2023-10-30 08:44:07 +00:00
# include "common.h"
# include "llama.h"
# include <cmath>
# include <cstdio>
# include <string>
# include <vector>
int main ( int argc , char * * argv ) {
gpt_params params ;
if ( argc = = 1 | | argv [ 1 ] [ 0 ] = = ' - ' ) {
2024-01-07 12:48:09 +00:00
printf ( " usage: %s MODEL_PATH N_JUNK I_POS SEED \n " , argv [ 0 ] ) ;
2023-10-30 08:44:07 +00:00
return 1 ;
}
int seed = - 1 ;
int n_junk = 250 ; // number of times to repeat the junk text
int n_keep = 32 ; // number of tokens in the prompt prefix
2024-01-07 12:48:09 +00:00
int i_pos = - 1 ; // position of the passkey in the junk text
2023-10-30 08:44:07 +00:00
if ( argc > = 2 ) {
params . model = argv [ 1 ] ;
}
if ( argc > = 3 ) {
n_junk = std : : stoi ( argv [ 2 ] ) ;
}
if ( argc > = 4 ) {
2024-01-07 12:48:09 +00:00
i_pos = std : : stoi ( argv [ 3 ] ) ;
2023-10-30 08:44:07 +00:00
}
2024-01-07 12:48:09 +00:00
if ( argc > = 5 ) {
seed = std : : stoi ( argv [ 4 ] ) ;
}
2023-10-30 08:44:07 +00:00
if ( seed = = - 1 ) {
seed = time ( NULL ) ;
}
srand ( seed ) ;
2024-01-07 12:48:09 +00:00
if ( i_pos = = - 1 ) {
i_pos = rand ( ) % n_junk ;
}
const std : : string prompt_prefix = " There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there. " ;
const std : : string prompt_suffix = " What is the pass key? The pass key is " ;
2023-10-30 08:44:07 +00:00
// generate junk text
params . prompt = prompt_prefix ;
2024-01-07 12:48:09 +00:00
const int passkey = rand ( ) % 50000 + 1 ;
2023-10-30 08:44:07 +00:00
for ( int i = 0 ; i < n_junk ; i + + ) {
2024-01-07 12:48:09 +00:00
if ( i % n_junk = = i_pos ) {
2023-10-30 08:44:07 +00:00
params . prompt + = " The pass key is " + std : : to_string ( passkey ) + " . Remember it. " + std : : to_string ( passkey ) + " is the pass key. " ;
}
params . prompt + = " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. " ;
}
2023-10-30 09:13:44 +00:00
params . prompt + = prompt_suffix ;
2023-10-30 08:44:07 +00:00
// init LLM
llama_backend_init ( params . numa ) ;
// initialize the model
llama_model_params model_params = llama_model_default_params ( ) ;
model_params . n_gpu_layers = 99 ; // offload all layers to the GPU
llama_model * model = llama_load_model_from_file ( params . model . c_str ( ) , model_params ) ;
if ( model = = NULL ) {
fprintf ( stderr , " %s: error: unable to load model \n " , __func__ ) ;
return 1 ;
}
// initialize the context
llama_context_params ctx_params = llama_context_default_params ( ) ;
ctx_params . seed = seed ;
ctx_params . n_ctx = llama_n_ctx_train ( model ) + n_keep ;
ctx_params . n_batch = 512 ;
ctx_params . n_threads = params . n_threads ;
ctx_params . n_threads_batch = params . n_threads_batch = = - 1 ? params . n_threads : params . n_threads_batch ;
llama_context * ctx = llama_new_context_with_model ( model , ctx_params ) ;
if ( ctx = = NULL ) {
fprintf ( stderr , " %s: error: failed to create the llama_context \n " , __func__ ) ;
return 1 ;
}
// tokenize the prompt
std : : vector < llama_token > tokens_list ;
tokens_list = : : llama_tokenize ( ctx , params . prompt , true ) ;
2024-01-07 12:48:09 +00:00
// tokenize the prefix and use it as a sink
const int n_tokens_prefix = : : llama_tokenize ( ctx , prompt_prefix , true ) . size ( ) ;
const int n_tokens_all = tokens_list . size ( ) ;
2023-10-30 08:44:07 +00:00
// we leave a margin of 16 tokens for the generated text - it should contain just the passkey
const int n_predict = 16 ;
// total length of the sequences including the prompt
2024-01-07 12:48:09 +00:00
const int n_len = n_tokens_all + n_predict ;
2023-10-30 08:44:07 +00:00
const int n_ctx = llama_n_ctx ( ctx ) - n_keep ;
const int n_kv_req = llama_n_ctx ( ctx ) ;
const int n_batch = ctx_params . n_batch ;
LOG_TEE ( " \n %s: n_len = %d, n_ctx = %d, n_kv_req = %d \n " , __func__ , n_len , n_ctx , n_kv_req ) ;
// print the prompt token-by-token
LOG_TEE ( " \n " ) ;
LOG_TEE ( " prefix tokens: %d \n " , n_tokens_prefix ) ;
2024-01-07 12:48:09 +00:00
LOG_TEE ( " prompt tokens: %d \n " , n_tokens_all ) ;
2023-10-30 08:44:07 +00:00
//LOG_TEE("prompt: %s\n", params.prompt.c_str());
llama_batch batch = llama_batch_init ( 512 , 0 , 1 ) ;
2024-01-07 15:52:12 +00:00
int n_past = 0 ;
2023-10-30 08:44:07 +00:00
// fill the KV cache
for ( int i = 0 ; i < n_ctx ; i + = n_batch ) {
llama_batch_clear ( batch ) ;
2024-01-07 12:48:09 +00:00
for ( int j = 0 ; j < n_batch & & i + j < n_tokens_all ; j + + ) {
2024-01-07 15:52:12 +00:00
llama_batch_add ( batch , tokens_list [ i + j ] , n_past + + , { 0 } , false ) ;
2023-10-30 08:44:07 +00:00
}
2024-01-07 12:48:09 +00:00
if ( i + n_batch > = n_tokens_all ) {
2023-10-30 08:44:07 +00:00
batch . logits [ batch . n_tokens - 1 ] = true ;
}
if ( llama_decode ( ctx , batch ) ! = 0 ) {
LOG_TEE ( " %s: llama_decode() failed \n " , __func__ ) ;
return 1 ;
}
2024-01-07 12:48:09 +00:00
LOG_TEE ( " %s: processed: [%6d, %6d) \n " , __func__ , i , std : : min ( i + n_batch , n_tokens_all ) ) ;
2023-10-30 08:44:07 +00:00
2024-01-07 12:48:09 +00:00
if ( i + n_batch > = n_tokens_all ) {
2023-10-30 08:44:07 +00:00
break ;
}
}
2024-01-07 12:48:09 +00:00
for ( int i = n_ctx ; i < n_tokens_all ; i + = n_batch ) {
2023-10-30 08:44:07 +00:00
const int n_discard = n_batch ;
LOG_TEE ( " %s: shifting KV cache with %d \n " , __func__ , n_discard ) ;
llama_kv_cache_seq_rm ( ctx , 0 , n_keep , n_keep + n_discard ) ;
llama_kv_cache_seq_shift ( ctx , 0 , n_keep + n_discard , n_ctx , - n_discard ) ;
2024-01-07 15:52:12 +00:00
n_past - = n_discard ;
2023-10-30 08:44:07 +00:00
llama_batch_clear ( batch ) ;
2024-01-07 12:48:09 +00:00
for ( int j = 0 ; j < n_batch & & i + j < n_tokens_all ; j + + ) {
2024-01-07 15:52:12 +00:00
llama_batch_add ( batch , tokens_list [ i + j ] , n_past + + , { 0 } , false ) ;
2023-10-30 08:44:07 +00:00
}
2024-01-07 12:48:09 +00:00
if ( i + n_batch > = n_tokens_all ) {
2023-10-30 08:44:07 +00:00
batch . logits [ batch . n_tokens - 1 ] = true ;
}
if ( llama_decode ( ctx , batch ) ! = 0 ) {
LOG_TEE ( " %s: llama_decode() failed \n " , __func__ ) ;
return 1 ;
}
2024-01-07 12:48:09 +00:00
LOG_TEE ( " %s: processed: [%6d, %6d) \n " , __func__ , i , std : : min ( i + n_batch , n_tokens_all ) ) ;
2023-10-30 08:44:07 +00:00
}
{
const int n_discard = n_past - n_ctx + n_predict ;
if ( n_discard > 0 ) {
LOG_TEE ( " %s: shifting KV cache with %d to free space for the answer \n " , __func__ , n_discard ) ;
llama_kv_cache_seq_rm ( ctx , 0 , n_keep , n_keep + n_discard ) ;
llama_kv_cache_seq_shift ( ctx , 0 , n_keep + n_discard , n_ctx , - n_discard ) ;
n_past - = n_discard ;
}
}
2023-10-30 09:13:44 +00:00
LOG_TEE ( " \n " ) ;
2024-01-07 12:48:09 +00:00
LOG_TEE ( " %s: passkey = %d, inserted at position %d / %d (token pos: ~%d) \n " , __func__ , passkey , i_pos , n_junk , ( i_pos * n_tokens_all ) / n_junk ) ;
2023-10-30 08:44:07 +00:00
LOG_TEE ( " \n " ) ;
// main loop
2024-01-07 12:48:09 +00:00
int n_cur = n_tokens_all ;
2023-10-30 08:44:07 +00:00
int n_decode = 0 ;
2023-10-30 09:13:44 +00:00
LOG_TEE ( " %s " , prompt_suffix . c_str ( ) ) ;
fflush ( stdout ) ;
2023-10-30 08:44:07 +00:00
const auto t_main_start = ggml_time_us ( ) ;
while ( n_cur < = n_len ) {
// sample the next token
{
auto n_vocab = llama_n_vocab ( model ) ;
auto * logits = llama_get_logits_ith ( ctx , batch . n_tokens - 1 ) ;
std : : vector < llama_token_data > candidates ;
candidates . reserve ( n_vocab ) ;
for ( llama_token token_id = 0 ; token_id < n_vocab ; token_id + + ) {
candidates . emplace_back ( llama_token_data { token_id , logits [ token_id ] , 0.0f } ) ;
}
llama_token_data_array candidates_p = { candidates . data ( ) , candidates . size ( ) , false } ;
// sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy ( ctx , & candidates_p ) ;
// is it an end of stream?
if ( new_token_id = = llama_token_eos ( model ) | | n_cur = = n_len ) {
LOG_TEE ( " \n " ) ;
break ;
}
LOG_TEE ( " %s " , llama_token_to_piece ( ctx , new_token_id ) . c_str ( ) ) ;
fflush ( stdout ) ;
n_decode + = 1 ;
// prepare the next batch
llama_batch_clear ( batch ) ;
// push this new token for next evaluation
2024-01-07 15:52:12 +00:00
llama_batch_add ( batch , new_token_id , n_past + + , { 0 } , true ) ;
2023-10-30 08:44:07 +00:00
}
n_cur + = 1 ;
// evaluate the current batch with the transformer model
if ( llama_decode ( ctx , batch ) ) {
fprintf ( stderr , " %s : failed to eval, return code %d \n " , __func__ , 1 ) ;
return 1 ;
}
}
LOG_TEE ( " \n " ) ;
const auto t_main_end = ggml_time_us ( ) ;
LOG_TEE ( " %s: decoded %d tokens in %.2f s, speed: %.2f t/s \n " ,
__func__ , n_decode , ( t_main_end - t_main_start ) / 1000000.0f , n_decode / ( ( t_main_end - t_main_start ) / 1000000.0f ) ) ;
llama_print_timings ( ctx ) ;
fprintf ( stderr , " \n " ) ;
llama_batch_free ( batch ) ;
llama_free ( ctx ) ;
llama_free_model ( model ) ;
llama_backend_free ( ) ;
return 0 ;
}