mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
178 lines
4.4 KiB
C++
178 lines
4.4 KiB
C++
|
#ifndef _GNU_SOURCE
|
||
|
#define _GNU_SOURCE
|
||
|
#endif
|
||
|
|
||
|
#include "common.h"
|
||
|
#include "llama.h"
|
||
|
#include "build-info.h"
|
||
|
|
||
|
#include <cassert>
|
||
|
#include <cinttypes>
|
||
|
#include <cmath>
|
||
|
#include <cstdio>
|
||
|
#include <cstring>
|
||
|
#include <ctime>
|
||
|
#include <fstream>
|
||
|
#include <iostream>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||
|
#include <signal.h>
|
||
|
#include <unistd.h>
|
||
|
#elif defined (_WIN32)
|
||
|
#define WIN32_LEAN_AND_MEAN
|
||
|
#define NOMINMAX
|
||
|
#include <windows.h>
|
||
|
#include <signal.h>
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
int main(int argc, char ** argv)
|
||
|
{
|
||
|
gpt_params params;
|
||
|
|
||
|
//---------------------------------
|
||
|
// Print help :
|
||
|
//---------------------------------
|
||
|
|
||
|
if ( argc == 1 || argv[1][0] == '-' )
|
||
|
{
|
||
|
printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
|
||
|
return 1 ;
|
||
|
}
|
||
|
|
||
|
//---------------------------------
|
||
|
// Load parameters :
|
||
|
//---------------------------------
|
||
|
|
||
|
if ( argc >= 2 )
|
||
|
{
|
||
|
params.model = argv[1];
|
||
|
}
|
||
|
|
||
|
if ( argc >= 3 )
|
||
|
{
|
||
|
params.prompt = argv[2];
|
||
|
}
|
||
|
|
||
|
if ( params.prompt.empty() )
|
||
|
{
|
||
|
params.prompt = "Hello my name is";
|
||
|
}
|
||
|
|
||
|
//---------------------------------
|
||
|
// Init LLM :
|
||
|
//---------------------------------
|
||
|
|
||
|
llama_init_backend();
|
||
|
|
||
|
llama_context * ctx ;
|
||
|
|
||
|
ctx = llama_init_from_gpt_params( params );
|
||
|
|
||
|
if ( ctx == NULL )
|
||
|
{
|
||
|
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
//---------------------------------
|
||
|
// Tokenize the prompt :
|
||
|
//---------------------------------
|
||
|
|
||
|
std::vector<llama_token> tokens_list;
|
||
|
tokens_list = ::llama_tokenize( ctx , params.prompt , true );
|
||
|
|
||
|
const int max_context_size = llama_n_ctx( ctx );
|
||
|
const int max_tokens_list_size = max_context_size - 4 ;
|
||
|
|
||
|
if ( (int)tokens_list.size() > max_tokens_list_size )
|
||
|
{
|
||
|
fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
|
||
|
__func__ , (int)tokens_list.size() , max_tokens_list_size );
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
fprintf( stderr, "\n\n" );
|
||
|
|
||
|
// Print the tokens from the prompt :
|
||
|
|
||
|
for( auto id : tokens_list )
|
||
|
{
|
||
|
printf( "%s" , llama_token_to_str( ctx , id ) );
|
||
|
}
|
||
|
|
||
|
fflush(stdout);
|
||
|
|
||
|
|
||
|
//---------------------------------
|
||
|
// Main prediction loop :
|
||
|
//---------------------------------
|
||
|
|
||
|
// The LLM keeps a contextual cache memory of previous token evaluation.
|
||
|
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
|
||
|
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
||
|
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
||
|
|
||
|
while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
|
||
|
{
|
||
|
//---------------------------------
|
||
|
// Evaluate the tokens :
|
||
|
//---------------------------------
|
||
|
|
||
|
if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
|
||
|
{
|
||
|
fprintf( stderr, "%s : failed to eval\n" , __func__ );
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
tokens_list.clear();
|
||
|
|
||
|
//---------------------------------
|
||
|
// Select the best prediction :
|
||
|
//---------------------------------
|
||
|
|
||
|
llama_token new_token_id = 0;
|
||
|
|
||
|
auto logits = llama_get_logits( ctx );
|
||
|
auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
|
||
|
|
||
|
std::vector<llama_token_data> candidates;
|
||
|
candidates.reserve( n_vocab );
|
||
|
|
||
|
for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
|
||
|
{
|
||
|
candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
|
||
|
}
|
||
|
|
||
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||
|
|
||
|
// Select it using the "Greedy sampling" method :
|
||
|
new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
|
||
|
|
||
|
|
||
|
// is it an end of stream ?
|
||
|
if ( new_token_id == llama_token_eos() )
|
||
|
{
|
||
|
fprintf(stderr, " [end of text]\n");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// Print the new token :
|
||
|
printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
|
||
|
fflush( stdout );
|
||
|
|
||
|
// Push this new token for next evaluation :
|
||
|
tokens_list.push_back( new_token_id );
|
||
|
|
||
|
} // wend of main loop
|
||
|
|
||
|
llama_free( ctx );
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// EOF
|