llama.cpp/common/speculative.cpp

257 lines
7.9 KiB
C++
Raw Normal View History

#include "speculative.h"
#include "log.h"
#include "common.h"
#include "sampling.h"
2024-11-22 09:05:49 +00:00
#include <cstring>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
struct common_speculative {
2024-11-22 09:05:49 +00:00
struct llama_context * ctx;
struct common_sampler * smpl;
2024-11-22 09:31:28 +00:00
llama_batch batch;
2024-11-22 09:05:49 +00:00
llama_tokens prompt;
};
2024-11-22 09:05:49 +00:00
struct common_speculative * common_speculative_init(
struct llama_context * ctx_dft) {
auto * result = new common_speculative {
2024-11-22 09:05:49 +00:00
/* .ctx = */ ctx_dft,
/* .smpl = */ nullptr,
2024-11-22 09:31:28 +00:00
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
2024-11-22 09:05:49 +00:00
/* .prompt = */ {},
};
// TODO: optimize or pass from outside?
#if 0
{
common_sampler_params sparams;
sparams.no_perf = false;
sparams.top_k = 40;
sparams.top_p = 0.9;
sparams.samplers = {
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TOP_P,
COMMON_SAMPLER_TYPE_INFILL,
};
2024-11-22 09:05:49 +00:00
result->smpl = common_sampler_init(llama_get_model(ctx_dft), sparams);
}
#else
{
common_sampler_params sparams;
sparams.no_perf = false;
sparams.top_k = 10;
sparams.samplers = {
COMMON_SAMPLER_TYPE_TOP_K,
};
2024-11-22 09:05:49 +00:00
result->smpl = common_sampler_init(llama_get_model(ctx_dft), sparams);
}
#endif
return result;
}
void common_speculative_free(struct common_speculative * spec) {
common_sampler_free(spec->smpl);
2024-11-22 09:05:49 +00:00
llama_batch_free(spec->batch);
delete spec;
}
2024-11-22 09:05:49 +00:00
bool common_speculative_are_compatible(
const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft) {
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
const struct llama_model * model_dft = llama_get_model(ctx_dft);
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
const bool vocab_type_dft = llama_vocab_type(model_dft);
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
if (vocab_type_tgt != vocab_type_dft) {
LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
return false;
}
if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)
) {
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
return false;
}
{
const int n_vocab_tgt = llama_n_vocab(model_tgt);
const int n_vocab_dft = llama_n_vocab(model_dft);
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
__func__, n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
return false;
}
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
const char * token_text_dft = llama_token_get_text(model_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
LOG_ERR("%s: draft model vocab must match target model to use speculation but "
"token %d content differs - target '%s', draft '%s'\n", __func__, i,
common_token_to_piece(ctx_tgt, i).c_str(),
common_token_to_piece(ctx_dft, i).c_str());
return false;
}
}
}
return true;
}
2024-11-22 09:31:28 +00:00
llama_tokens common_speculative_gen_draft(
struct common_speculative * spec,
2024-11-22 09:31:28 +00:00
struct common_speculative_params params,
2024-11-22 09:05:49 +00:00
const llama_tokens & prompt_tgt,
2024-11-22 09:31:28 +00:00
llama_token id_last) {
2024-11-22 09:05:49 +00:00
auto & batch = spec->batch;
auto & ctx = spec->ctx;
auto & smpl = spec->smpl;
auto & prompt = spec->prompt;
int reuse_i = 0;
int reuse_n = 0;
2024-11-22 09:31:28 +00:00
const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
2024-11-22 09:05:49 +00:00
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
2024-11-22 09:05:49 +00:00
for (int i = 0; i < (int) prompt.size(); ++i) {
int cur = 0;
2024-11-22 09:05:49 +00:00
while (i_start + cur < (int) prompt_tgt.size() &&
i + cur < (int) prompt.size() &&
prompt_tgt[i_start + cur] == prompt[i + cur]) {
cur++;
}
2024-11-22 14:11:25 +00:00
if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
reuse_i = i;
reuse_n = cur;
}
}
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
llama_tokens result;
result.reserve(params.n_draft);
if (reuse_n == 0) {
2024-11-22 09:05:49 +00:00
llama_kv_cache_clear(ctx);
2024-11-22 09:05:49 +00:00
prompt.clear();
} else {
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
result.push_back(prompt[i]);
if (result.size() >= params.n_draft) {
break;
}
}
return result;
}
2024-11-22 09:05:49 +00:00
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_cache_seq_rm (ctx, 0, reuse_i + reuse_n, -1);
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
2024-11-22 09:05:49 +00:00
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
prompt.erase(prompt.begin() + reuse_n, prompt.end());
}
2024-11-22 09:05:49 +00:00
common_batch_clear(batch);
2024-11-22 09:05:49 +00:00
for (int i = i_start + reuse_n; i < (int) prompt_tgt.size(); ++i) {
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
2024-11-22 09:05:49 +00:00
prompt.push_back(prompt_tgt[i]);
}
2024-11-22 09:05:49 +00:00
const llama_pos n_past = prompt_tgt.size() - i_start;
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
2024-11-22 09:05:49 +00:00
if (batch.n_tokens > 0) {
LOG_DBG("%s: draft batch: %s\n", __func__, string_from(ctx, batch).c_str());
2024-11-22 09:05:49 +00:00
llama_decode(ctx, batch);
}
2024-11-22 09:05:49 +00:00
common_batch_clear(batch);
common_batch_add (batch, id_last, n_past, { 0 }, true);
2024-11-22 09:05:49 +00:00
prompt.push_back(id_last);
2024-11-22 09:05:49 +00:00
LOG_DBG("%s: prompt_last: %s\n", __func__, string_from(ctx, prompt).c_str());
2024-11-22 09:05:49 +00:00
llama_decode(ctx, batch);
2024-11-22 09:05:49 +00:00
common_sampler_reset(smpl);
// sample n_draft tokens from the draft model
2024-11-22 09:31:28 +00:00
for (int i = 0; i < params.n_draft; ++i) {
2024-11-22 09:05:49 +00:00
common_batch_clear(batch);
2024-11-22 09:05:49 +00:00
common_sampler_sample(smpl, ctx, 0, true);
2024-11-22 09:05:49 +00:00
const auto * cur_p = common_sampler_get_candidates(smpl);
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
2024-11-22 09:05:49 +00:00
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
}
// add drafted token for each sequence
const llama_token id = cur_p->data[0].id;
// only collect very high-confidence draft tokens
2024-11-22 09:31:28 +00:00
if (cur_p->data[0].p < params.p_min) {
break;
}
2024-11-22 09:05:49 +00:00
common_sampler_accept(smpl, id, true);
2024-11-22 09:31:28 +00:00
result.push_back(id);
2024-11-22 14:11:25 +00:00
if (params.n_draft <= (int) result.size()) {
break;
}
2024-11-22 09:05:49 +00:00
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
// evaluate the drafted tokens on the draft model
2024-11-22 09:05:49 +00:00
llama_decode(ctx, batch);
2024-11-22 09:05:49 +00:00
prompt.push_back(id);
}
2024-11-22 09:31:28 +00:00
return result;
}