2024-10-28 02:01:00 +00:00
|
|
|
'''
|
|
|
|
This script fetches all the models used in the server tests.
|
2024-10-28 10:04:00 +00:00
|
|
|
|
2024-10-28 02:01:00 +00:00
|
|
|
This is useful for slow tests that use larger models, to avoid them timing out on the model downloads.
|
2024-10-28 10:04:00 +00:00
|
|
|
|
2024-10-28 02:01:00 +00:00
|
|
|
It is meant to be run from the root of the repository.
|
2024-10-28 10:04:00 +00:00
|
|
|
|
2024-10-28 02:01:00 +00:00
|
|
|
Example:
|
|
|
|
python scripts/fetch_server_test_models.py
|
|
|
|
( cd examples/server/tests && ./tests.sh --tags=slow )
|
|
|
|
'''
|
|
|
|
from behave.parser import Parser
|
|
|
|
import glob
|
2024-10-28 23:57:23 +00:00
|
|
|
import os
|
2024-10-28 02:01:00 +00:00
|
|
|
from pydantic import BaseModel
|
2024-10-28 23:57:23 +00:00
|
|
|
import re
|
2024-10-28 02:01:00 +00:00
|
|
|
import subprocess
|
2024-10-28 23:57:23 +00:00
|
|
|
import sys
|
2024-10-28 02:01:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
class HuggingFaceModel(BaseModel):
|
|
|
|
hf_repo: str
|
|
|
|
hf_file: str
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
frozen = True
|
|
|
|
|
|
|
|
|
|
|
|
models = set()
|
|
|
|
|
|
|
|
model_file_re = re.compile(r'a model file ([^\s\n\r]+) from HF repo ([^\s\n\r]+)')
|
|
|
|
|
|
|
|
|
|
|
|
def process_step(step):
|
|
|
|
if (match := model_file_re.search(step.name)):
|
|
|
|
(hf_file, hf_repo) = match.groups()
|
|
|
|
models.add(HuggingFaceModel(hf_repo=hf_repo, hf_file=hf_file))
|
|
|
|
|
|
|
|
|
|
|
|
feature_files = glob.glob(
|
|
|
|
os.path.join(
|
|
|
|
os.path.dirname(__file__),
|
|
|
|
'../examples/server/tests/features/*.feature'))
|
|
|
|
|
|
|
|
for feature_file in feature_files:
|
|
|
|
with open(feature_file, 'r') as file:
|
|
|
|
feature = Parser().parse(file.read())
|
|
|
|
if not feature: continue
|
|
|
|
|
|
|
|
if feature.background:
|
|
|
|
for step in feature.background.steps:
|
|
|
|
process_step(step)
|
|
|
|
|
|
|
|
for scenario in feature.walk_scenarios(with_outlines=True):
|
|
|
|
for step in scenario.steps:
|
|
|
|
process_step(step)
|
|
|
|
|
|
|
|
cli_path = os.environ.get(
|
|
|
|
'LLAMA_SERVER_BIN_PATH',
|
|
|
|
os.path.join(
|
|
|
|
os.path.dirname(__file__),
|
|
|
|
'../build/bin/Release/llama-cli.exe' if os.name == 'nt' else '../build/bin/llama-cli'))
|
|
|
|
|
2024-10-28 23:57:23 +00:00
|
|
|
for m in sorted(list(models), key=lambda m: m.hf_repo):
|
2024-10-28 02:01:00 +00:00
|
|
|
if '<' in m.hf_repo or '<' in m.hf_file:
|
|
|
|
continue
|
2024-10-28 23:57:23 +00:00
|
|
|
if '-of-' in m.hf_file:
|
|
|
|
print(f'# Skipping model at {m.hf_repo} / {m.hf_file} because it is a split file', file=sys.stderr)
|
|
|
|
continue
|
2024-10-28 02:01:00 +00:00
|
|
|
print(f'# Ensuring model at {m.hf_repo} / {m.hf_file} is fetched')
|
2024-10-28 23:57:23 +00:00
|
|
|
cmd = [cli_path, '-hfr', m.hf_repo, '-hff', m.hf_file, '-n', '1', '-p', 'Hey', '--no-warmup', '--log-disable']
|
|
|
|
if m.hf_file != 'tinyllamas/stories260K.gguf':
|
|
|
|
cmd.append('-fa')
|
|
|
|
try:
|
|
|
|
subprocess.check_call(cmd)
|
|
|
|
except subprocess.CalledProcessError:
|
|
|
|
print(f'# Failed to fetch model at {m.hf_repo} / {m.hf_file} with command:\n {" ".join(cmd)}', file=sys.stderr)
|
|
|
|
exit(1)
|