
|
} else if (node->src[0]->type == GGML_TYPE_F32 &&
|
||
|
node->src[1]->type == GGML_TYPE_F32) {
|
||
|
cur += sizeof(float)*ne00*ne01*ne02;
|
||
|
cur += sizeof(float)*ne10*ne11;
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
} break;
|
||
|
case GGML_OP_CONV_TRANSPOSE_2D:
|
||
|
{
|
||
|
const int64_t ne00 = node->src[0]->ne[0]; // W
|
||
|
const int64_t ne01 = node->src[0]->ne[1]; // H
|
||
|
const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
|
||
|
const int64_t ne03 = node->src[0]->ne[3]; // Channels In
|
||
|
|
||
|
const int64_t ne10 = node->src[1]->ne[0]; // W
|
||
|
const int64_t ne11 = node->src[1]->ne[1]; // H
|
||
|
const int64_t ne12 = node->src[1]->ne[2]; // Channels In
|
||
|
|
||
|
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
|
||
|
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
|
||
|
} break;
|
||
|
case GGML_OP_FLASH_ATTN_EXT:
|
||
|
{
|
||
|
const int64_t ne00 = node->src[0]->ne[0]; // D
|
||
|
|
||
|
cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
|
||
|
} break;
|
||
|
case GGML_OP_FLASH_ATTN_BACK:
|
||
|
{
|
||
|
const int64_t D = node->src[0]->ne[0];
|
||
|
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
|
||
|
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
|
||
|
if (node->src[1]->type == GGML_TYPE_F32) {
|
||
|
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
|
||
|
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
|
||
|
} else if (node->src[1]->type == GGML_TYPE_F16) {
|
||
|
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
|
||
|
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
|
||
|
} else if (node->src[1]->type == GGML_TYPE_BF16) {
|
||
|
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
|
||
|
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
|
||
|
}
|
||
|
} break;
|
||
|
|
||
|
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||
|
{
|
||
|
cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
|
||
|
} break;
|
||
|
case GGML_OP_COUNT:
|
||
|
{
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
work_size = MAX(work_size, cur);
|
||
|
}
|
||
|
|
||
|
if (work_size > 0) {
|
||
|
work_size += CACHE_LINE_SIZE*(n_threads);
|
||
|
}
|
||
|
|
||
|
cplan.threadpool = threadpool;
|
||
|
cplan.n_threads = MIN(max_tasks, n_threads);
|
||
|
cplan.work_size = work_size;
|
||
|
cplan.work_data = NULL;
|
||
|
|
||
|
return cplan;
|
||
|
}
|
||
|
|
||
|
static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||
|
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
|
||
|
struct ggml_threadpool * tp = state->threadpool;
|
||
|
|
||
|
const struct ggml_cgraph * cgraph = tp->cgraph;
|
||
|
const struct ggml_cplan * cplan = tp->cplan;
|
||
|
|
||
|
set_numa_thread_affinity(state->ith);
|
||
|
|
||
|
struct ggml_compute_params params = {
|
||
|
/*.ith =*/ state->ith,
|
||
|
/*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed),
|
||
|
/*.wsize =*/ cplan->work_size,
|
||
|
/*.wdata =*/ cplan->work_data,
|
||
|
/*.threadpool=*/ tp,
|
||
|
};
|
||
|
|
||
|
for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
|
||
|
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||
|
|
||
|
ggml_compute_forward(¶ms, node);
|
||
|
|
||
|
if (state->ith == 0 && cplan->abort_callback &&
|
||
|
cplan->abort_callback(cplan->abort_callback_data)) {
|
||
|
tp->abort = true;
|
||
|
tp->ec = GGML_STATUS_ABORTED;
|
||
|
}
|
||
|
|
||
|
ggml_barrier(state->threadpool);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifndef GGML_USE_OPENMP
|
||
|
|
||
|
// check if thread is active
|
||
|
static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) {
|
||
|
struct ggml_threadpool * threadpool = state->threadpool;
|
||
|
int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed);
|
||
|
return (state->ith < n_threads);
|
||
|
}
|
||
|
|
||
|
// check if thread is ready to proceed (exit from polling or sleeping)
|
||
|
static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) {
|
||
|
struct ggml_threadpool * threadpool = state->threadpool;
|
||
|
|
||
|
if (state->pending || threadpool->stop || threadpool->pause) { return true; }
|
||
|
|
||
|
// check for new graph/work
|
||
|
int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
|
||
|
if (new_graph != state->last_graph) {
|
||
|
state->pending = ggml_graph_compute_thread_active(state);
|
||
|
state->last_graph = new_graph;
|
||
|
}
|
||
|
|
||
|
return state->pending;
|
||
|
}
|
||
|
|
||
|
// sync thread state after polling
|
||
|
static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) {
|
||
|
// TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
|
||
|
#ifdef GGML_TSAN_ENABLED
|
||
|
atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst);
|
||
|
#else
|
||
|
atomic_thread_fence(memory_order_seq_cst);
|
||
|
#endif
|
||
|
UNUSED(state);
|
||
|
}
|
||
|
|
||
|
static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
|
||
|
struct ggml_threadpool * threadpool = state->threadpool;
|
||
|
|
||
|
// Skip polling for unused threads
|
||
|
if (!ggml_graph_compute_thread_active(state)) {
|
||
|
return state->pending;
|
||
|
}
|
||
|
|
||
|
// This seems to make 0 ... 100 a decent range for polling level across modern processors.
|
||
|
// Perhaps, we can adjust it dynamically based on load and things.
|
||
|
const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
|
||
|
|
||
|
for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) {
|
||
|
// No new work. Keep polling.
|
||
|
ggml_thread_cpu_relax();
|
||
|
}
|
||
|
|
||
|
return state->pending;
|
||
|
}
|
||
|
|
||
|
static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
|
||
|
struct ggml_threadpool * threadpool = state->threadpool;
|
||
|
|
||
|
if (ggml_graph_compute_poll_for_work(state)) {
|
||
|
ggml_graph_compute_thread_sync(state);
|
||
|
return state->pending;
|
||
|
}
|
||
|
|
||
|
ggml_mutex_lock_shared(&threadpool->mutex);
|
||
|
while (!ggml_graph_compute_thread_ready(state)) {
|
||
|
// No new work. Wait for the signal.
|
||
|
GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith);
|
||
|
ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
|
||
|
}
|
||
|
ggml_mutex_unlock_shared(&threadpool->mutex);
|
||
|
|
||
|
return state->pending;
|
||
|
}
|
||
|
|
||
|
static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
|
||
|
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
|
||
|
struct ggml_threadpool * threadpool = state->threadpool;
|
||
|
|
||
|
ggml_thread_apply_priority(threadpool->prio);
|
||
|
if (ggml_thread_cpumask_is_valid(state->cpumask)) {
|
||
|
ggml_thread_apply_affinity(state->cpumask);
|
||
|
}
|
||
|
|
||
|
while (true) {
|
||
|
// Check if we need to sleep
|
||
|
while (threadpool->pause) {
|
||
|
GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
|
||
|
ggml_mutex_lock_shared(&threadpool->mutex);
|
||
|
if (threadpool->pause) {
|
||
|
ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
|
||
|
}
|
||
|
GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
|
||
|
ggml_mutex_unlock_shared(&threadpool->mutex);
|
||
|
}
|
||
|
|
||
|
// This needs to be checked for after the cond_wait
|
||
|
if (threadpool->stop) break;
|
||
|
|
||
|
// Check if there is new work
|
||
|
// The main thread is the only one that can dispatch new work
|
||
|
|
||
|
ggml_graph_compute_check_for_work(state);
|
||
|
if (state->pending) {
|
||
|
state->pending = false;
|
||
|
|
||
|
ggml_graph_compute_thread(state);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return (thread_ret_t) 0;
|
||
|
}
|
||
|
|
||
|
// Start processing new graph
|
||
|
static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads)
|
||
|
{
|
||
|
// Always take the mutex here because the worker threads are doing hybrid poll/wait
|
||
|
|
||
|
ggml_mutex_lock(&threadpool->mutex);
|
||
|
|
||
|
GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads);
|
||
|
|
||
|
// Update the number of active threads
|
||
|
atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
|
||
|
|
||
|
// Indicate the graph is ready to be processed
|
||
|
// We need the full seq-cst fence here because of the polling threads (used in thread_sync)
|
||
|
atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst);
|
||
|
|
||
|
if (threadpool->pause) {
|
||
|
// Update main thread prio and affinity to match the threadpool settings
|
||
|
ggml_thread_apply_priority(threadpool->prio);
|
||
|
if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
|
||
|
ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
|
||
|
}
|
||
|
|
||
|
// resume does cond broadcast
|
||
|
ggml_threadpool_resume_locked(threadpool);
|
||
|
} else {
|
||
|
ggml_cond_broadcast(&threadpool->cond);
|
||
|
}
|
||
|
|
||
|
ggml_mutex_unlock(&threadpool->mutex);
|
||
|
}
|
||
|
|
||
|
#endif // GGML_USE_OPENMP
|
||
|
|
||
|
void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
|
||
|
p->n_threads = n_threads;
|
||
|
p->prio = 0; // default priority (usually means normal or inherited)
|
||
|
p->poll = 50; // hybrid-polling enabled
|
||
|
p->strict_cpu = false; // no strict placement (all threads share same cpumask)
|
||
|
p->paused = false; // threads are ready to go
|
||
|
memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
|
||
|
}
|
||
|
|
||
|
struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
|
||
|
struct ggml_threadpool_params p;
|
||
|
ggml_threadpool_params_init(&p, n_threads);
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
|
||
|
if (p0->n_threads != p1->n_threads ) return false;
|
||
|
if (p0->prio != p1->prio ) return false;
|
||
|
if (p0->poll != p1->poll ) return false;
|
||
|
if (p0->strict_cpu != p1->strict_cpu ) return false;
|
||
|
return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
|
||
|
}
|
||
|
|
||
|
static struct ggml_threadpool * ggml_threadpool_new_impl(
|
||
|
struct ggml_threadpool_params * tpp,
|
||
|
struct ggml_cgraph * cgraph,
|
||
|
struct ggml_cplan * cplan) {
|
||
|
|
||
|
struct ggml_threadpool * threadpool =
|
||
|
ggml_aligned_malloc(sizeof(struct ggml_threadpool));
|
||
|
{
|
||
|
threadpool->cgraph = cgraph;
|
||
|
threadpool->cplan = cplan;
|
||
|
threadpool->n_graph = 0;
|
||
|
threadpool->n_barrier = 0;
|
||
|
threadpool->n_barrier_passed = 0;
|
||
|
threadpool->current_chunk = 0;
|
||
|
threadpool->stop = false;
|
||
|
threadpool->pause = tpp->paused;
|
||
|
threadpool->abort = false;
|
||
|
threadpool->workers = NULL;
|
||
|
threadpool->n_threads_max = tpp->n_threads;
|
||
|
threadpool->n_threads_cur = tpp->n_threads;
|
||
|
threadpool->poll = tpp->poll;
|
||
|
threadpool->prio = tpp->prio;
|
||
|
threadpool->ec = GGML_STATUS_SUCCESS;
|
||
|
}
|
||
|
|
||
|
// Allocate and init workers state
|
||
|
const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
|
||
|
struct ggml_compute_state * workers = ggml_aligned_malloc(workers_size);
|
||
|
|
||
|
memset(workers, 0, workers_size);
|
||
|
for (int j = 0; j < tpp->n_threads; j++) {
|
||
|
workers[j].threadpool = threadpool;
|
||
|
workers[j].ith = j;
|
||
|
}
|
||
|
|
||
|
threadpool->workers = workers;
|
||
|
|
||
|
#ifndef GGML_USE_OPENMP
|
||
|
ggml_mutex_init(&threadpool->mutex);
|
||
|
ggml_cond_init(&threadpool->cond);
|
||
|
|
||
|
// Spin the threads for all workers, and update CPU placements.
|
||
|
// Place the main thread last (towards the higher numbered CPU cores).
|
||
|
|
||
|
int32_t cpumask_iter = 0;
|
||
|
|
||
|
for (int j = 1; j < tpp->n_threads; j++) {
|
||
|
ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
|
||
|
|
||
|
int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
|
||
|
GGML_ASSERT(rc == 0);
|
||
|
}
|
||
|
|
||
|
ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
|
||
|
|
||
|
if (!threadpool->pause) {
|
||
|
// Update main thread prio and affinity at the start, otherwise we'll do it in resume
|
||
|
ggml_thread_apply_priority(threadpool->prio);
|
||
|
if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
|
||
|
ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
|
||
|
}
|
||
|
}
|
||
|
#endif // GGML_USE_OPENMP
|
||
|
|
||
|
return threadpool;
|
||
|
}
|
||
|
|
||
|
struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
|
||
|
return ggml_threadpool_new_impl(tpp, NULL, NULL);
|
||
|
}
|
||
|
|
||
|
enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
|
||
|
ggml_cpu_init();
|
||
|
|
||
|
GGML_ASSERT(cplan);
|
||
|
GGML_ASSERT(cplan->n_threads > 0);
|
||
|
GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
|
||
|
|
||
|
int n_threads = cplan->n_threads;
|
||
|
struct ggml_threadpool * threadpool = cplan->threadpool;
|
||
|
|
||
|
bool disposable_threadpool = false;
|
||
|
|
||
|
if (threadpool == NULL) {
|
||
|
//GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
|
||
|
disposable_threadpool = true;
|
||
|
|
||
|
struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
|
||
|
threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
|
||
|
} else {
|
||
|
// Reset some of the parameters that need resetting
|
||
|
// No worker threads should be accessing the parameters below at this stage
|
||
|
threadpool->cgraph = cgraph;
|
||
|
threadpool->cplan = cplan;
|
||
|
threadpool->current_chunk = 0;
|
||
|
threadpool->abort = false;
|
||
|
threadpool->ec = GGML_STATUS_SUCCESS;
|
||
|
}
|
||
|
|
||
|
#ifdef GGML_USE_OPENMP
|
||
|
if (n_threads > 1) {
|
||
|
#pragma omp parallel num_threads(n_threads)
|
||
|
{
|
||
|
#pragma omp single
|
||
|
{
|
||
|
// update the number of threads from the actual number of threads that we got from OpenMP
|
||
|
n_threads = omp_get_num_threads();
|
||
|
atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
|
||
|
}
|
||
|
|
||
|
ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
|
||
|
}
|
||
|
} else {
|
||
|
atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);
|
||
|
ggml_graph_compute_thread(&threadpool->workers[0]);
|
||
|
}
|
||
|
#else
|
||
|
if (n_threads > threadpool->n_threads_max) {
|
||
|
GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max);
|
||
|
n_threads = threadpool->n_threads_max;
|
||
|
}
|
||
|
|
||
|
// Kick all threads to start the new graph
|
||
|
ggml_graph_compute_kickoff(threadpool, n_threads);
|
||
|
|
||
|
// This is a work thread too
|
||
|
ggml_graph_compute_thread(&threadpool->workers[0]);
|
||
|
#endif
|
||
|
|
||
|
// don't leave affinity set on the main thread
|
||
|
clear_numa_thread_affinity();
|
||
|
|
||
|
enum ggml_status ret = threadpool->ec;
|
||
|
|
||
|
if (disposable_threadpool) {
|
||
|
ggml_threadpool_free(threadpool);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
|
||
|
struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
|
||
|
|
||
|
cplan.work_data = (uint8_t *)ggml_new_buffer(ctx, cplan.work_size);
|
||
|
|
||
|
return ggml_graph_compute(cgraph, &cplan);
|
||
|
}
|
||
|
|
||
|
int ggml_cpu_has_neon(void) {
|
||
|
#if defined(__ARM_ARCH)
|
||
|
return ggml_arm_arch_features.has_neon;
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
int ggml_cpu_has_sve(void) {
|
||
|
#if defined(__ARM_ARCH)
|
||
|
return ggml_arm_arch_features.has_sve;
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
int ggml_cpu_has_matmul_int8(void) {
|
||
|
#if defined(__ARM_ARCH)
|
||
|
return ggml_arm_arch_features.has_i8mm;
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
int ggml_cpu_get_sve_cnt(void) {
|
||
|
#if defined(__ARM_ARCH)
|
||
|
return ggml_arm_arch_features.sve_cnt;
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void ggml_cpu_init(void) {
|
||
|
ggml_critical_section_start();
|
||
|
|
||
|
static bool is_first_call = true;
|
||
|
|
||
|
if (is_first_call) {
|
||
|
// initialize GELU, Quick GELU, SILU and EXP F32 tables
|
||
|
{
|
||
|
// FIXME: this may be called before ggml_init
|
||
|
//const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
|
||
|
|
||
|
for (int i = 0; i < (1 << 16); ++i) {
|
||
|
union {
|
||
|
uint16_t u16;
|
||
|
ggml_fp16_t fp16;
|
||
|
} u = {i};
|
||
|
// FIXME: this table is used in conversion functions outside of compute
|
||
|
// current code depends on ggml_init initializing this table
|
||
|
float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
|
||
|
ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
|
||
|
ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
|
||
|
}
|
||
|
|
||
|
//const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
|
||
|
|
||
|
//GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
|
||
|
}
|
||
|
|
||
|
#if defined(__ARM_ARCH)
|
||
|
ggml_init_arm_arch_features();
|
||
|
#endif
|
||
|
|
||
|
is_first_call = false;
|
||
|
}
|
||
|
|
||
|
ggml_critical_section_end();
|
||
|
}
|