mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 06:14:35 +00:00
383 lines
14 KiB
Python
383 lines
14 KiB
Python
|
import argparse
|
||
|
import os
|
||
|
import json
|
||
|
import re
|
||
|
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from gguf import *
|
||
|
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
|
||
|
|
||
|
TEXT = "clip.text"
|
||
|
VISION = "clip.vision"
|
||
|
|
||
|
|
||
|
def add_key_str(raw_key: str, arch: str) -> str:
|
||
|
return raw_key.format(arch=arch)
|
||
|
|
||
|
|
||
|
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool:
|
||
|
if name in (
|
||
|
"logit_scale",
|
||
|
"text_model.embeddings.position_ids",
|
||
|
"vision_model.embeddings.position_ids",
|
||
|
):
|
||
|
return True
|
||
|
|
||
|
if has_minicpmv and name in ["visual_projection.weight"]:
|
||
|
return True
|
||
|
|
||
|
if name.startswith("v") and not has_vision:
|
||
|
return True
|
||
|
|
||
|
if name.startswith("t") and not has_text:
|
||
|
return True
|
||
|
|
||
|
return False
|
||
|
|
||
|
|
||
|
def get_tensor_name(name: str) -> str:
|
||
|
if "projection" in name:
|
||
|
return name
|
||
|
if "mm_projector" in name:
|
||
|
name = name.replace("model.mm_projector", "mm")
|
||
|
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
|
||
|
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
|
||
|
return name
|
||
|
|
||
|
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
||
|
|
||
|
|
||
|
def bytes_to_unicode():
|
||
|
"""
|
||
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||
|
The reversible bpe codes work on unicode strings.
|
||
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||
|
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||
|
"""
|
||
|
bs = (
|
||
|
list(range(ord("!"), ord("~") + 1))
|
||
|
+ list(range(ord("¡"), ord("¬") + 1))
|
||
|
+ list(range(ord("®"), ord("ÿ") + 1))
|
||
|
)
|
||
|
cs = bs[:]
|
||
|
n = 0
|
||
|
for b in range(2**8):
|
||
|
if b not in bs:
|
||
|
bs.append(b)
|
||
|
cs.append(2**8 + n)
|
||
|
n += 1
|
||
|
cs = [chr(n) for n in cs]
|
||
|
return dict(zip(bs, cs))
|
||
|
|
||
|
|
||
|
ap = argparse.ArgumentParser()
|
||
|
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
||
|
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
||
|
ap.add_argument("--text-only", action="store_true", required=False,
|
||
|
help="Save a text-only model. It can't be used to encode images")
|
||
|
ap.add_argument("--vision-only", action="store_true", required=False,
|
||
|
help="Save a vision-only model. It can't be used to encode texts")
|
||
|
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
||
|
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
|
||
|
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||
|
help="The clip model is from openclip (for ViT-SO400M type))")
|
||
|
ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.")
|
||
|
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
|
||
|
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||
|
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
||
|
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
||
|
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
|
||
|
default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
||
|
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
||
|
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
||
|
|
||
|
# with proper
|
||
|
args = ap.parse_args()
|
||
|
|
||
|
|
||
|
if args.text_only and args.vision_only:
|
||
|
print("--text-only and --image-only arguments cannot be specified at the same time.")
|
||
|
exit(1)
|
||
|
|
||
|
if args.use_f32:
|
||
|
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
|
||
|
|
||
|
# output in the same directory as the model if output_dir is None
|
||
|
dir_model = args.model_dir
|
||
|
|
||
|
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
|
||
|
vocab = None
|
||
|
tokens = None
|
||
|
else:
|
||
|
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
|
||
|
vocab = json.load(f)
|
||
|
tokens = [key for key in vocab]
|
||
|
|
||
|
# possible data types
|
||
|
# ftype == 0 -> float32
|
||
|
# ftype == 1 -> float16
|
||
|
#
|
||
|
# map from ftype to string
|
||
|
ftype_str = ["f32", "f16"]
|
||
|
|
||
|
ftype = 1
|
||
|
if args.use_f32:
|
||
|
ftype = 0
|
||
|
|
||
|
# if args.clip_model_is_vision or args.clip_model_is_openclip:
|
||
|
# model = CLIPVisionModel.from_pretrained(dir_model)
|
||
|
# processor = None
|
||
|
# else:
|
||
|
# model = CLIPModel.from_pretrained(dir_model)
|
||
|
# processor = CLIPProcessor.from_pretrained(dir_model)
|
||
|
|
||
|
default_vision_config = {
|
||
|
"hidden_size": 1152,
|
||
|
"image_size": 980,
|
||
|
"intermediate_size": 4304,
|
||
|
"model_type": "idefics2",
|
||
|
"num_attention_heads": 16,
|
||
|
"num_hidden_layers": 27,
|
||
|
"patch_size": 14,
|
||
|
}
|
||
|
vision_config = Idefics2VisionConfig(**default_vision_config)
|
||
|
model = Idefics2VisionTransformer(vision_config)
|
||
|
|
||
|
processor = None
|
||
|
# if model.attn_pool is not None:
|
||
|
# model.attn_pool = torch.nn.Identity()
|
||
|
|
||
|
# model.blocks = model.blocks[:-1]
|
||
|
model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip")))
|
||
|
|
||
|
fname_middle = None
|
||
|
has_text_encoder = True
|
||
|
has_vision_encoder = True
|
||
|
has_minicpmv_projector = False
|
||
|
if args.text_only:
|
||
|
fname_middle = "text-"
|
||
|
has_vision_encoder = False
|
||
|
elif args.minicpmv_projector is not None:
|
||
|
fname_middle = "mmproj-"
|
||
|
has_text_encoder = False
|
||
|
has_minicpmv_projector = True
|
||
|
elif args.vision_only:
|
||
|
fname_middle = "vision-"
|
||
|
has_text_encoder = False
|
||
|
else:
|
||
|
fname_middle = ""
|
||
|
|
||
|
output_dir = args.output_dir if args.output_dir is not None else dir_model
|
||
|
os.makedirs(output_dir, exist_ok=True)
|
||
|
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
||
|
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
|
||
|
fout = GGUFWriter(path=fname_out, arch="clip")
|
||
|
|
||
|
fout.add_bool("clip.has_text_encoder", has_text_encoder)
|
||
|
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
|
||
|
fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector)
|
||
|
fout.add_file_type(ftype)
|
||
|
if args.text_only:
|
||
|
fout.add_description("text-only CLIP model")
|
||
|
elif args.vision_only and not has_minicpmv_projector:
|
||
|
fout.add_description("vision-only CLIP model")
|
||
|
elif has_minicpmv_projector:
|
||
|
fout.add_description("image encoder for MiniCPM-V")
|
||
|
# add projector type
|
||
|
fout.add_string("clip.projector_type", "resampler")
|
||
|
else:
|
||
|
fout.add_description("two-tower CLIP model")
|
||
|
|
||
|
if has_vision_encoder:
|
||
|
# vision_model hparams
|
||
|
fout.add_uint32("clip.vision.image_size", 448)
|
||
|
fout.add_uint32("clip.vision.patch_size", 14)
|
||
|
fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152)
|
||
|
fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
|
||
|
fout.add_uint32("clip.vision.projection_dim", 0)
|
||
|
fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
|
||
|
fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
||
|
block_count = 26
|
||
|
fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
|
||
|
|
||
|
if processor is not None:
|
||
|
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
|
||
|
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
|
||
|
else:
|
||
|
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
|
||
|
image_std = args.image_std if args.image_std is not None else default_image_std
|
||
|
fout.add_array("clip.vision.image_mean", image_mean)
|
||
|
fout.add_array("clip.vision.image_std", image_std)
|
||
|
|
||
|
use_gelu = True
|
||
|
fout.add_bool("clip.use_gelu", use_gelu)
|
||
|
|
||
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
||
|
"""
|
||
|
embed_dim: output dimension for each position
|
||
|
pos: a list of positions to be encoded: size (M,)
|
||
|
out: (M, D)
|
||
|
"""
|
||
|
assert embed_dim % 2 == 0
|
||
|
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
||
|
omega /= embed_dim / 2.
|
||
|
omega = 1. / 10000 ** omega # (D/2,)
|
||
|
|
||
|
pos = pos.reshape(-1) # (M,)
|
||
|
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
||
|
|
||
|
emb_sin = np.sin(out) # (M, D/2)
|
||
|
emb_cos = np.cos(out) # (M, D/2)
|
||
|
|
||
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
||
|
return emb
|
||
|
|
||
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
||
|
assert embed_dim % 2 == 0
|
||
|
|
||
|
# use half of dimensions to encode grid_h
|
||
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
||
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
||
|
|
||
|
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
||
|
return emb
|
||
|
|
||
|
|
||
|
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
||
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
||
|
"""
|
||
|
grid_size: int of the grid height and width
|
||
|
return:
|
||
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
||
|
"""
|
||
|
if isinstance(grid_size, int):
|
||
|
grid_h_size, grid_w_size = grid_size, grid_size
|
||
|
else:
|
||
|
grid_h_size, grid_w_size = grid_size[0], grid_size[1]
|
||
|
|
||
|
grid_h = np.arange(grid_h_size, dtype=np.float32)
|
||
|
grid_w = np.arange(grid_w_size, dtype=np.float32)
|
||
|
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||
|
grid = np.stack(grid, axis=0)
|
||
|
|
||
|
grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
|
||
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
||
|
if cls_token:
|
||
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
||
|
return pos_embed
|
||
|
|
||
|
def _replace_name_resampler(s, v):
|
||
|
if re.match("resampler.pos_embed", s):
|
||
|
return {
|
||
|
s: v,
|
||
|
re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
|
||
|
}
|
||
|
if re.match("resampler.proj", s):
|
||
|
return {
|
||
|
re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
|
||
|
re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
|
||
|
}
|
||
|
if re.match("resampler.attn.in_proj_.*", s):
|
||
|
return {
|
||
|
re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0],
|
||
|
re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1],
|
||
|
re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2],
|
||
|
}
|
||
|
return {s: v}
|
||
|
|
||
|
if has_minicpmv_projector:
|
||
|
projector = torch.load(args.minicpmv_projector)
|
||
|
new_state_dict = {}
|
||
|
for k, v in projector.items():
|
||
|
kvs = _replace_name_resampler(k, v)
|
||
|
for nk, nv in kvs.items():
|
||
|
new_state_dict[nk] = nv
|
||
|
projector = new_state_dict
|
||
|
ftype_cur = 0
|
||
|
for name, data in projector.items():
|
||
|
name = get_tensor_name(name)
|
||
|
data = data.squeeze().numpy()
|
||
|
|
||
|
n_dims = len(data.shape)
|
||
|
if ftype == 1:
|
||
|
if name[-7:] == ".weight" and n_dims == 2:
|
||
|
print(" Converting to float16")
|
||
|
data = data.astype(np.float16)
|
||
|
ftype_cur = 1
|
||
|
else:
|
||
|
print(" Converting to float32")
|
||
|
data = data.astype(np.float32)
|
||
|
ftype_cur = 0
|
||
|
else:
|
||
|
if data.dtype != np.float32:
|
||
|
print(" Converting to float32")
|
||
|
data = data.astype(np.float32)
|
||
|
ftype_cur = 0
|
||
|
|
||
|
fout.add_tensor(name, data)
|
||
|
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||
|
|
||
|
print("Projector tensors added\n")
|
||
|
|
||
|
def _replace_name(s, v):
|
||
|
s = "vision_model." + s
|
||
|
if re.match("vision_model.embeddings.position_embedding", s):
|
||
|
v = v.unsqueeze(0)
|
||
|
return {s: v}
|
||
|
|
||
|
return {s: v}
|
||
|
|
||
|
state_dict = model.state_dict()
|
||
|
new_state_dict = {}
|
||
|
for k, v in state_dict.items():
|
||
|
kvs = _replace_name(k, v)
|
||
|
for nk, nv in kvs.items():
|
||
|
new_state_dict[nk] = nv
|
||
|
state_dict = new_state_dict
|
||
|
for name, data in state_dict.items():
|
||
|
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector):
|
||
|
# we don't need this
|
||
|
print(f"skipping parameter: {name}")
|
||
|
continue
|
||
|
|
||
|
name = get_tensor_name(name)
|
||
|
data = data.squeeze().numpy()
|
||
|
|
||
|
n_dims = len(data.shape)
|
||
|
|
||
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
||
|
ftype_cur = 0
|
||
|
if n_dims == 4:
|
||
|
print(f"tensor {name} is always saved in f16")
|
||
|
data = data.astype(np.float16)
|
||
|
ftype_cur = 1
|
||
|
elif ftype == 1:
|
||
|
if name[-7:] == ".weight" and n_dims == 2:
|
||
|
print(" Converting to float16")
|
||
|
data = data.astype(np.float16)
|
||
|
ftype_cur = 1
|
||
|
else:
|
||
|
print(" Converting to float32")
|
||
|
data = data.astype(np.float32)
|
||
|
ftype_cur = 0
|
||
|
else:
|
||
|
if data.dtype != np.float32:
|
||
|
print(" Converting to float32")
|
||
|
data = data.astype(np.float32)
|
||
|
ftype_cur = 0
|
||
|
|
||
|
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||
|
fout.add_tensor(name, data)
|
||
|
|
||
|
|
||
|
fout.write_header_to_file()
|
||
|
fout.write_kv_data_to_file()
|
||
|
fout.write_tensors_to_file()
|
||
|
fout.close()
|
||
|
|
||
|
print("Done. Output file: " + fname_out)
|