llama.cpp/examples/passkey/passkey.cpp

278 lines
8.0 KiB
C++
Raw Normal View History

2023-10-30 08:44:07 +00:00
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
2024-01-07 12:48:09 +00:00
printf("usage: %s MODEL_PATH N_JUNK I_POS SEED\n" , argv[0]);
2023-10-30 08:44:07 +00:00
return 1 ;
}
int seed = -1;
int n_junk = 250; // number of times to repeat the junk text
int n_keep = 32; // number of tokens in the prompt prefix
2024-01-07 12:48:09 +00:00
int i_pos = -1; // position of the passkey in the junk text
2023-10-30 08:44:07 +00:00
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
n_junk = std::stoi(argv[2]);
}
if (argc >= 4) {
2024-01-07 12:48:09 +00:00
i_pos = std::stoi(argv[3]);
2023-10-30 08:44:07 +00:00
}
2024-01-07 12:48:09 +00:00
if (argc >= 5) {
seed = std::stoi(argv[4]);
}
2023-10-30 08:44:07 +00:00
if (seed == -1) {
seed = time(NULL);
}
srand(seed);
2024-01-07 12:48:09 +00:00
if (i_pos == -1) {
i_pos = rand() % n_junk;
}
const std::string prompt_prefix = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.";
const std::string prompt_suffix = " What is the pass key? The pass key is";
2023-10-30 08:44:07 +00:00
// generate junk text
params.prompt = prompt_prefix;
2024-01-07 12:48:09 +00:00
const int passkey = rand() % 50000 + 1;
2023-10-30 08:44:07 +00:00
for (int i = 0; i < n_junk; i++) {
2024-01-07 12:48:09 +00:00
if (i % n_junk == i_pos) {
2023-10-30 08:44:07 +00:00
params.prompt += " The pass key is " + std::to_string(passkey) + ". Remember it. " + std::to_string(passkey) + " is the pass key.";
}
params.prompt += " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.";
}
2023-10-30 09:13:44 +00:00
params.prompt += prompt_suffix;
2023-10-30 08:44:07 +00:00
// init LLM
llama_backend_init(params.numa);
// initialize the model
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = 99; // offload all layers to the GPU
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = seed;
ctx_params.n_ctx = llama_n_ctx_train(model) + n_keep;
ctx_params.n_batch = 512;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
2024-01-07 12:48:09 +00:00
// tokenize the prefix and use it as a sink
const int n_tokens_prefix = ::llama_tokenize(ctx, prompt_prefix, true).size();
const int n_tokens_all = tokens_list.size();
2023-10-30 08:44:07 +00:00
// we leave a margin of 16 tokens for the generated text - it should contain just the passkey
const int n_predict = 16;
// total length of the sequences including the prompt
2024-01-07 12:48:09 +00:00
const int n_len = n_tokens_all + n_predict;
2023-10-30 08:44:07 +00:00
const int n_ctx = llama_n_ctx(ctx) - n_keep;
const int n_kv_req = llama_n_ctx(ctx);
const int n_batch = ctx_params.n_batch;
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
// print the prompt token-by-token
LOG_TEE("\n");
LOG_TEE("prefix tokens: %d\n", n_tokens_prefix);
2024-01-07 12:48:09 +00:00
LOG_TEE("prompt tokens: %d\n", n_tokens_all);
2023-10-30 08:44:07 +00:00
//LOG_TEE("prompt: %s\n", params.prompt.c_str());
llama_batch batch = llama_batch_init(512, 0, 1);
2024-01-07 15:52:12 +00:00
int n_past = 0;
2023-10-30 08:44:07 +00:00
// fill the KV cache
for (int i = 0; i < n_ctx; i += n_batch) {
llama_batch_clear(batch);
2024-01-07 12:48:09 +00:00
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
2024-01-07 15:52:12 +00:00
llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
2023-10-30 08:44:07 +00:00
}
2024-01-07 12:48:09 +00:00
if (i + n_batch >= n_tokens_all) {
2023-10-30 08:44:07 +00:00
batch.logits[batch.n_tokens - 1] = true;
}
if (llama_decode(ctx, batch) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
2024-01-07 12:48:09 +00:00
LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
2023-10-30 08:44:07 +00:00
2024-01-07 12:48:09 +00:00
if (i + n_batch >= n_tokens_all) {
2023-10-30 08:44:07 +00:00
break;
}
}
2024-01-07 12:48:09 +00:00
for (int i = n_ctx; i < n_tokens_all; i += n_batch) {
2023-10-30 08:44:07 +00:00
const int n_discard = n_batch;
LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
2024-01-07 15:52:12 +00:00
n_past -= n_discard;
2023-10-30 08:44:07 +00:00
llama_batch_clear(batch);
2024-01-07 12:48:09 +00:00
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
2024-01-07 15:52:12 +00:00
llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
2023-10-30 08:44:07 +00:00
}
2024-01-07 12:48:09 +00:00
if (i + n_batch >= n_tokens_all) {
2023-10-30 08:44:07 +00:00
batch.logits[batch.n_tokens - 1] = true;
}
if (llama_decode(ctx, batch) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
2024-01-07 12:48:09 +00:00
LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
2023-10-30 08:44:07 +00:00
}
{
const int n_discard = n_past - n_ctx + n_predict;
if (n_discard > 0) {
LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
n_past -= n_discard;
}
}
2023-10-30 09:13:44 +00:00
LOG_TEE("\n");
2024-01-07 12:48:09 +00:00
LOG_TEE("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk);
2023-10-30 08:44:07 +00:00
LOG_TEE("\n");
// main loop
2024-01-07 12:48:09 +00:00
int n_cur = n_tokens_all;
2023-10-30 08:44:07 +00:00
int n_decode = 0;
2023-10-30 09:13:44 +00:00
LOG_TEE("%s", prompt_suffix.c_str());
fflush(stdout);
2023-10-30 08:44:07 +00:00
const auto t_main_start = ggml_time_us();
while (n_cur <= n_len) {
// sample the next token
{
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream?
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
LOG_TEE("\n");
break;
}
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
fflush(stdout);
n_decode += 1;
// prepare the next batch
llama_batch_clear(batch);
// push this new token for next evaluation
2024-01-07 15:52:12 +00:00
llama_batch_add(batch, new_token_id, n_past++, { 0 }, true);
2023-10-30 08:44:07 +00:00
}
n_cur += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
}
LOG_TEE("\n");
const auto t_main_end = ggml_time_us();
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}