From 006167aaf6b6aaa4daa52961035f7460af19f469 Mon Sep 17 00:00:00 2001 From: Brian Date: Mon, 17 Jun 2024 15:25:20 +1000 Subject: [PATCH] gguf-dump.py: add --markdown dump output (#7853) * gguf-dump.py: add --markdown dump output * gguf-dump.py: Add toc * gguf-dump.py: use standard tensor name lookup. Also add tensor ID field * gguf-dump.py: Add tensor overview count * gguf-dump.py: fix array preview * gguf-dump.py: markdownTableWithAlignmentSupport() added * Add type hints and spacing Co-authored-by: compilade * gguf-dump.py: prettyfy dimention * gguf-dump: right align element count * gguf-dump.py: element count autosizing * Apply suggestions from code review Co-authored-by: compilade --------- Co-authored-by: compilade --- gguf-py/scripts/gguf-dump.py | 264 ++++++++++++++++++++++++++++++++++- 1 file changed, 262 insertions(+), 2 deletions(-) diff --git a/gguf-py/scripts/gguf-dump.py b/gguf-py/scripts/gguf-dump.py index 1a37a7b91..92d14d6cd 100755 --- a/gguf-py/scripts/gguf-dump.py +++ b/gguf-py/scripts/gguf-dump.py @@ -14,7 +14,7 @@ import numpy as np if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): sys.path.insert(0, str(Path(__file__).parent.parent)) -from gguf import GGUFReader, GGUFValueType # noqa: E402 +from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402 logger = logging.getLogger("gguf-dump") @@ -101,25 +101,285 @@ def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None: json.dump(result, sys.stdout) +def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]): + # JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957 + + # Alignment Utility Function + def strAlign(padding: int, alignMode: str | None, strVal: str): + if alignMode == 'center': + return strVal.center(padding) + elif alignMode == 'right': + return strVal.rjust(padding - 1) + ' ' + elif alignMode == 'left': + return ' ' + strVal.ljust(padding - 1) + else: # default left + return ' ' + strVal.ljust(padding - 1) + + def dashAlign(padding: int, alignMode: str | None): + if alignMode == 'center': + return ':' + '-' * (padding - 2) + ':' + elif alignMode == 'right': + return '-' * (padding - 1) + ':' + elif alignMode == 'left': + return ':' + '-' * (padding - 1) + else: # default left + return '-' * (padding) + + # Calculate Padding For Each Column Based On Header and Data Length + rowsPadding = {} + for index, columnEntry in enumerate(header_map): + padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2 + headerPadCount = len(columnEntry['header_name']) + 2 + rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount + + # Render Markdown Header + rows = [] + rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map))) + rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map))) + + # Render Tabular Data + for item in data: + rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map))) + + # Convert Tabular String Rows Into String + tableString = "" + for row in rows: + tableString += f'|{row}|\n' + + return tableString + + +def element_count_rounded_notation(count: int) -> str: + if count > 1e15 : + # Quadrillion + scaled_amount = count * 1e-15 + scale_suffix = "Q" + elif count > 1e12 : + # Trillions + scaled_amount = count * 1e-12 + scale_suffix = "T" + elif count > 1e9 : + # Billions + scaled_amount = count * 1e-9 + scale_suffix = "B" + elif count > 1e6 : + # Millions + scaled_amount = count * 1e-6 + scale_suffix = "M" + elif count > 1e3 : + # Thousands + scaled_amount = count * 1e-3 + scale_suffix = "K" + else: + # Under Thousands + scaled_amount = count + scale_suffix = "" + return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}" + + +def translate_tensor_name(name): + words = name.split(".") + + # Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names + abbreviation_dictionary = { + 'token_embd': 'Token embedding', + 'pos_embd': 'Position embedding', + 'output_norm': 'Output normalization', + 'output': 'Output', + 'attn_norm': 'Attention normalization', + 'attn_norm_2': 'Attention normalization', + 'attn_qkv': 'Attention query-key-value', + 'attn_q': 'Attention query', + 'attn_k': 'Attention key', + 'attn_v': 'Attention value', + 'attn_output': 'Attention output', + 'ffn_norm': 'Feed-forward network normalization', + 'ffn_up': 'Feed-forward network "up"', + 'ffn_gate': 'Feed-forward network "gate"', + 'ffn_down': 'Feed-forward network "down"', + 'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models', + 'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models', + 'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models', + 'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models', + 'ssm_in': 'State space model input projections', + 'ssm_conv1d': 'State space model rolling/shift', + 'ssm_x': 'State space model selective parametrization', + 'ssm_a': 'State space model state compression', + 'ssm_d': 'State space model skip connection', + 'ssm_dt': 'State space model time step', + 'ssm_out': 'State space model output projection', + 'blk': 'Block' + } + + expanded_words = [] + for word in words: + word_norm = word.strip().lower() + if word_norm in abbreviation_dictionary: + expanded_words.append(abbreviation_dictionary[word_norm].title()) + else: + expanded_words.append(word.title()) + + return ' '.join(expanded_words) + + +def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: + host_endian, file_endian = get_file_host_endian(reader) + markdown_content = "" + markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n' + markdown_content += f'- Endian: {file_endian} endian\n' + markdown_content += '\n' + markdown_content += '## Key Value Metadata Store\n\n' + markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n' + markdown_content += '\n' + + kv_dump_table: list[dict[str, str | int]] = [] + for n, field in enumerate(reader.fields.values(), 1): + if not field.types: + pretty_type = 'N/A' + elif field.types[0] == GGUFValueType.ARRAY: + nest_count = len(field.types) - 1 + pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count + else: + pretty_type = str(field.types[-1].name) + + total_elements = len(field.data) + value = "" + if len(field.types) == 1: + curr_type = field.types[0] + if curr_type == GGUFValueType.STRING: + value = repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]) + elif curr_type in reader.gguf_scalar_to_np: + value = str(field.parts[-1][0]) + else: + if field.types[0] == GGUFValueType.ARRAY: + curr_type = field.types[1] + if curr_type == GGUFValueType.STRING: + render_element = min(5, total_elements) + for element_pos in range(render_element): + value += repr(str(bytes(field.parts[-1 - element_pos]), encoding='utf-8')[:5]) + (", " if total_elements > 1 else "") + elif curr_type in reader.gguf_scalar_to_np: + render_element = min(7, total_elements) + for element_pos in range(render_element): + value += str(field.parts[-1 - element_pos][0]) + (", " if total_elements > 1 else "") + value = f'[ {value}{" ..." if total_elements > 1 else ""} ]' + kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value}) + + kv_dump_table_header_map = [ + {'key_name':'n', 'header_name':'POS', 'align':'right'}, + {'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'}, + {'key_name':'total_elements', 'header_name':'Count', 'align':'right'}, + {'key_name':'field_name', 'header_name':'Key', 'align':'left'}, + {'key_name':'value', 'header_name':'Value', 'align':'left'}, + ] + + markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table) + + markdown_content += "\n" + + if not args.no_tensors: + # Group tensors by their prefix and maintain order + tensor_prefix_order: list[str] = [] + tensor_name_to_key: dict[str, int] = {} + tensor_groups: dict[str, list[ReaderTensor]] = {} + total_elements = sum(tensor.n_elements for tensor in reader.tensors) + + # Parsing Tensors Record + for key, tensor in enumerate(reader.tensors): + tensor_components = tensor.name.split('.') + + # Classify Tensor Group + tensor_group_name = "base" + if tensor_components[0] == 'blk': + tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}" + + # Check if new Tensor Group + if tensor_group_name not in tensor_groups: + tensor_groups[tensor_group_name] = [] + tensor_prefix_order.append(tensor_group_name) + + # Record Tensor and Tensor Position + tensor_groups[tensor_group_name].append(tensor) + tensor_name_to_key[tensor.name] = key + + # Tensors Mapping Dump + markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n' + markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n' + markdown_content += '\n' + + for group in tensor_prefix_order: + tensors = tensor_groups[group] + group_elements = sum(tensor.n_elements for tensor in tensors) + markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n" + + markdown_content += "\n" + + for group in tensor_prefix_order: + tensors = tensor_groups[group] + group_elements = sum(tensor.n_elements for tensor in tensors) + group_percentage = group_elements / total_elements * 100 + markdown_content += f"### {translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements\n\n" + + # Precalculate column sizing for visual consistency + prettify_element_est_count_size: int = 1 + prettify_element_count_size: int = 1 + prettify_dimension_max_widths: dict[int, int] = {} + for tensor in tensors: + prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements)))) + prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements))) + for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))): + prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size))) + + # Generate Tensor Layer Table Content + tensor_dump_table: list[dict[str, str | int]] = [] + for tensor in tensors: + human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)")) + pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape)))) + element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})" + element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}" + type_name_string = f"{tensor.tensor_type.name}" + tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string}) + + tensor_dump_table_header_map = [ + {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'}, + {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'}, + {'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'}, + {'key_name':'element_count', 'header_name':'Elements', 'align':'left'}, + {'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'}, + {'key_name':'tensor_type', 'header_name':'Type', 'align':'left'}, + ] + + markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table) + + markdown_content += "\n" + markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n" + markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n" + markdown_content += "\n\n" + + print(markdown_content) # noqa: NP100 + + def main() -> None: parser = argparse.ArgumentParser(description="Dump GGUF file metadata") parser.add_argument("model", type=str, help="GGUF format model filename") parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata") parser.add_argument("--json", action="store_true", help="Produce JSON output") parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)") + parser.add_argument("--markdown", action="store_true", help="Produce markdown output") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"]) logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) - if not args.json: + if not args.json and not args.markdown: logger.info(f'* Loading: {args.model}') reader = GGUFReader(args.model, 'r') if args.json: dump_metadata_json(reader, args) + elif args.markdown: + dump_markdown_metadata(reader, args) else: dump_metadata(reader, args)