llama.cpp/common/sampling.h

80 lines
3.4 KiB
C
Raw Normal View History

#pragma once
#include "llama.h"
#include <string>
#include <vector>
// sampling parameters
typedef struct gpt_sampling_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
bool ignore_eos = false;
std::vector<enum llama_sampler_type> samplers = {
LLAMA_SAMPLER_TYPE_TOP_K,
LLAMA_SAMPLER_TYPE_TFS_Z,
LLAMA_SAMPLER_TYPE_TYPICAL_P,
LLAMA_SAMPLER_TYPE_TOP_P,
LLAMA_SAMPLER_TYPE_MIN_P,
LLAMA_SAMPLER_TYPE_TEMPERATURE
};
std::string grammar; // optional BNF-like grammar to constrain sampling
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
// print the parameters into a string
std::string print_all() const;
// print the samplers into a string
std::string print_samplers() const;
} gpt_sampling_params;
// overload of llama_sampling_init using gpt_sampling_params
struct llama_sampling * llama_sampling_init(const struct llama_model * model, const struct gpt_sampling_params & params);
void llama_sampling_cp(llama_sampling * src, llama_sampling *& dst);
// common sampling implementation:
//
// - set logits
// - apply the configured sampling constraints
// - check if the token fits the grammar (if any)
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
//
llama_token llama_sampling_sample(
struct llama_sampling * smpl,
struct llama_context * ctx,
int idx);
// helpers
// get a string representation of the last accepted tokens
std::string llama_sampling_prev_str(llama_sampling * smpl, llama_context * ctx, int n);
char llama_sampling_type_to_chr(enum llama_sampler_type sampler_type);
std::string llama_sampling_type_to_str(enum llama_sampler_type sampler_type);
std::vector<enum llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<enum llama_sampler_type> llama_sampling_types_from_chars(const std::string & chars);