2024-05-09 13:30:44 +00:00
|
|
|
|
# Test libllama tokenizer == AutoTokenizer.
|
2024-05-17 23:09:13 +00:00
|
|
|
|
# Brute force random words/text generation.
|
2024-05-09 13:30:44 +00:00
|
|
|
|
#
|
|
|
|
|
# Sample usage:
|
|
|
|
|
#
|
|
|
|
|
# python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
import time
|
|
|
|
|
import logging
|
|
|
|
|
import argparse
|
|
|
|
|
import subprocess
|
|
|
|
|
import random
|
2024-06-18 16:40:52 +00:00
|
|
|
|
import unicodedata
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
2024-05-17 23:09:13 +00:00
|
|
|
|
from typing import Callable, Iterator
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
|
|
|
|
import cffi
|
2024-05-17 23:09:13 +00:00
|
|
|
|
from transformers import AutoTokenizer
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
2024-06-18 16:40:52 +00:00
|
|
|
|
|
|
|
|
|
logger = logging.getLogger("test-tokenizer-random")
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LibLlama:
|
|
|
|
|
|
|
|
|
|
DEFAULT_PATH_LLAMA_H = "./llama.h"
|
|
|
|
|
DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
|
|
|
|
|
|
|
|
|
|
def __init__(self, path_llama_h: str = None, path_libllama: str = None):
|
|
|
|
|
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
|
|
|
|
|
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
|
|
|
|
|
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
|
|
|
|
|
self.lib.llama_backend_init()
|
|
|
|
|
|
|
|
|
|
def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
|
|
|
|
|
cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
|
|
|
|
|
res = subprocess.run(cmd, stdout=subprocess.PIPE)
|
|
|
|
|
assert (res.returncode == 0)
|
|
|
|
|
source = res.stdout.decode()
|
|
|
|
|
ffi = cffi.FFI()
|
|
|
|
|
if True: # workarounds for pycparser
|
|
|
|
|
source = "typedef struct { } __builtin_va_list;" + "\n" + source
|
|
|
|
|
source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
|
|
|
|
|
source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
|
|
|
|
|
source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
|
|
|
|
|
source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
|
|
|
|
|
ffi.cdef(source, override=True)
|
|
|
|
|
lib = ffi.dlopen(path_libllama)
|
|
|
|
|
return (ffi, lib)
|
|
|
|
|
|
|
|
|
|
def model_default_params(self, **kwargs):
|
|
|
|
|
mparams = self.lib.llama_model_default_params()
|
|
|
|
|
for k, v in kwargs.items():
|
|
|
|
|
setattr(mparams, k, v)
|
|
|
|
|
return mparams
|
|
|
|
|
|
|
|
|
|
def context_default_params(self, **kwargs):
|
|
|
|
|
cparams = self.lib.llama_context_default_params()
|
|
|
|
|
for k, v in kwargs.items():
|
|
|
|
|
setattr(cparams, k, v)
|
|
|
|
|
return cparams
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LibLlamaModel:
|
|
|
|
|
|
|
|
|
|
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
|
|
|
|
|
self.lib = libllama.lib
|
|
|
|
|
self.ffi = libllama.ffi
|
|
|
|
|
if isinstance(mparams, dict):
|
|
|
|
|
mparams = libllama.model_default_params(**mparams)
|
|
|
|
|
self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
|
|
|
|
|
if not self.model:
|
|
|
|
|
raise RuntimeError("error: failed to load model '%s'" % path_model)
|
|
|
|
|
if isinstance(cparams, dict):
|
|
|
|
|
cparams = libllama.context_default_params(**cparams)
|
|
|
|
|
self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
|
|
|
|
|
if not self.ctx:
|
|
|
|
|
raise RuntimeError("error: failed to create context for model '%s'" % path_model)
|
|
|
|
|
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
|
|
|
|
|
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
|
|
|
|
|
|
|
|
|
|
def free(self):
|
|
|
|
|
if self.ctx:
|
|
|
|
|
self.lib.llama_free(self.ctx)
|
|
|
|
|
if self.model:
|
|
|
|
|
self.lib.llama_free_model(self.model)
|
|
|
|
|
self.ctx = None
|
|
|
|
|
self.model = None
|
|
|
|
|
self.lib = None
|
|
|
|
|
|
|
|
|
|
def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
|
|
|
|
|
n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
|
|
|
|
|
text = text.encode("utf-8")
|
|
|
|
|
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
|
|
|
|
|
if num < 0:
|
|
|
|
|
return []
|
|
|
|
|
return list(self.token_ids[0:num])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generator_custom_text() -> Iterator[str]:
|
|
|
|
|
"""General tests"""
|
|
|
|
|
yield from [
|
|
|
|
|
"",
|
|
|
|
|
" ",
|
|
|
|
|
" ",
|
|
|
|
|
" ",
|
|
|
|
|
"\t",
|
|
|
|
|
"\n",
|
|
|
|
|
"\n\n",
|
|
|
|
|
"\n\n\n",
|
|
|
|
|
"\t\n",
|
|
|
|
|
"Hello world",
|
|
|
|
|
" Hello world",
|
|
|
|
|
"Hello World",
|
|
|
|
|
" Hello World",
|
|
|
|
|
" Hello World!",
|
|
|
|
|
"Hello, world!",
|
|
|
|
|
" Hello, world!",
|
|
|
|
|
" this is 🦙.cpp",
|
|
|
|
|
"w048 7tuijk dsdfhu",
|
|
|
|
|
"нещо на Български",
|
|
|
|
|
"កាន់តែពិសេសអាចខលចេញ",
|
|
|
|
|
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
|
|
|
|
"Hello",
|
|
|
|
|
" Hello",
|
|
|
|
|
" Hello",
|
|
|
|
|
" Hello",
|
|
|
|
|
" Hello",
|
|
|
|
|
" Hello\n Hello",
|
|
|
|
|
" (",
|
|
|
|
|
"\n =",
|
|
|
|
|
"' era",
|
|
|
|
|
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
|
|
|
|
|
"3",
|
|
|
|
|
"33",
|
|
|
|
|
"333",
|
|
|
|
|
"3333",
|
|
|
|
|
"33333",
|
|
|
|
|
"333333",
|
|
|
|
|
"3333333",
|
|
|
|
|
"33333333",
|
|
|
|
|
"333333333",
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generator_custom_text_edge_cases() -> Iterator[str]:
|
|
|
|
|
"""Edge cases found while debugging"""
|
|
|
|
|
yield from [
|
2024-05-17 23:09:13 +00:00
|
|
|
|
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
|
|
|
|
|
'¼-a', # unicode_ranges_digit, 0x00BC
|
|
|
|
|
'½-a', # unicode_ranges_digit, 0x00BD
|
|
|
|
|
'¾-a', # unicode_ranges_digit, 0x00BE
|
|
|
|
|
'a 〇b', # unicode_ranges_digit, 0x3007
|
|
|
|
|
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
|
|
|
|
|
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
|
|
|
|
|
'Cửa Việt', # llama-3, ignore_merges = true
|
2024-05-20 18:15:57 +00:00
|
|
|
|
'<s>a', # Phi-3 fail
|
2024-05-21 12:39:48 +00:00
|
|
|
|
'<unk><|endoftext|><s>', # Phi-3 fail
|
2024-06-18 16:40:52 +00:00
|
|
|
|
'a\na', # bert fail
|
|
|
|
|
'"`', # falcon
|
|
|
|
|
' \u2e4e', # falcon
|
|
|
|
|
'a\xa0\xa0\x00b', # jina-v2-es
|
|
|
|
|
'one <mask>', # jina-v2-es <mask> lstrip=true
|
|
|
|
|
'a </s> b', # rstrip phi-3
|
|
|
|
|
'a <mask> b', # lstrip jina-v2
|
|
|
|
|
'\xa0aC', # deepseek
|
2024-05-09 13:30:44 +00:00
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
2024-06-04 07:17:17 +00:00
|
|
|
|
def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
|
|
|
|
|
"""Brute force check all vocab words"""
|
|
|
|
|
yield from vocab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generator_added_lr_strip(tokenizer) -> Iterator[str]:
|
|
|
|
|
WHITESPACES = ["", " ", " ", " "]
|
|
|
|
|
special_tokens = list(tokenizer.all_special_tokens)
|
|
|
|
|
added_tokens = list(tokenizer.added_tokens_encoder)
|
|
|
|
|
all_tokens = list(sorted(set(special_tokens + added_tokens)))
|
|
|
|
|
for token in all_tokens:
|
|
|
|
|
for lstrip in WHITESPACES:
|
|
|
|
|
for rstrip in WHITESPACES:
|
|
|
|
|
yield lstrip + token + rstrip
|
|
|
|
|
yield "a" + lstrip + token + rstrip
|
|
|
|
|
yield lstrip + token + rstrip + "z"
|
|
|
|
|
yield "a" + lstrip + token + rstrip + "z"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
|
|
|
|
|
special_tokens = list(tokenizer.all_special_tokens)
|
|
|
|
|
added_tokens = list(tokenizer.added_tokens_encoder)
|
|
|
|
|
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
|
|
|
|
|
all_tokens = list(sorted(set(special_tokens + added_tokens + separations)))
|
2024-05-20 18:15:57 +00:00
|
|
|
|
rand = random.Random()
|
|
|
|
|
for m in range(iterations):
|
|
|
|
|
rand.seed(m)
|
2024-06-04 07:17:17 +00:00
|
|
|
|
words = rand.choices(all_tokens, k=500)
|
2024-06-18 16:40:52 +00:00
|
|
|
|
if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS
|
2024-05-28 19:46:34 +00:00
|
|
|
|
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
|
|
|
|
|
words.pop(0)
|
|
|
|
|
if tokenizer.add_bos_token: # drop all starting BOS
|
2024-05-21 12:39:48 +00:00
|
|
|
|
words.pop(0)
|
2024-06-18 16:40:52 +00:00
|
|
|
|
if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS
|
|
|
|
|
while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS
|
|
|
|
|
words.pop(-1)
|
|
|
|
|
if tokenizer.add_bos_token: # drop all trailing EOS
|
|
|
|
|
words.pop(-1)
|
2024-05-20 18:15:57 +00:00
|
|
|
|
yield "".join(words)
|
|
|
|
|
|
|
|
|
|
|
2024-05-17 23:09:13 +00:00
|
|
|
|
def generator_random_chars(iterations=100) -> Iterator[str]:
|
2024-05-09 13:30:44 +00:00
|
|
|
|
"""Brute force random text with simple characters"""
|
|
|
|
|
|
2024-06-18 16:40:52 +00:00
|
|
|
|
NUM_WORDS = 400
|
2024-05-09 13:30:44 +00:00
|
|
|
|
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
2024-05-17 23:09:13 +00:00
|
|
|
|
CHARS = list(sorted(set("""
|
2024-05-09 13:30:44 +00:00
|
|
|
|
ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
|
|
|
|
abcdefghijklmnopqrstuvwxyz
|
|
|
|
|
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
|
|
|
|
|
áéíóúàèìòùâêîôûäëïöü
|
|
|
|
|
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
|
2024-05-17 23:09:13 +00:00
|
|
|
|
""")))
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
|
|
|
|
rand = random.Random()
|
|
|
|
|
for m in range(iterations):
|
|
|
|
|
rand.seed(m)
|
|
|
|
|
text = []
|
2024-06-18 16:40:52 +00:00
|
|
|
|
for _ in range(NUM_WORDS):
|
2024-05-09 13:30:44 +00:00
|
|
|
|
k = rand.randint(1, 7)
|
|
|
|
|
word = rand.choices(CHARS, k=k)
|
2024-06-18 16:40:52 +00:00
|
|
|
|
word.append(rand.choice(WHITESPACES))
|
|
|
|
|
text.append("".join(word))
|
|
|
|
|
yield "".join(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generator_unicodes() -> Iterator[str]:
|
|
|
|
|
"""Iterate unicode characters"""
|
|
|
|
|
|
|
|
|
|
MAX_CODEPOINTS = 0x30000 # 0x110000
|
|
|
|
|
|
|
|
|
|
def _valid(cpt):
|
|
|
|
|
if cpt >= 0x30000: # unassigned and supplementary
|
|
|
|
|
return False
|
|
|
|
|
if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates
|
|
|
|
|
return False
|
|
|
|
|
if unicodedata.category(chr(cpt)) == "Cn":
|
|
|
|
|
return False
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)]
|
|
|
|
|
|
|
|
|
|
yield from characters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generator_random_unicodes(iterations=100) -> Iterator[str]:
|
|
|
|
|
"""Brute force random text with unicode characters"""
|
|
|
|
|
|
|
|
|
|
NUM_WORDS = 200
|
|
|
|
|
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
|
|
|
|
|
|
|
|
|
characters = list(generator_unicodes())
|
|
|
|
|
|
|
|
|
|
rand = random.Random()
|
|
|
|
|
for m in range(iterations):
|
|
|
|
|
rand.seed(m)
|
|
|
|
|
text = []
|
|
|
|
|
for _ in range(NUM_WORDS):
|
|
|
|
|
k = rand.randint(1, 7)
|
|
|
|
|
word = rand.choices(characters, k=k)
|
|
|
|
|
word.append(rand.choice(WHITESPACES))
|
|
|
|
|
text.append("".join(word))
|
2024-05-09 13:30:44 +00:00
|
|
|
|
yield "".join(text)
|
|
|
|
|
|
|
|
|
|
|
2024-05-17 23:09:13 +00:00
|
|
|
|
def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
|
2024-05-09 13:30:44 +00:00
|
|
|
|
"""Brute force random text with vocab characters"""
|
|
|
|
|
|
2024-05-17 23:09:13 +00:00
|
|
|
|
vocab_chars = set()
|
|
|
|
|
for word in vocab:
|
|
|
|
|
vocab_chars.update(word)
|
|
|
|
|
vocab_chars = list(sorted(vocab_chars))
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
|
|
|
|
rand = random.Random()
|
|
|
|
|
for m in range(iterations):
|
|
|
|
|
rand.seed(m)
|
|
|
|
|
text = rand.choices(vocab_chars, k=1024)
|
|
|
|
|
yield "".join(text)
|
|
|
|
|
|
|
|
|
|
|
2024-05-17 23:09:13 +00:00
|
|
|
|
def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
|
|
|
|
|
"""Brute force random text from vocab words"""
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
2024-05-17 23:09:13 +00:00
|
|
|
|
vocab = [w.strip() for w in vocab]
|
|
|
|
|
yield from vocab
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
|
|
|
|
rand = random.Random()
|
|
|
|
|
for m in range(iterations):
|
|
|
|
|
rand.seed(m)
|
|
|
|
|
text = []
|
|
|
|
|
num_words = rand.randint(300, 400)
|
|
|
|
|
for i in range(num_words):
|
|
|
|
|
k = rand.randint(1, 3)
|
2024-05-17 23:09:13 +00:00
|
|
|
|
words = rand.choices(vocab, k=k)
|
2024-05-09 13:30:44 +00:00
|
|
|
|
sep = rand.choice(" \n\r\t")
|
2024-05-17 23:09:13 +00:00
|
|
|
|
text.append("".join(words) + sep)
|
2024-05-09 13:30:44 +00:00
|
|
|
|
yield "".join(text)
|
|
|
|
|
|
|
|
|
|
|
2024-06-18 16:40:52 +00:00
|
|
|
|
def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
|
|
|
|
def find_first_mismatch(ids1: list[int], ids2: list[int]):
|
2024-05-17 23:09:13 +00:00
|
|
|
|
for i, (a, b) in enumerate(zip(ids1, ids2)):
|
2024-05-09 13:30:44 +00:00
|
|
|
|
if a != b:
|
|
|
|
|
return i
|
|
|
|
|
if len(ids1) == len(ids2):
|
|
|
|
|
return -1
|
|
|
|
|
return min(len(ids1), len(ids2))
|
|
|
|
|
|
2024-06-18 16:40:52 +00:00
|
|
|
|
t_tokenizer1 = 0
|
|
|
|
|
t_tokenizer2 = 0
|
|
|
|
|
t_start = time.perf_counter()
|
|
|
|
|
num_errors = 10
|
|
|
|
|
|
2024-05-09 13:30:44 +00:00
|
|
|
|
logger.info("%s: %s" % (generator.__name__, "ini"))
|
|
|
|
|
for text in generator:
|
2024-06-18 16:40:52 +00:00
|
|
|
|
# print(repr(text), hex(ord(text[0])), text.encode())
|
|
|
|
|
t0 = time.perf_counter()
|
2024-05-17 23:09:13 +00:00
|
|
|
|
ids1 = func_tokenize1(text)
|
2024-06-18 16:40:52 +00:00
|
|
|
|
t1 = time.perf_counter()
|
2024-05-17 23:09:13 +00:00
|
|
|
|
ids2 = func_tokenize2(text)
|
2024-06-18 16:40:52 +00:00
|
|
|
|
t2 = time.perf_counter()
|
|
|
|
|
t_tokenizer1 += t1 - t0
|
|
|
|
|
t_tokenizer2 += t2 - t1
|
2024-05-09 13:30:44 +00:00
|
|
|
|
if ids1 != ids2:
|
|
|
|
|
i = find_first_mismatch(ids1, ids2)
|
2024-06-04 07:17:17 +00:00
|
|
|
|
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
|
|
|
|
|
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
|
2024-06-18 16:40:52 +00:00
|
|
|
|
logger.error(" TokenIDs: " + str(ids1))
|
|
|
|
|
logger.error(" Expected: " + str(ids2))
|
|
|
|
|
# raise Exception()
|
|
|
|
|
num_errors += 1
|
|
|
|
|
if num_errors > 10:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
t_total = time.perf_counter() - t_start
|
|
|
|
|
logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total))
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
|
|
|
|
|
2024-05-17 23:09:13 +00:00
|
|
|
|
def main(argv: list[str] = None):
|
2024-05-09 13:30:44 +00:00
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
|
|
|
|
|
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
|
|
|
|
|
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
2024-05-17 23:09:13 +00:00
|
|
|
|
args = parser.parse_args(argv)
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
2024-06-18 16:40:52 +00:00
|
|
|
|
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
|
|
|
|
|
logger.info(f"VOCABFILE: '{args.vocab_file}'")
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
2024-05-17 23:09:13 +00:00
|
|
|
|
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
2024-05-09 13:30:44 +00:00
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
|
|
|
|
|
|
2024-05-17 23:09:13 +00:00
|
|
|
|
def func_tokenize1(text: str):
|
2024-05-21 12:39:48 +00:00
|
|
|
|
return model.tokenize(text, add_special=True, parse_special=True)
|
|
|
|
|
|
|
|
|
|
def func_tokenize2(text: str):
|
|
|
|
|
return tokenizer.encode(text, add_special_tokens=True)
|
2024-05-17 23:09:13 +00:00
|
|
|
|
|
2024-05-28 19:46:34 +00:00
|
|
|
|
ids = func_tokenize2("a")
|
|
|
|
|
assert 1 <= len(ids) <= 3
|
|
|
|
|
add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
|
2024-06-18 16:40:52 +00:00
|
|
|
|
add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1]
|
2024-05-28 19:46:34 +00:00
|
|
|
|
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
|
2024-06-18 16:40:52 +00:00
|
|
|
|
tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token)
|
2024-05-28 19:46:34 +00:00
|
|
|
|
|
2024-05-17 23:09:13 +00:00
|
|
|
|
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
|
2024-06-18 16:40:52 +00:00
|
|
|
|
|
|
|
|
|
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text())
|
|
|
|
|
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
|
|
|
|
compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes())
|
|
|
|
|
compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
|
|
|
|
compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
|
|
|
|
|
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
|
|
|
|
|
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
|
|
|
|
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000))
|
|
|
|
|
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
|
|
|
|
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
|
2024-05-09 13:30:44 +00:00
|
|
|
|
|
|
|
|
|
model.free()
|
2024-05-17 23:09:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2024-05-20 18:15:57 +00:00
|
|
|
|
# main()
|
|
|
|
|
|
2024-06-18 16:40:52 +00:00
|
|
|
|
logging.basicConfig(
|
|
|
|
|
level = logging.DEBUG,
|
|
|
|
|
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
|
|
|
|
|
datefmt = "%Y-%m-%d %H:%M:%S",
|
|
|
|
|
filename = logger.name + ".log",
|
|
|
|
|
filemode = "a"
|
|
|
|
|
)
|
|
|
|
|
|
2024-06-04 07:17:17 +00:00
|
|
|
|
path_tokenizers = "./models/tokenizers/"
|
2024-05-20 18:15:57 +00:00
|
|
|
|
path_vocab_format = "./models/ggml-vocab-%s.gguf"
|
|
|
|
|
|
|
|
|
|
# import os
|
|
|
|
|
# tokenizers = os.listdir(path_tokenizers)
|
|
|
|
|
tokenizers = [
|
2024-06-18 16:40:52 +00:00
|
|
|
|
# "llama-spm", # SPM
|
|
|
|
|
# "phi-3", # SPM
|
|
|
|
|
# "bert-bge", # WPM
|
|
|
|
|
# "jina-v2-en", # WPM
|
|
|
|
|
"gpt-2", # BPE
|
|
|
|
|
"llama-bpe", # BPE
|
|
|
|
|
"falcon", # BPE
|
|
|
|
|
"starcoder", # BPE
|
|
|
|
|
"jina-v2-es", # BPE
|
|
|
|
|
"jina-v2-de", # BPE
|
|
|
|
|
"jina-v2-code", # BPE
|
|
|
|
|
"smaug-bpe", # BPE
|
|
|
|
|
"phi-2", # BPE
|
|
|
|
|
"deepseek-coder", # BPE
|
|
|
|
|
"deepseek-llm", # BPE
|
2024-05-20 18:15:57 +00:00
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
for tokenizer in tokenizers:
|
2024-06-18 16:40:52 +00:00
|
|
|
|
logger.info("=" * 50)
|
|
|
|
|
logger.info(f"TOKENIZER: '{tokenizer}'")
|
2024-05-20 18:15:57 +00:00
|
|
|
|
vocab_file = path_vocab_format % tokenizer
|
|
|
|
|
dir_tokenizer = path_tokenizers + "/" + tokenizer
|
|
|
|
|
main([vocab_file, dir_tokenizer, "--verbose"])
|