mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-15 23:39:52 +00:00
151 lines
7.5 KiB
C
151 lines
7.5 KiB
C
|
#pragma once
|
||
|
|
||
|
#include "ggml.h"
|
||
|
#include "ggml-backend.h"
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
// Scheduling priorities
|
||
|
enum ggml_sched_priority {
|
||
|
GGML_SCHED_PRIO_NORMAL,
|
||
|
GGML_SCHED_PRIO_MEDIUM,
|
||
|
GGML_SCHED_PRIO_HIGH,
|
||
|
GGML_SCHED_PRIO_REALTIME
|
||
|
};
|
||
|
|
||
|
// Threadpool params
|
||
|
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
|
||
|
struct ggml_threadpool_params {
|
||
|
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
|
||
|
int n_threads; // number of threads
|
||
|
enum ggml_sched_priority prio; // thread priority
|
||
|
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
|
||
|
bool strict_cpu; // strict cpu placement
|
||
|
bool paused; // start in paused state
|
||
|
};
|
||
|
|
||
|
struct ggml_threadpool; // forward declaration, see ggml.c
|
||
|
|
||
|
typedef struct ggml_threadpool * ggml_threadpool_t;
|
||
|
|
||
|
// the compute plan that needs to be prepared for ggml_graph_compute()
|
||
|
// since https://github.com/ggerganov/ggml/issues/287
|
||
|
struct ggml_cplan {
|
||
|
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
||
|
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
||
|
|
||
|
int n_threads;
|
||
|
struct ggml_threadpool * threadpool;
|
||
|
|
||
|
// abort ggml_graph_compute when true
|
||
|
ggml_abort_callback abort_callback;
|
||
|
void * abort_callback_data;
|
||
|
};
|
||
|
|
||
|
// numa strategies
|
||
|
enum ggml_numa_strategy {
|
||
|
GGML_NUMA_STRATEGY_DISABLED = 0,
|
||
|
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
|
||
|
GGML_NUMA_STRATEGY_ISOLATE = 2,
|
||
|
GGML_NUMA_STRATEGY_NUMACTL = 3,
|
||
|
GGML_NUMA_STRATEGY_MIRROR = 4,
|
||
|
GGML_NUMA_STRATEGY_COUNT
|
||
|
};
|
||
|
|
||
|
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
||
|
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
||
|
|
||
|
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
||
|
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||
|
|
||
|
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
||
|
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
||
|
|
||
|
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
||
|
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
||
|
|
||
|
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||
|
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
||
|
|
||
|
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
||
|
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
||
|
|
||
|
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||
|
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
||
|
|
||
|
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
||
|
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
||
|
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
||
|
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||
|
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||
|
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
|
||
|
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||
|
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||
|
|
||
|
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||
|
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||
|
GGML_API struct ggml_cplan ggml_graph_plan(
|
||
|
const struct ggml_cgraph * cgraph,
|
||
|
int n_threads, /* = GGML_DEFAULT_N_THREADS */
|
||
|
struct ggml_threadpool * threadpool /* = NULL */ );
|
||
|
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||
|
|
||
|
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
||
|
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
||
|
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
||
|
|
||
|
// TODO: move to backend interface
|
||
|
GGML_API int ggml_cpu_has_neon (void);
|
||
|
GGML_API int ggml_cpu_has_sve (void);
|
||
|
GGML_API int ggml_cpu_has_matmul_int8(void);
|
||
|
// get the sve vector length in bytes
|
||
|
GGML_API int ggml_cpu_get_sve_cnt(void);
|
||
|
|
||
|
// Internal types and functions exposed for tests and benchmarks
|
||
|
|
||
|
typedef void (*ggml_from_float_to_mat_t)
|
||
|
(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
|
||
|
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
|
||
|
const void * GGML_RESTRICT y, size_t by, int nrc);
|
||
|
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
|
||
|
const void * GGML_RESTRICT y, int nr, int nc);
|
||
|
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
|
||
|
const void * GGML_RESTRICT y, int nr, int nc);
|
||
|
|
||
|
struct ggml_type_traits_cpu {
|
||
|
ggml_from_float_to_mat_t from_float_to_mat;
|
||
|
ggml_vec_dot_t vec_dot;
|
||
|
enum ggml_type vec_dot_type;
|
||
|
int64_t nrows; // number of rows to process simultaneously
|
||
|
int64_t ncols; // number of columns to process simultaneously
|
||
|
ggml_gemv_t gemv;
|
||
|
ggml_gemm_t gemm;
|
||
|
};
|
||
|
|
||
|
GGML_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
|
||
|
|
||
|
GGML_API void ggml_cpu_init(void);
|
||
|
|
||
|
//
|
||
|
// CPU backend
|
||
|
//
|
||
|
|
||
|
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
|
||
|
|
||
|
GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||
|
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||
|
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||
|
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||
|
|
||
|
GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||
|
|
||
|
#ifdef GGML_USE_CPU_HBM
|
||
|
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
||
|
#endif
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|