llama.cpp/common/arg.cpp

2007 lines
83 KiB
C++
Raw Permalink Normal View History

#include "arg.h"
#include "log.h"
#include "sampling.h"
#include <algorithm>
#include <climits>
#include <cstdarg>
#include <fstream>
#include <regex>
#include <set>
#include <string>
#include <thread>
#include <vector>
#include "json-schema-to-grammar.h"
using json = nlohmann::ordered_json;
llama_arg & llama_arg::set_examples(std::initializer_list<enum llama_example> examples) {
this->examples = std::move(examples);
return *this;
}
llama_arg & llama_arg::set_env(const char * env) {
help = help + "\n(env: " + env + ")";
this->env = env;
return *this;
}
llama_arg & llama_arg::set_sparam() {
is_sparam = true;
return *this;
}
bool llama_arg::in_example(enum llama_example ex) {
return examples.find(ex) != examples.end();
}
bool llama_arg::get_value_from_env(std::string & output) {
if (env == nullptr) return false;
char * value = std::getenv(env);
if (value) {
output = value;
return true;
}
return false;
}
bool llama_arg::has_value_from_env() {
return env != nullptr && std::getenv(env);
}
static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
std::vector<std::string> result;
std::istringstream iss(input);
std::string line;
auto add_line = [&](const std::string& l) {
if (l.length() <= max_char_per_line) {
result.push_back(l);
} else {
std::istringstream line_stream(l);
std::string word, current_line;
while (line_stream >> word) {
if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
if (!current_line.empty()) result.push_back(current_line);
current_line = word;
} else {
current_line += (!current_line.empty() ? " " : "") + word;
}
}
if (!current_line.empty()) result.push_back(current_line);
}
};
while (std::getline(iss, line)) {
add_line(line);
}
return result;
}
std::string llama_arg::to_string() {
// params for printing to console
const static int n_leading_spaces = 40;
const static int n_char_per_line_help = 70; // TODO: detect this based on current console
std::string leading_spaces(n_leading_spaces, ' ');
std::ostringstream ss;
for (const auto arg : args) {
if (arg == args.front()) {
if (args.size() == 1) {
ss << arg;
} else {
// first arg is usually abbreviation, we need padding to make it more beautiful
auto tmp = std::string(arg) + ", ";
auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
ss << tmp << spaces;
}
} else {
ss << arg << (arg != args.back() ? ", " : "");
}
}
if (value_hint) ss << " " << value_hint;
if (value_hint_2) ss << " " << value_hint_2;
if (ss.tellp() > n_leading_spaces - 3) {
// current line is too long, add new line
ss << "\n" << leading_spaces;
} else {
// padding between arg and help, same line
ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
}
const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
for (const auto & line : help_lines) {
ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
}
return ss.str();
}
//
// utils
//
#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
#endif
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
static std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
static void gpt_params_handle_model_default(gpt_params & params) {
if (!params.hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (params.hf_file.empty()) {
if (params.model.empty()) {
throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
}
params.hf_file = params.model;
} else if (params.model.empty()) {
params.model = fs_get_cache_file(string_split(params.hf_file, '/').back());
}
} else if (!params.model_url.empty()) {
if (params.model.empty()) {
auto f = string_split(params.model_url, '#').front();
f = string_split(f, '?').front();
params.model = fs_get_cache_file(string_split(f, '/').back());
}
} else if (params.model.empty()) {
params.model = DEFAULT_MODEL_PATH;
}
}
//
// CLI argument parsing functions
//
static bool gpt_params_parse_ex(int argc, char ** argv, gpt_params_context & ctx_arg) {
std::string arg;
const std::string arg_prefix = "--";
gpt_params & params = ctx_arg.params;
std::unordered_map<std::string, llama_arg *> arg_to_options;
for (auto & opt : ctx_arg.options) {
for (const auto & arg : opt.args) {
arg_to_options[arg] = &opt;
}
}
// handle environment variables
for (auto & opt : ctx_arg.options) {
std::string value;
if (opt.get_value_from_env(value)) {
try {
if (opt.handler_void && (value == "1" || value == "true")) {
opt.handler_void(params);
}
if (opt.handler_int) {
opt.handler_int(params, std::stoi(value));
}
if (opt.handler_string) {
opt.handler_string(params, value);
continue;
}
} catch (std::exception & e) {
throw std::invalid_argument(format(
"error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
}
}
}
// handle command line arguments
auto check_arg = [&](int i) {
if (i+1 >= argc) {
throw std::invalid_argument("expected value for argument");
}
};
for (int i = 1; i < argc; i++) {
const std::string arg_prefix = "--";
std::string arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (arg_to_options.find(arg) == arg_to_options.end()) {
throw std::invalid_argument(format("error: invalid argument: %s", arg.c_str()));
}
auto opt = *arg_to_options[arg];
if (opt.has_value_from_env()) {
fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
}
try {
if (opt.handler_void) {
opt.handler_void(params);
continue;
}
// arg with single value
check_arg(i);
std::string val = argv[++i];
if (opt.handler_int) {
opt.handler_int(params, std::stoi(val));
continue;
}
if (opt.handler_string) {
opt.handler_string(params, val);
continue;
}
// arg with 2 values
check_arg(i);
std::string val2 = argv[++i];
if (opt.handler_str_str) {
opt.handler_str_str(params, val, val2);
continue;
}
} catch (std::exception & e) {
throw std::invalid_argument(format(
"error while handling argument \"%s\": %s\n\n"
"usage:\n%s\n\nto show complete usage, run with -h",
arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
}
}
postprocess_cpu_params(params.cpuparams, nullptr);
postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
postprocess_cpu_params(params.draft_cpuparams, &params.cpuparams);
postprocess_cpu_params(params.draft_cpuparams_batch, &params.cpuparams_batch);
if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
}
gpt_params_handle_model_default(params);
if (params.escape) {
string_process_escapes(params.prompt);
string_process_escapes(params.input_prefix);
string_process_escapes(params.input_suffix);
for (auto & antiprompt : params.antiprompt) {
string_process_escapes(antiprompt);
}
}
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back();
params.kv_overrides.back().key[0] = 0;
}
if (params.reranking && params.embedding) {
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
}
return true;
}
static void gpt_params_print_usage(gpt_params_context & ctx_arg) {
auto print_options = [](std::vector<llama_arg *> & options) {
for (llama_arg * opt : options) {
printf("%s", opt->to_string().c_str());
}
};
std::vector<llama_arg *> common_options;
std::vector<llama_arg *> sparam_options;
std::vector<llama_arg *> specific_options;
for (auto & opt : ctx_arg.options) {
// in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
if (opt.is_sparam) {
sparam_options.push_back(&opt);
} else if (opt.in_example(ctx_arg.ex)) {
specific_options.push_back(&opt);
} else {
common_options.push_back(&opt);
}
}
printf("----- common params -----\n\n");
print_options(common_options);
printf("\n\n----- sampling params -----\n\n");
print_options(sparam_options);
// TODO: maybe convert enum llama_example to string
printf("\n\n----- example-specific params -----\n\n");
print_options(specific_options);
}
bool gpt_params_parse(int argc, char ** argv, gpt_params & params, llama_example ex, void(*print_usage)(int, char **)) {
auto ctx_arg = gpt_params_parser_init(params, ex, print_usage);
const gpt_params params_org = ctx_arg.params; // the example can modify the default params
try {
if (!gpt_params_parse_ex(argc, argv, ctx_arg)) {
ctx_arg.params = params_org;
return false;
}
if (ctx_arg.params.usage) {
gpt_params_print_usage(ctx_arg);
if (ctx_arg.print_usage) {
ctx_arg.print_usage(argc, argv);
}
exit(0);
}
} catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
ctx_arg.params = params_org;
return false;
}
return true;
}
gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, void(*print_usage)(int, char **)) {
gpt_params_context ctx_arg(params);
ctx_arg.print_usage = print_usage;
ctx_arg.ex = ex;
std::string sampler_type_chars;
std::string sampler_type_names;
for (const auto & sampler : params.sparams.samplers) {
sampler_type_chars += gpt_sampler_type_to_chr(sampler);
sampler_type_names += gpt_sampler_type_to_str(sampler) + ";";
}
sampler_type_names.pop_back();
/**
* filter options by example
* rules:
* - all examples inherit options from LLAMA_EXAMPLE_COMMON
* - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
* - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
*/
auto add_opt = [&](llama_arg arg) {
if (arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) {
ctx_arg.options.push_back(std::move(arg));
}
};
add_opt(llama_arg(
{"-h", "--help", "--usage"},
"print usage and exit",
[](gpt_params & params) {
params.usage = true;
}
));
add_opt(llama_arg(
{"--version"},
"show version and build info",
[](gpt_params &) {
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
exit(0);
}
));
add_opt(llama_arg(
{"--verbose-prompt"},
format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
[](gpt_params & params) {
params.verbose_prompt = true;
}
));
add_opt(llama_arg(
{"--no-display-prompt"},
format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
[](gpt_params & params) {
params.display_prompt = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"-co", "--color"},
format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
[](gpt_params & params) {
params.use_color = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
add_opt(llama_arg(
{"-t", "--threads"}, "N",
format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
[](gpt_params & params, int value) {
params.cpuparams.n_threads = value;
if (params.cpuparams.n_threads <= 0) {
params.cpuparams.n_threads = std::thread::hardware_concurrency();
}
}
).set_env("LLAMA_ARG_THREADS"));
add_opt(llama_arg(
{"-tb", "--threads-batch"}, "N",
"number of threads to use during batch and prompt processing (default: same as --threads)",
[](gpt_params & params, int value) {
params.cpuparams_batch.n_threads = value;
if (params.cpuparams_batch.n_threads <= 0) {
params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
}
}
));
add_opt(llama_arg(
{"-td", "--threads-draft"}, "N",
"number of threads to use during generation (default: same as --threads)",
[](gpt_params & params, int value) {
params.draft_cpuparams.n_threads = value;
if (params.draft_cpuparams.n_threads <= 0) {
params.draft_cpuparams.n_threads = std::thread::hardware_concurrency();
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"-tbd", "--threads-batch-draft"}, "N",
"number of threads to use during batch and prompt processing (default: same as --threads-draft)",
[](gpt_params & params, int value) {
params.draft_cpuparams_batch.n_threads = value;
if (params.draft_cpuparams_batch.n_threads <= 0) {
params.draft_cpuparams_batch.n_threads = std::thread::hardware_concurrency();
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"-C", "--cpu-mask"}, "M",
"CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
[](gpt_params & params, const std::string & mask) {
params.cpuparams.mask_valid = true;
if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
throw std::invalid_argument("invalid cpumask");
}
}
));
add_opt(llama_arg(
{"-Cr", "--cpu-range"}, "lo-hi",
"range of CPUs for affinity. Complements --cpu-mask",
[](gpt_params & params, const std::string & range) {
params.cpuparams.mask_valid = true;
if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
throw std::invalid_argument("invalid range");
}
}
));
add_opt(llama_arg(
{"--cpu-strict"}, "<0|1>",
format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
[](gpt_params & params, const std::string & value) {
params.cpuparams.strict_cpu = std::stoul(value);
}
));
add_opt(llama_arg(
{"--prio"}, "N",
format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
[](gpt_params & params, int prio) {
if (prio < 0 || prio > 3) {
throw std::invalid_argument("invalid value");
}
params.cpuparams.priority = (enum ggml_sched_priority) prio;
}
));
add_opt(llama_arg(
{"--poll"}, "<0...100>",
format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
[](gpt_params & params, const std::string & value) {
params.cpuparams.poll = std::stoul(value);
}
));
add_opt(llama_arg(
{"-Cb", "--cpu-mask-batch"}, "M",
"CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
[](gpt_params & params, const std::string & mask) {
params.cpuparams_batch.mask_valid = true;
if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
throw std::invalid_argument("invalid cpumask");
}
}
));
add_opt(llama_arg(
{"-Crb", "--cpu-range-batch"}, "lo-hi",
"ranges of CPUs for affinity. Complements --cpu-mask-batch",
[](gpt_params & params, const std::string & range) {
params.cpuparams_batch.mask_valid = true;
if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
throw std::invalid_argument("invalid range");
}
}
));
add_opt(llama_arg(
{"--cpu-strict-batch"}, "<0|1>",
"use strict CPU placement (default: same as --cpu-strict)",
[](gpt_params & params, int value) {
params.cpuparams_batch.strict_cpu = value;
}
));
add_opt(llama_arg(
{"--prio-batch"}, "N",
format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
[](gpt_params & params, int prio) {
if (prio < 0 || prio > 3) {
throw std::invalid_argument("invalid value");
}
params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
}
));
add_opt(llama_arg(
{"--poll-batch"}, "<0|1>",
"use polling to wait for work (default: same as --poll)",
[](gpt_params & params, int value) {
params.cpuparams_batch.poll = value;
}
));
add_opt(llama_arg(
{"-Cd", "--cpu-mask-draft"}, "M",
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
[](gpt_params & params, const std::string & mask) {
params.draft_cpuparams.mask_valid = true;
if (!parse_cpu_mask(mask, params.draft_cpuparams.cpumask)) {
throw std::invalid_argument("invalid cpumask");
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"-Crd", "--cpu-range-draft"}, "lo-hi",
"Ranges of CPUs for affinity. Complements --cpu-mask-draft",
[](gpt_params & params, const std::string & range) {
params.draft_cpuparams.mask_valid = true;
if (!parse_cpu_range(range, params.draft_cpuparams.cpumask)) {
throw std::invalid_argument("invalid range");
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"--cpu-strict-draft"}, "<0|1>",
"Use strict CPU placement for draft model (default: same as --cpu-strict)",
[](gpt_params & params, int value) {
params.draft_cpuparams.strict_cpu = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"--prio-draft"}, "N",
format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams.priority),
[](gpt_params & params, int prio) {
if (prio < 0 || prio > 3) {
throw std::invalid_argument("invalid value");
}
params.draft_cpuparams.priority = (enum ggml_sched_priority) prio;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"--poll-draft"}, "<0|1>",
"Use polling to wait for draft model work (default: same as --poll])",
[](gpt_params & params, int value) {
params.draft_cpuparams.poll = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"-Cbd", "--cpu-mask-batch-draft"}, "M",
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
[](gpt_params & params, const std::string & mask) {
params.draft_cpuparams_batch.mask_valid = true;
if (!parse_cpu_mask(mask, params.draft_cpuparams_batch.cpumask)) {
throw std::invalid_argument("invalid cpumask");
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
"Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
[](gpt_params & params, const std::string & range) {
params.draft_cpuparams_batch.mask_valid = true;
if (!parse_cpu_range(range, params.draft_cpuparams_batch.cpumask)) {
throw std::invalid_argument("invalid cpumask");
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"--cpu-strict-batch-draft"}, "<0|1>",
"Use strict CPU placement for draft model (default: --cpu-strict-draft)",
[](gpt_params & params, int value) {
params.draft_cpuparams_batch.strict_cpu = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"--prio-batch-draft"}, "N",
format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams_batch.priority),
[](gpt_params & params, int prio) {
if (prio < 0 || prio > 3) {
throw std::invalid_argument("invalid value");
}
params.draft_cpuparams_batch.priority = (enum ggml_sched_priority) prio;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"--poll-batch-draft"}, "<0|1>",
"Use polling to wait for draft model work (default: --poll-draft)",
[](gpt_params & params, int value) {
params.draft_cpuparams_batch.poll = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"--draft"}, "N",
format("number of tokens to draft for speculative decoding (default: %d)", params.n_draft),
[](gpt_params & params, int value) {
params.n_draft = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
add_opt(llama_arg(
{"-ps", "--p-split"}, "N",
format("speculative decoding split probability (default: %.1f)", (double)params.p_split),
[](gpt_params & params, const std::string & value) {
params.p_split = std::stof(value);
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"-lcs", "--lookup-cache-static"}, "FNAME",
"path to static lookup cache to use for lookup decoding (not updated by generation)",
[](gpt_params & params, const std::string & value) {
params.lookup_cache_static = value;
}
).set_examples({LLAMA_EXAMPLE_LOOKUP}));
add_opt(llama_arg(
{"-lcd", "--lookup-cache-dynamic"}, "FNAME",
"path to dynamic lookup cache to use for lookup decoding (updated by generation)",
[](gpt_params & params, const std::string & value) {
params.lookup_cache_dynamic = value;
}
).set_examples({LLAMA_EXAMPLE_LOOKUP}));
add_opt(llama_arg(
{"-c", "--ctx-size"}, "N",
format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
[](gpt_params & params, int value) {
params.n_ctx = value;
}
).set_env("LLAMA_ARG_CTX_SIZE"));
add_opt(llama_arg(
{"-n", "--predict", "--n-predict"}, "N",
format("number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict),
[](gpt_params & params, int value) {
params.n_predict = value;
}
).set_env("LLAMA_ARG_N_PREDICT"));
add_opt(llama_arg(
{"-b", "--batch-size"}, "N",
format("logical maximum batch size (default: %d)", params.n_batch),
[](gpt_params & params, int value) {
params.n_batch = value;
}
).set_env("LLAMA_ARG_BATCH"));
add_opt(llama_arg(
{"-ub", "--ubatch-size"}, "N",
format("physical maximum batch size (default: %d)", params.n_ubatch),
[](gpt_params & params, int value) {
params.n_ubatch = value;
}
).set_env("LLAMA_ARG_UBATCH"));
add_opt(llama_arg(
{"--keep"}, "N",
format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
[](gpt_params & params, int value) {
params.n_keep = value;
}
));
add_opt(llama_arg(
{"--no-context-shift"},
format("disables context shift on inifinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
[](gpt_params & params) {
params.ctx_shift = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
add_opt(llama_arg(
{"--chunks"}, "N",
format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
[](gpt_params & params, int value) {
params.n_chunks = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
add_opt(llama_arg(
{"-fa", "--flash-attn"},
format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
[](gpt_params & params) {
params.flash_attn = true;
}
).set_env("LLAMA_ARG_FLASH_ATTN"));
add_opt(llama_arg(
{"-p", "--prompt"}, "PROMPT",
ex == LLAMA_EXAMPLE_MAIN
? "prompt to start generation with\nif -cnv is set, this will be used as system prompt"
: "prompt to start generation with",
[](gpt_params & params, const std::string & value) {
params.prompt = value;
}
));
add_opt(llama_arg(
{"--no-perf"},
format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
[](gpt_params & params) {
params.no_perf = true;
params.sparams.no_perf = true;
}
).set_env("LLAMA_ARG_NO_PERF"));
add_opt(llama_arg(
{"-f", "--file"}, "FNAME",
"a file containing the prompt (default: none)",
[](gpt_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
}
// store the external file name in params
params.prompt_file = value;
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (!params.prompt.empty() && params.prompt.back() == '\n') {
params.prompt.pop_back();
}
}
));
add_opt(llama_arg(
{"--in-file"}, "FNAME",
"an input file (repeat to specify multiple files)",
[](gpt_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
}
params.in_files.push_back(value);
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(llama_arg(
{"-bf", "--binary-file"}, "FNAME",
"binary file containing the prompt (default: none)",
[](gpt_params & params, const std::string & value) {
std::ifstream file(value, std::ios::binary);
if (!file) {
throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
}
// store the external file name in params
params.prompt_file = value;
std::ostringstream ss;
ss << file.rdbuf();
params.prompt = ss.str();
fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
}
));
add_opt(llama_arg(
{"-e", "--escape"},
format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
[](gpt_params & params) {
params.escape = true;
}
));
add_opt(llama_arg(
{"--no-escape"},
"do not process escape sequences",
[](gpt_params & params) {
params.escape = false;
}
));
add_opt(llama_arg(
{"-ptc", "--print-token-count"}, "N",
format("print token count every N tokens (default: %d)", params.n_print),
[](gpt_params & params, int value) {
params.n_print = value;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"--prompt-cache"}, "FNAME",
"file to cache prompt state for faster startup (default: none)",
[](gpt_params & params, const std::string & value) {
params.path_prompt_cache = value;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"--prompt-cache-all"},
"if specified, saves user input and generations to cache as well\n",
[](gpt_params & params) {
params.prompt_cache_all = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"--prompt-cache-ro"},
"if specified, uses the prompt cache but does not update it",
[](gpt_params & params) {
params.prompt_cache_ro = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"-r", "--reverse-prompt"}, "PROMPT",
"halt generation at PROMPT, return control in interactive mode\n",
[](gpt_params & params, const std::string & value) {
params.antiprompt.emplace_back(value);
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"-sp", "--special"},
format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
[](gpt_params & params) {
params.special = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
add_opt(llama_arg(
{"-cnv", "--conversation"},
format(
"run in conversation mode:\n"
"- does not print special tokens and suffix/prefix\n"
"- interactive mode is also enabled\n"
"(default: %s)",
params.conversation ? "true" : "false"
),
[](gpt_params & params) {
params.conversation = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"-i", "--interactive"},
format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
[](gpt_params & params) {
params.interactive = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"-if", "--interactive-first"},
format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
[](gpt_params & params) {
params.interactive_first = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"-mli", "--multiline-input"},
"allows you to write or paste multiple lines without ending each in '\\'",
[](gpt_params & params) {
params.multiline_input = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"--in-prefix-bos"},
"prefix BOS to user inputs, preceding the `--in-prefix` string",
[](gpt_params & params) {
params.input_prefix_bos = true;
params.enable_chat_template = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"--in-prefix"}, "STRING",
"string to prefix user inputs with (default: empty)",
[](gpt_params & params, const std::string & value) {
params.input_prefix = value;
params.enable_chat_template = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
add_opt(llama_arg(
{"--in-suffix"}, "STRING",
"string to suffix after user inputs with (default: empty)",
[](gpt_params & params, const std::string & value) {
params.input_suffix = value;
params.enable_chat_template = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
add_opt(llama_arg(
{"--no-warmup"},
"skip warming up the model with an empty run",
[](gpt_params & params) {
params.warmup = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(llama_arg(
{"--spm-infill"},
format(
"use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
params.spm_infill ? "enabled" : "disabled"
),
[](gpt_params & params) {
params.spm_infill = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
add_opt(llama_arg(
{"--samplers"}, "SAMPLERS",
format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
[](gpt_params & params, const std::string & value) {
const auto sampler_names = string_split(value, ';');
params.sparams.samplers = gpt_sampler_types_from_names(sampler_names, true);
}
).set_sparam());
add_opt(llama_arg(
{"-s", "--seed"}, "SEED",
format("RNG seed (default: %d, use random seed for %d)", params.sparams.seed, LLAMA_DEFAULT_SEED),
[](gpt_params & params, const std::string & value) {
params.sparams.seed = std::stoul(value);
}
).set_sparam());
add_opt(llama_arg(
{"--sampling-seq"}, "SEQUENCE",
format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
[](gpt_params & params, const std::string & value) {
params.sparams.samplers = gpt_sampler_types_from_chars(value);
}
).set_sparam());
add_opt(llama_arg(
{"--ignore-eos"},
"ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
[](gpt_params & params) {
params.sparams.ignore_eos = true;
}
).set_sparam());
add_opt(llama_arg(
{"--penalize-nl"},
format("penalize newline tokens (default: %s)", params.sparams.penalize_nl ? "true" : "false"),
[](gpt_params & params) {
params.sparams.penalize_nl = true;
}
).set_sparam());
add_opt(llama_arg(
{"--temp"}, "N",
format("temperature (default: %.1f)", (double)params.sparams.temp),
[](gpt_params & params, const std::string & value) {
params.sparams.temp = std::stof(value);
params.sparams.temp = std::max(params.sparams.temp, 0.0f);
}
).set_sparam());
add_opt(llama_arg(
{"--top-k"}, "N",
format("top-k sampling (default: %d, 0 = disabled)", params.sparams.top_k),
[](gpt_params & params, int value) {
params.sparams.top_k = value;
}
).set_sparam());
add_opt(llama_arg(
{"--top-p"}, "N",
format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sparams.top_p),
[](gpt_params & params, const std::string & value) {
params.sparams.top_p = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"--min-p"}, "N",
format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sparams.min_p),
[](gpt_params & params, const std::string & value) {
params.sparams.min_p = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"--tfs"}, "N",
format("tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)params.sparams.tfs_z),
[](gpt_params & params, const std::string & value) {
params.sparams.tfs_z = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"--typical"}, "N",
format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p),
[](gpt_params & params, const std::string & value) {
params.sparams.typ_p = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"--repeat-last-n"}, "N",
format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sparams.penalty_last_n),
[](gpt_params & params, int value) {
params.sparams.penalty_last_n = value;
params.sparams.n_prev = std::max(params.sparams.n_prev, params.sparams.penalty_last_n);
}
).set_sparam());
add_opt(llama_arg(
{"--repeat-penalty"}, "N",
format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sparams.penalty_repeat),
[](gpt_params & params, const std::string & value) {
params.sparams.penalty_repeat = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"--presence-penalty"}, "N",
format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_present),
[](gpt_params & params, const std::string & value) {
params.sparams.penalty_present = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"--frequency-penalty"}, "N",
format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_freq),
[](gpt_params & params, const std::string & value) {
params.sparams.penalty_freq = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"--dynatemp-range"}, "N",
format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sparams.dynatemp_range),
[](gpt_params & params, const std::string & value) {
params.sparams.dynatemp_range = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"--dynatemp-exp"}, "N",
format("dynamic temperature exponent (default: %.1f)", (double)params.sparams.dynatemp_exponent),
[](gpt_params & params, const std::string & value) {
params.sparams.dynatemp_exponent = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"--mirostat"}, "N",
format("use Mirostat sampling.\nTop K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sparams.mirostat),
[](gpt_params & params, int value) {
params.sparams.mirostat = value;
}
).set_sparam());
add_opt(llama_arg(
{"--mirostat-lr"}, "N",
format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sparams.mirostat_eta),
[](gpt_params & params, const std::string & value) {
params.sparams.mirostat_eta = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"--mirostat-ent"}, "N",
format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sparams.mirostat_tau),
[](gpt_params & params, const std::string & value) {
params.sparams.mirostat_tau = std::stof(value);
}
).set_sparam());
add_opt(llama_arg(
{"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
"modifies the likelihood of token appearing in the completion,\n"
"i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
"or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
[](gpt_params & params, const std::string & value) {
std::stringstream ss(value);
llama_token key;
char sign;
std::string value_str;
try {
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
params.sparams.logit_bias.push_back({key, bias});
} else {
throw std::invalid_argument("invalid input format");
}
} catch (const std::exception&) {
throw std::invalid_argument("invalid input format");
}
}
).set_sparam());
add_opt(llama_arg(
{"--grammar"}, "GRAMMAR",
format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sparams.grammar.c_str()),
[](gpt_params & params, const std::string & value) {
params.sparams.grammar = value;
}
).set_sparam());
add_opt(llama_arg(
{"--grammar-file"}, "FNAME",
"file to read grammar from",
[](gpt_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
}
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(params.sparams.grammar)
);
}
).set_sparam());
add_opt(llama_arg(
{"-j", "--json-schema"}, "SCHEMA",
"JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
[](gpt_params & params, const std::string & value) {
params.sparams.grammar = json_schema_to_grammar(json::parse(value));
}
).set_sparam());
add_opt(llama_arg(
{"--pooling"}, "{none,mean,cls,last,rank}",
"pooling type for embeddings, use model default if unspecified",
[](gpt_params & params, const std::string & value) {
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
else { throw std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
add_opt(llama_arg(
{"--attention"}, "{causal,non,causal}",
"attention type for embeddings, use model default if unspecified",
[](gpt_params & params, const std::string & value) {
/**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
else { throw std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
add_opt(llama_arg(
{"--rope-scaling"}, "{none,linear,yarn}",
"RoPE frequency scaling method, defaults to linear unless specified by the model",
[](gpt_params & params, const std::string & value) {
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
else { throw std::invalid_argument("invalid value"); }
}
).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
add_opt(llama_arg(
{"--rope-scale"}, "N",
"RoPE context scaling factor, expands context by a factor of N",
[](gpt_params & params, const std::string & value) {
params.rope_freq_scale = 1.0f / std::stof(value);
}
).set_env("LLAMA_ARG_ROPE_SCALE"));
add_opt(llama_arg(
{"--rope-freq-base"}, "N",
"RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
[](gpt_params & params, const std::string & value) {
params.rope_freq_base = std::stof(value);
}
).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
add_opt(llama_arg(
{"--rope-freq-scale"}, "N",
"RoPE frequency scaling factor, expands context by a factor of 1/N",
[](gpt_params & params, const std::string & value) {
params.rope_freq_scale = std::stof(value);
}
).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
add_opt(llama_arg(
{"--yarn-orig-ctx"}, "N",
format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
[](gpt_params & params, int value) {
params.yarn_orig_ctx = value;
}
).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
add_opt(llama_arg(
{"--yarn-ext-factor"}, "N",
format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
[](gpt_params & params, const std::string & value) {
params.yarn_ext_factor = std::stof(value);
}
).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
add_opt(llama_arg(
{"--yarn-attn-factor"}, "N",
format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
[](gpt_params & params, const std::string & value) {
params.yarn_attn_factor = std::stof(value);
}
).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
add_opt(llama_arg(
{"--yarn-beta-slow"}, "N",
format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
[](gpt_params & params, const std::string & value) {
params.yarn_beta_slow = std::stof(value);
}
).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
add_opt(llama_arg(
{"--yarn-beta-fast"}, "N",
format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
[](gpt_params & params, const std::string & value) {
params.yarn_beta_fast = std::stof(value);
}
).set_env("LLAMA_ARG_YARN_BETA_FAST"));
add_opt(llama_arg(
{"-gan", "--grp-attn-n"}, "N",
format("group-attention factor (default: %d)", params.grp_attn_n),
[](gpt_params & params, int value) {
params.grp_attn_n = value;
}
).set_env("LLAMA_ARG_GRP_ATTN_N"));
add_opt(llama_arg(
{"-gaw", "--grp-attn-w"}, "N",
format("group-attention width (default: %.1f)", (double)params.grp_attn_w),
[](gpt_params & params, int value) {
params.grp_attn_w = value;
}
).set_env("LLAMA_ARG_GRP_ATTN_W"));
add_opt(llama_arg(
{"-dkvc", "--dump-kv-cache"},
"verbose print of the KV cache",
[](gpt_params & params) {
params.dump_kv_cache = true;
}
));
add_opt(llama_arg(
{"-nkvo", "--no-kv-offload"},
"disable KV offload",
[](gpt_params & params) {
params.no_kv_offload = true;
}
).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
add_opt(llama_arg(
{"-ctk", "--cache-type-k"}, "TYPE",
format("KV cache data type for K (default: %s)", params.cache_type_k.c_str()),
[](gpt_params & params, const std::string & value) {
// TODO: get the type right here
params.cache_type_k = value;
}
).set_env("LLAMA_ARG_CACHE_TYPE_K"));
add_opt(llama_arg(
{"-ctv", "--cache-type-v"}, "TYPE",
format("KV cache data type for V (default: %s)", params.cache_type_v.c_str()),
[](gpt_params & params, const std::string & value) {
// TODO: get the type right here
params.cache_type_v = value;
}
).set_env("LLAMA_ARG_CACHE_TYPE_V"));
add_opt(llama_arg(
{"--perplexity", "--all-logits"},
format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"),
[](gpt_params & params) {
params.logits_all = true;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"--hellaswag"},
"compute HellaSwag score over random tasks from datafile supplied with -f",
[](gpt_params & params) {
params.hellaswag = true;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"--hellaswag-tasks"}, "N",
format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
[](gpt_params & params, int value) {
params.hellaswag_tasks = value;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"--winogrande"},
"compute Winogrande score over random tasks from datafile supplied with -f",
[](gpt_params & params) {
params.winogrande = true;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"--winogrande-tasks"}, "N",
format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
[](gpt_params & params, int value) {
params.winogrande_tasks = value;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"--multiple-choice"},
"compute multiple choice score over random tasks from datafile supplied with -f",
[](gpt_params & params) {
params.multiple_choice = true;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"--multiple-choice-tasks"}, "N",
format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
[](gpt_params & params, int value) {
params.multiple_choice_tasks = value;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"--kl-divergence"},
"computes KL-divergence to logits provided via --kl-divergence-base",
[](gpt_params & params) {
params.kl_divergence = true;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"--save-all-logits", "--kl-divergence-base"}, "FNAME",
"set logits file",
[](gpt_params & params, const std::string & value) {
params.logits_file = value;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"--ppl-stride"}, "N",
format("stride for perplexity calculation (default: %d)", params.ppl_stride),
[](gpt_params & params, int value) {
params.ppl_stride = value;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"--ppl-output-type"}, "<0|1>",
format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
[](gpt_params & params, int value) {
params.ppl_output_type = value;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(llama_arg(
{"-dt", "--defrag-thold"}, "N",
format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
[](gpt_params & params, const std::string & value) {
params.defrag_thold = std::stof(value);
}
).set_env("LLAMA_ARG_DEFRAG_THOLD"));
add_opt(llama_arg(
{"-np", "--parallel"}, "N",
format("number of parallel sequences to decode (default: %d)", params.n_parallel),
[](gpt_params & params, int value) {
params.n_parallel = value;
}
).set_env("LLAMA_ARG_N_PARALLEL"));
add_opt(llama_arg(
{"-ns", "--sequences"}, "N",
format("number of sequences to decode (default: %d)", params.n_sequences),
[](gpt_params & params, int value) {
params.n_sequences = value;
}
).set_examples({LLAMA_EXAMPLE_PARALLEL}));
add_opt(llama_arg(
{"-cb", "--cont-batching"},
format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
[](gpt_params & params) {
params.cont_batching = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
add_opt(llama_arg(
{"-nocb", "--no-cont-batching"},
"disable continuous batching",
[](gpt_params & params) {
params.cont_batching = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
add_opt(llama_arg(
{"--mmproj"}, "FILE",
"path to a multimodal projector file for LLaVA. see examples/llava/README.md",
[](gpt_params & params, const std::string & value) {
params.mmproj = value;
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
add_opt(llama_arg(
{"--image"}, "FILE",
"path to an image file. use with multimodal models. Specify multiple times for batching",
[](gpt_params & params, const std::string & value) {
params.image.emplace_back(value);
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
#ifdef GGML_USE_RPC
add_opt(llama_arg(
{"--rpc"}, "SERVERS",
"comma separated list of RPC servers",
[](gpt_params & params, const std::string & value) {
params.rpc_servers = value;
}
).set_env("LLAMA_ARG_RPC"));
#endif
add_opt(llama_arg(
{"--mlock"},
"force system to keep model in RAM rather than swapping or compressing",
[](gpt_params & params) {
params.use_mlock = true;
}
).set_env("LLAMA_ARG_MLOCK"));
add_opt(llama_arg(
{"--no-mmap"},
"do not memory-map model (slower load but may reduce pageouts if not using mlock)",
[](gpt_params & params) {
params.use_mmap = false;
}
).set_env("LLAMA_ARG_NO_MMAP"));
add_opt(llama_arg(
{"--numa"}, "TYPE",
"attempt optimizations that help on some NUMA systems\n"
"- distribute: spread execution evenly over all nodes\n"
"- isolate: only spawn threads on CPUs on the node that execution started on\n"
"- numactl: use the CPU map provided by numactl\n"
"if run without this previously, it is recommended to drop the system page cache before using this\n"
"see https://github.com/ggerganov/llama.cpp/issues/1437",
[](gpt_params & params, const std::string & value) {
/**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
else { throw std::invalid_argument("invalid value"); }
}
).set_env("LLAMA_ARG_NUMA"));
add_opt(llama_arg(
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
"number of layers to store in VRAM",
[](gpt_params & params, int value) {
params.n_gpu_layers = value;
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
}
).set_env("LLAMA_ARG_N_GPU_LAYERS"));
add_opt(llama_arg(
{"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
"number of layers to store in VRAM for the draft model",
[](gpt_params & params, int value) {
params.n_gpu_layers_draft = value;
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"-sm", "--split-mode"}, "{none,layer,row}",
"how to split the model across multiple GPUs, one of:\n"
"- none: use one GPU only\n"
"- layer (default): split layers and KV across GPUs\n"
"- row: split rows across GPUs",
[](gpt_params & params, const std::string & value) {
std::string arg_next = value;
if (arg_next == "none") {
params.split_mode = LLAMA_SPLIT_MODE_NONE;
} else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
} else if (arg_next == "row") {
#ifdef GGML_USE_SYCL
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
exit(1);
#endif // GGML_USE_SYCL
params.split_mode = LLAMA_SPLIT_MODE_ROW;
} else {
throw std::invalid_argument("invalid value");
}
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
}
}
).set_env("LLAMA_ARG_SPLIT_MODE"));
add_opt(llama_arg(
{"-ts", "--tensor-split"}, "N0,N1,N2,...",
"fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
[](gpt_params & params, const std::string & value) {
std::string arg_next = value;
// split string by , and /
const std::regex regex{ R"([,/]+)" };
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
std::vector<std::string> split_arg{ it, {} };
if (split_arg.size() >= llama_max_devices()) {
throw std::invalid_argument(
format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
);
}
for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]);
} else {
params.tensor_split[i] = 0.0f;
}
}
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
}
}
).set_env("LLAMA_ARG_TENSOR_SPLIT"));
add_opt(llama_arg(
{"-mg", "--main-gpu"}, "INDEX",
format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
[](gpt_params & params, int value) {
params.main_gpu = value;
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
}
}
).set_env("LLAMA_ARG_MAIN_GPU"));
add_opt(llama_arg(
{"--check-tensors"},
format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
[](gpt_params & params) {
params.check_tensors = true;
}
));
add_opt(llama_arg(
{"--override-kv"}, "KEY=TYPE:VALUE",
"advanced option to override model metadata by key. may be specified multiple times.\n"
"types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
[](gpt_params & params, const std::string & value) {
if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
throw std::runtime_error(format("error: Invalid type for KV override: %s\n", value.c_str()));
}
}
));
add_opt(llama_arg(
{"--lora"}, "FNAME",
"path to LoRA adapter (can be repeated to use multiple adapters)",
[](gpt_params & params, const std::string & value) {
params.lora_adapters.push_back({ std::string(value), 1.0 });
}
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
add_opt(llama_arg(
{"--lora-scaled"}, "FNAME", "SCALE",
"path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
[](gpt_params & params, const std::string & fname, const std::string & scale) {
params.lora_adapters.push_back({ fname, std::stof(scale) });
}
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
add_opt(llama_arg(
{"--control-vector"}, "FNAME",
"add a control vector\nnote: this argument can be repeated to add multiple control vectors",
[](gpt_params & params, const std::string & value) {
params.control_vectors.push_back({ 1.0f, value, });
}
));
add_opt(llama_arg(
{"--control-vector-scaled"}, "FNAME", "SCALE",
"add a control vector with user defined scaling SCALE\n"
"note: this argument can be repeated to add multiple scaled control vectors",
[](gpt_params & params, const std::string & fname, const std::string & scale) {
params.control_vectors.push_back({ std::stof(scale), fname });
}
));
add_opt(llama_arg(
{"--control-vector-layer-range"}, "START", "END",
"layer range to apply the control vector(s) to, start and end inclusive",
[](gpt_params & params, const std::string & start, const std::string & end) {
params.control_vector_layer_start = std::stoi(start);
params.control_vector_layer_end = std::stoi(end);
}
));
add_opt(llama_arg(
{"-a", "--alias"}, "STRING",
"set alias for model name (to be used by REST API)",
[](gpt_params & params, const std::string & value) {
params.model_alias = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
add_opt(llama_arg(
{"-m", "--model"}, "FNAME",
ex == LLAMA_EXAMPLE_EXPORT_LORA
? std::string("model path from which to load base model")
: format(
"model path (default: `models/$filename` with filename from `--hf-file` "
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
),
[](gpt_params & params, const std::string & value) {
params.model = value;
}
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
add_opt(llama_arg(
{"-md", "--model-draft"}, "FNAME",
"draft model for speculative decoding (default: unused)",
[](gpt_params & params, const std::string & value) {
params.model_draft = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
add_opt(llama_arg(
{"-mu", "--model-url"}, "MODEL_URL",
"model download url (default: unused)",
[](gpt_params & params, const std::string & value) {
params.model_url = value;
}
).set_env("LLAMA_ARG_MODEL_URL"));
add_opt(llama_arg(
{"-hfr", "--hf-repo"}, "REPO",
"Hugging Face model repository (default: unused)",
[](gpt_params & params, const std::string & value) {
params.hf_repo = value;
}
).set_env("LLAMA_ARG_HF_REPO"));
add_opt(llama_arg(
{"-hff", "--hf-file"}, "FILE",
"Hugging Face model file (default: unused)",
[](gpt_params & params, const std::string & value) {
params.hf_file = value;
}
).set_env("LLAMA_ARG_HF_FILE"));
add_opt(llama_arg(
{"-hft", "--hf-token"}, "TOKEN",
"Hugging Face access token (default: value from HF_TOKEN environment variable)",
[](gpt_params & params, const std::string & value) {
params.hf_token = value;
}
).set_env("HF_TOKEN"));
add_opt(llama_arg(
{"--context-file"}, "FNAME",
"file to load context from (repeat to specify multiple files)",
[](gpt_params & params, const std::string & value) {
std::ifstream file(value, std::ios::binary);
if (!file) {
throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
}
params.context_files.push_back(value);
}
).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
add_opt(llama_arg(
{"--chunk-size"}, "N",
format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
[](gpt_params & params, int value) {
params.chunk_size = value;
}
).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
add_opt(llama_arg(
{"--chunk-separator"}, "STRING",
format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
[](gpt_params & params, const std::string & value) {
params.chunk_separator = value;
}
).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
add_opt(llama_arg(
{"--junk"}, "N",
format("number of times to repeat the junk text (default: %d)", params.n_junk),
[](gpt_params & params, int value) {
params.n_junk = value;
}
).set_examples({LLAMA_EXAMPLE_PASSKEY}));
add_opt(llama_arg(
{"--pos"}, "N",
format("position of the passkey in the junk text (default: %d)", params.i_pos),
[](gpt_params & params, int value) {
params.i_pos = value;
}
).set_examples({LLAMA_EXAMPLE_PASSKEY}));
add_opt(llama_arg(
{"-o", "--output", "--output-file"}, "FNAME",
format("output file (default: '%s')",
ex == LLAMA_EXAMPLE_EXPORT_LORA
? params.lora_outfile.c_str()
: ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR
? params.cvector_outfile.c_str()
: params.out_file.c_str()),
[](gpt_params & params, const std::string & value) {
params.out_file = value;
params.cvector_outfile = value;
params.lora_outfile = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA}));
add_opt(llama_arg(
{"-ofreq", "--output-frequency"}, "N",
format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
[](gpt_params & params, int value) {
params.n_out_freq = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(llama_arg(
{"--save-frequency"}, "N",
format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
[](gpt_params & params, int value) {
params.n_save_freq = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(llama_arg(
{"--process-output"},
format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
[](gpt_params & params) {
params.process_output = true;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(llama_arg(
{"--no-ppl"},
format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
[](gpt_params & params) {
params.compute_ppl = false;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(llama_arg(
{"--chunk", "--from-chunk"}, "N",
format("start processing the input from chunk N (default: %d)", params.i_chunk),
[](gpt_params & params, int value) {
params.i_chunk = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(llama_arg(
{"-pps"},
format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
[](gpt_params & params) {
params.is_pp_shared = true;
}
).set_examples({LLAMA_EXAMPLE_BENCH}));
add_opt(llama_arg(
{"-npp"}, "n0,n1,...",
"number of prompt tokens",
[](gpt_params & params, const std::string & value) {
auto p = string_split<int>(value, ',');
params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
}
).set_examples({LLAMA_EXAMPLE_BENCH}));
add_opt(llama_arg(
{"-ntg"}, "n0,n1,...",
"number of text generation tokens",
[](gpt_params & params, const std::string & value) {
auto p = string_split<int>(value, ',');
params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
}
).set_examples({LLAMA_EXAMPLE_BENCH}));
add_opt(llama_arg(
{"-npl"}, "n0,n1,...",
"number of parallel prompts",
[](gpt_params & params, const std::string & value) {
auto p = string_split<int>(value, ',');
params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
}
).set_examples({LLAMA_EXAMPLE_BENCH}));
add_opt(llama_arg(
{"--embd-normalize"}, "N",
format("normalisation for embendings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
[](gpt_params & params, int value) {
params.embd_normalize = value;
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
add_opt(llama_arg(
{"--embd-output-format"}, "FORMAT",
"empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
[](gpt_params & params, const std::string & value) {
params.embd_out = value;
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
add_opt(llama_arg(
{"--embd-separator"}, "STRING",
"separator of embendings (default \\n) for example \"<#sep#>\"",
[](gpt_params & params, const std::string & value) {
params.embd_sep = value;
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
add_opt(llama_arg(
{"--host"}, "HOST",
format("ip address to listen (default: %s)", params.hostname.c_str()),
[](gpt_params & params, const std::string & value) {
params.hostname = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
add_opt(llama_arg(
{"--port"}, "PORT",
format("port to listen (default: %d)", params.port),
[](gpt_params & params, int value) {
params.port = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
add_opt(llama_arg(
{"--path"}, "PATH",
format("path to serve static files from (default: %s)", params.public_path.c_str()),
[](gpt_params & params, const std::string & value) {
params.public_path = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
add_opt(llama_arg(
{"--embedding", "--embeddings"},
format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
[](gpt_params & params) {
params.embedding = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
add_opt(llama_arg(
{"--reranking", "--rerank"},
format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
[](gpt_params & params) {
params.reranking = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
add_opt(llama_arg(
{"--api-key"}, "KEY",
"API key to use for authentication (default: none)",
[](gpt_params & params, const std::string & value) {
params.api_keys.push_back(value);
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
add_opt(llama_arg(
{"--api-key-file"}, "FNAME",
"path to file containing API keys (default: none)",
[](gpt_params & params, const std::string & value) {
std::ifstream key_file(value);
if (!key_file) {
throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
}
std::string key;
while (std::getline(key_file, key)) {
if (!key.empty()) {
params.api_keys.push_back(key);
}
}
key_file.close();
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(llama_arg(
{"--ssl-key-file"}, "FNAME",
"path to file a PEM-encoded SSL private key",
[](gpt_params & params, const std::string & value) {
params.ssl_file_key = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
add_opt(llama_arg(
{"--ssl-cert-file"}, "FNAME",
"path to file a PEM-encoded SSL certificate",
[](gpt_params & params, const std::string & value) {
params.ssl_file_cert = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
add_opt(llama_arg(
{"-to", "--timeout"}, "N",
format("server read/write timeout in seconds (default: %d)", params.timeout_read),
[](gpt_params & params, int value) {
params.timeout_read = value;
params.timeout_write = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
add_opt(llama_arg(
{"--threads-http"}, "N",
format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
[](gpt_params & params, int value) {
params.n_threads_http = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
add_opt(llama_arg(
{"-spf", "--system-prompt-file"}, "FNAME",
"set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications",
[](gpt_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
}
std::string system_prompt;
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(system_prompt)
);
params.system_prompt = system_prompt;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(llama_arg(
{"--metrics"},
format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
[](gpt_params & params) {
params.endpoint_metrics = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
add_opt(llama_arg(
{"--no-slots"},
format("disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
[](gpt_params & params) {
params.endpoint_slots = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
add_opt(llama_arg(
{"--slot-save-path"}, "PATH",
"path to save slot kv cache (default: disabled)",
[](gpt_params & params, const std::string & value) {
params.slot_save_path = value;
// if doesn't end with DIRECTORY_SEPARATOR, add it
if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
params.slot_save_path += DIRECTORY_SEPARATOR;
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(llama_arg(
{"--chat-template"}, "JINJA_TEMPLATE",
"set custom jinja chat template (default: template taken from model's metadata)\n"
"if suffix/prefix are specified, template will be disabled\n"
"only commonly used templates are accepted:\nhttps://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template",
[](gpt_params & params, const std::string & value) {
if (!llama_chat_verify_template(value)) {
throw std::runtime_error(format(
"error: the supplied chat template is not supported: %s\n"
"note: llama.cpp does not use jinja parser, we only support commonly used templates\n",
value.c_str()
));
}
params.chat_template = value;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
add_opt(llama_arg(
{"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
[](gpt_params & params, const std::string & value) {
params.slot_prompt_similarity = std::stof(value);
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(llama_arg(
{"--lora-init-without-apply"},
format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
[](gpt_params & params) {
params.lora_init_without_apply = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(llama_arg(
{"--simple-io"},
"use basic IO for better compatibility in subprocesses and limited consoles",
[](gpt_params & params) {
params.simple_io = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
add_opt(llama_arg(
{"-ld", "--logdir"}, "LOGDIR",
"path under which to save YAML logs (no logging if unset)",
[](gpt_params & params, const std::string & value) {
params.logdir = value;
if (params.logdir.back() != DIRECTORY_SEPARATOR) {
params.logdir += DIRECTORY_SEPARATOR;
}
}
));
add_opt(llama_arg(
{"--positive-file"}, "FNAME",
format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
[](gpt_params & params, const std::string & value) {
params.cvector_positive_file = value;
}
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
add_opt(llama_arg(
{"--negative-file"}, "FNAME",
format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
[](gpt_params & params, const std::string & value) {
params.cvector_negative_file = value;
}
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
add_opt(llama_arg(
{"--pca-batch"}, "N",
format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
[](gpt_params & params, int value) {
params.n_pca_batch = value;
}
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
add_opt(llama_arg(
{"--pca-iter"}, "N",
format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
[](gpt_params & params, int value) {
params.n_pca_iterations = value;
}
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
add_opt(llama_arg(
{"--method"}, "{pca, mean}",
"dimensionality reduction method to be used (default: pca)",
[](gpt_params & params, const std::string & value) {
/**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
else { throw std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
add_opt(llama_arg(
{"--output-format"}, "{md,jsonl}",
"output format for batched-bench results (default: md)",
[](gpt_params & params, const std::string & value) {
/**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
else if (value == "md") { params.batched_bench_output_jsonl = false; }
else { std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_BENCH}));
add_opt(llama_arg(
{"--log-disable"},
"Log disable",
[](gpt_params &) {
gpt_log_pause(gpt_log_main());
}
));
add_opt(llama_arg(
{"--log-file"}, "FNAME",
"Log to file",
[](gpt_params &, const std::string & value) {
gpt_log_set_file(gpt_log_main(), value.c_str());
}
));
add_opt(llama_arg(
{"--log-colors"},
"Enable colored logging",
[](gpt_params &) {
gpt_log_set_colors(gpt_log_main(), true);
}
).set_env("LLAMA_LOG_COLORS"));
add_opt(llama_arg(
{"-v", "--verbose", "--log-verbose"},
"Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
[](gpt_params & params) {
params.verbosity = INT_MAX;
gpt_log_set_verbosity_thold(INT_MAX);
}
));
add_opt(llama_arg(
{"-lv", "--verbosity", "--log-verbosity"}, "N",
"Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
[](gpt_params & params, int value) {
params.verbosity = value;
gpt_log_set_verbosity_thold(value);
}
).set_env("LLAMA_LOG_VERBOSITY"));
add_opt(llama_arg(
{"--log-prefix"},
"Enable prefx in log messages",
[](gpt_params &) {
gpt_log_set_prefix(gpt_log_main(), true);
}
).set_env("LLAMA_LOG_PREFIX"));
add_opt(llama_arg(
{"--log-timestamps"},
"Enable timestamps in log messages",
[](gpt_params &) {
gpt_log_set_timestamps(gpt_log_main(), true);
}
).set_env("LLAMA_LOG_TIMESTAMPS"));
return ctx_arg;
}