mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 13:30:35 +00:00
fix some warnings from gcc and clang-tidy (#3038)
Co-authored-by: xaedes <xaedes@gmail.com>
This commit is contained in:
parent
4fa2cc1750
commit
00d62adb79
@ -3,6 +3,7 @@ Checks: >
|
||||
bugprone-*,
|
||||
-bugprone-easily-swappable-parameters,
|
||||
-bugprone-implicit-widening-of-multiplication-result,
|
||||
-bugprone-misplaced-widening-cast,
|
||||
-bugprone-narrowing-conversions,
|
||||
readability-*,
|
||||
-readability-avoid-unconditional-preprocessor-if,
|
||||
@ -15,4 +16,8 @@ Checks: >
|
||||
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
|
||||
performance-*,
|
||||
portability-*,
|
||||
misc-*,
|
||||
-misc-const-correctness,
|
||||
-misc-non-private-member-variables-in-classes,
|
||||
-misc-no-recursion,
|
||||
FormatStyle: none
|
||||
|
@ -426,7 +426,7 @@ if (LLAMA_ALL_WARNINGS)
|
||||
)
|
||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
||||
# g++ only
|
||||
set(cxx_flags ${cxx_flags} -Wno-format-truncation)
|
||||
set(cxx_flags ${cxx_flags} -Wno-format-truncation -Wno-array-bounds)
|
||||
endif()
|
||||
else()
|
||||
# todo : msvc
|
||||
|
2
Makefile
2
Makefile
@ -134,7 +134,7 @@ MK_CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-m
|
||||
|
||||
ifeq '' '$(findstring clang++,$(CXX))'
|
||||
# g++ only
|
||||
MK_CXXFLAGS += -Wno-format-truncation
|
||||
MK_CXXFLAGS += -Wno-format-truncation -Wno-array-bounds
|
||||
endif
|
||||
|
||||
# OS specific
|
||||
|
@ -57,7 +57,7 @@ int32_t get_num_physical_cores() {
|
||||
siblings.insert(line);
|
||||
}
|
||||
}
|
||||
if (siblings.size() > 0) {
|
||||
if (!siblings.empty()) {
|
||||
return static_cast<int32_t>(siblings.size());
|
||||
}
|
||||
#elif defined(__APPLE__) && defined(__MACH__)
|
||||
|
@ -20,6 +20,9 @@
|
||||
#define DIRECTORY_SEPARATOR '/'
|
||||
#endif // _WIN32
|
||||
|
||||
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
||||
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", ##__VA_ARGS__); exit(1); } while (0)
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
@ -415,6 +415,7 @@ namespace grammar_parser {
|
||||
|
||||
std::vector<const llama_grammar_element *> parse_state::c_rules() {
|
||||
std::vector<const llama_grammar_element *> ret;
|
||||
ret.reserve(rules.size());
|
||||
for (const auto & rule : rules) {
|
||||
ret.push_back(rule.data());
|
||||
}
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
@ -499,10 +500,10 @@ struct llama_file {
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
die_fmt("fread failed: %s", strerror(errno));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||
die("unexpectedly reached end of file");
|
||||
}
|
||||
}
|
||||
|
||||
@ -597,8 +598,7 @@ void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab)
|
||||
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
|
||||
llama_file file(filename, "rb");
|
||||
if (!file.fp) {
|
||||
fprintf(stderr, "error: %s: %s\n", strerror(errno), filename);
|
||||
exit(1);
|
||||
die_fmt("%s: %s", strerror(errno), filename);
|
||||
}
|
||||
const int n_vocab = config->vocab_size;
|
||||
/* uint32_t max_token_length = */ file.read_u32(); // unused
|
||||
|
@ -23,7 +23,7 @@ extern "C" {
|
||||
struct MyModel* create_mymodel(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
@ -11,7 +11,7 @@
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -953,7 +953,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
gpt_params params;
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -925,7 +925,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
gpt_params params;
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -48,8 +48,9 @@ static bool is_interacting = false;
|
||||
|
||||
void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
const std::vector<llama_token> input_tokens, const std::string output, const std::vector<llama_token> output_tokens) {
|
||||
|
||||
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||
const std::vector<llama_token> & output_tokens
|
||||
) {
|
||||
if (params.logdir.empty()) {
|
||||
return;
|
||||
}
|
||||
@ -109,7 +110,7 @@ int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -303,7 +304,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// debug message about similarity of saved session, if applicable
|
||||
size_t n_matching_session_tokens = 0;
|
||||
if (session_tokens.size() > 0) {
|
||||
if (!session_tokens.empty()) {
|
||||
for (llama_token id : session_tokens) {
|
||||
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
|
||||
break;
|
||||
@ -401,7 +402,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_TEE("%s: interactive mode on.\n", __func__);
|
||||
|
||||
if (params.antiprompt.size()) {
|
||||
if (!params.antiprompt.empty()) {
|
||||
for (const auto & antiprompt : params.antiprompt) {
|
||||
LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
|
||||
}
|
||||
@ -499,7 +500,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
if (!embd.empty()) {
|
||||
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
||||
// --prompt or --file which uses the same value.
|
||||
int max_embd_size = n_ctx - 4;
|
||||
@ -624,7 +625,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("n_past = %d\n", n_past);
|
||||
}
|
||||
|
||||
if (embd.size() > 0 && !path_session.empty()) {
|
||||
if (!embd.empty() && !path_session.empty()) {
|
||||
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
|
||||
n_session_consumed = session_tokens.size();
|
||||
}
|
||||
@ -695,7 +696,7 @@ int main(int argc, char ** argv) {
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
// check for reverse prompt
|
||||
if (params.antiprompt.size()) {
|
||||
if (!params.antiprompt.empty()) {
|
||||
std::string last_output;
|
||||
for (auto id : last_tokens) {
|
||||
last_output += llama_token_to_piece(ctx, id);
|
||||
@ -732,7 +733,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
if (params.antiprompt.size() != 0) {
|
||||
if (!params.antiprompt.empty()) {
|
||||
// tokenize and inject first reverse prompt
|
||||
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
|
||||
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
||||
|
@ -655,7 +655,7 @@ int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
params.n_batch = 512;
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -71,7 +71,7 @@ void quantize_stats_print_usage(int /*argc*/, char ** argv) {
|
||||
}
|
||||
|
||||
// Check if a layer is included/excluded by command line
|
||||
bool layer_included(const quantize_stats_params params, const std::string & layer) {
|
||||
bool layer_included(const quantize_stats_params & params, const std::string & layer) {
|
||||
for (const auto& excluded : params.exclude_layers) {
|
||||
if (std::regex_search(layer, std::regex(excluded))) {
|
||||
return false;
|
||||
|
@ -143,10 +143,9 @@ int main(int argc, char ** argv) {
|
||||
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
||||
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
|
||||
return 1;
|
||||
} else {
|
||||
if (ftype_str == "COPY") {
|
||||
params.only_copy = true;
|
||||
}
|
||||
}
|
||||
if (ftype_str == "COPY") {
|
||||
params.only_copy = true;
|
||||
}
|
||||
arg_idx++;
|
||||
}
|
||||
|
@ -13,7 +13,7 @@ int main(int argc, char ** argv) {
|
||||
params.repeat_last_n = 64;
|
||||
params.prompt = "The quick brown fox";
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -44,7 +44,7 @@ int main(int argc, char ** argv) {
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
auto tokens = llama_tokenize(ctx, params.prompt.c_str(), true);
|
||||
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
||||
auto n_prompt_tokens = tokens.size();
|
||||
if (n_prompt_tokens < 1) {
|
||||
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
|
||||
|
@ -139,7 +139,7 @@ static std::string tokens_to_output_formatted_string(const llama_context *ctx, c
|
||||
}
|
||||
|
||||
// convert a vector of completion_token_output to json
|
||||
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> probs)
|
||||
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> & probs)
|
||||
{
|
||||
json out = json::array();
|
||||
for (const auto &prob : probs)
|
||||
@ -271,7 +271,7 @@ struct llama_server_context
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokenize(json json_prompt, bool add_bos)
|
||||
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
|
||||
{
|
||||
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
||||
// or the first element of the json_prompt array is a string.
|
||||
@ -611,7 +611,7 @@ struct llama_server_context
|
||||
|
||||
completion_token_output doCompletion()
|
||||
{
|
||||
const completion_token_output token_with_probs = nextToken();
|
||||
auto token_with_probs = nextToken();
|
||||
|
||||
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
|
||||
generated_text += token_text;
|
||||
@ -1255,7 +1255,7 @@ void beam_search_callback(void * callback_data, llama_beams_state beams_state) {
|
||||
struct token_translator {
|
||||
llama_context * ctx;
|
||||
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
|
||||
std::string operator()(completion_token_output cto) const { return (*this)(cto.tok); }
|
||||
std::string operator()(const completion_token_output & cto) const { return (*this)(cto.tok); }
|
||||
};
|
||||
|
||||
void append_to_generated_text_from_generated_token_probs(llama_server_context & llama) {
|
||||
|
@ -169,10 +169,6 @@ struct my_llama_hparams {
|
||||
|
||||
float rope_freq_base = 10000.0f;
|
||||
float rope_freq_scale = 1.0f;
|
||||
|
||||
bool operator!=(const my_llama_hparams& other) const {
|
||||
return memcmp(this, &other, sizeof(my_llama_hparams));
|
||||
}
|
||||
};
|
||||
|
||||
struct my_llama_layer {
|
||||
@ -929,28 +925,6 @@ void get_example_targets_batch(struct llama_context * lctx, const int * train_sa
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
int tokenize_file(struct llama_context * lctx, const char * filename, std::vector<llama_token>& out) {
|
||||
FILE * fp = std::fopen(filename, "rb");
|
||||
if (fp == NULL) {
|
||||
@ -983,10 +957,10 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto
|
||||
out.resize(size+1);
|
||||
|
||||
if (std::fread(buf.data(), size, 1, fp) != 1) {
|
||||
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||
die("unexpectedly reached end of file");
|
||||
}
|
||||
if (ferror(fp)) {
|
||||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
die_fmt("fread failed: %s", strerror(errno));
|
||||
}
|
||||
|
||||
buf[size] = '\0';
|
||||
@ -1047,11 +1021,11 @@ void shuffle_ints(int * begin, int * end) {
|
||||
if (kid >= 0) { \
|
||||
enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
|
||||
if (ktype != (type)) { \
|
||||
throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
|
||||
die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
|
||||
} \
|
||||
(dst) = func(ctx, kid); \
|
||||
} else if (req) { \
|
||||
throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
|
||||
die_fmt("key not found in model: %s", skey.c_str()); \
|
||||
} \
|
||||
}
|
||||
|
||||
@ -1136,7 +1110,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
|
||||
read_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
|
||||
read_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
|
||||
} else {
|
||||
throw std::runtime_error("unknown optimizer type\n");
|
||||
die("unknown optimizer type");
|
||||
}
|
||||
}
|
||||
|
||||
@ -1315,20 +1289,20 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod
|
||||
|
||||
const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
|
||||
if (token_idx == -1) {
|
||||
throw std::runtime_error("cannot find tokenizer vocab in model file\n");
|
||||
die("cannot find tokenizer vocab in model file");
|
||||
}
|
||||
const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);
|
||||
|
||||
const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
|
||||
if (score_idx == -1) {
|
||||
throw std::runtime_error("cannot find tokenizer scores in model file\n");
|
||||
die("cannot find tokenizer scores in model file");
|
||||
}
|
||||
|
||||
const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);
|
||||
|
||||
const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
|
||||
if (toktype_idx == -1) {
|
||||
throw std::runtime_error("cannot find token type list in GGUF file\n");
|
||||
die("cannot find token type list in GGUF file");
|
||||
}
|
||||
|
||||
const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);
|
||||
@ -1356,7 +1330,7 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod
|
||||
// read and copy bpe merges
|
||||
const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
|
||||
if (merges_keyidx == -1) {
|
||||
throw std::runtime_error("cannot find tokenizer merges in model file\n");
|
||||
die("cannot find tokenizer merges in model file");
|
||||
}
|
||||
|
||||
const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);
|
||||
@ -1988,7 +1962,7 @@ void opt_callback(void * vdata, float * sched) {
|
||||
float min_sched = params->adam_min_alpha / params->adam_alpha;
|
||||
*sched = min_sched + *sched * (1.0f - min_sched);
|
||||
|
||||
int impr_plot = std::isnan(opt->loss_after) ? 0 : -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f);
|
||||
int impr_plot = std::isnan(opt->loss_after) ? 0 : -std::lround(1 + (opt->loss_before - opt->loss_after) * 10.0f);
|
||||
printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0);
|
||||
|
||||
if (data->shuffle_countdown < n_batch) {
|
||||
|
@ -138,7 +138,7 @@ static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_ten
|
||||
|
||||
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
GGML_ASSERT(ggml_is_view(tensor) == false); // views generally get data pointer from one of their sources
|
||||
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
|
||||
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
|
||||
#endif
|
||||
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
||||
@ -165,14 +165,14 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
||||
if (best_fit_block == -1) {
|
||||
// the last block is our last resort
|
||||
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size) {
|
||||
best_fit_block = alloc->n_free_blocks - 1;
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
} else {
|
||||
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
|
||||
__func__, size, max_avail);
|
||||
GGML_ASSERT(!"not enough space in the buffer");
|
||||
return;
|
||||
return;
|
||||
}
|
||||
}
|
||||
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
||||
|
10
ggml.c
10
ggml.c
@ -4768,7 +4768,7 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||
|
||||
size_t obj_alloc_size = 0;
|
||||
|
||||
if (view_src == NULL && ctx->no_alloc == false) {
|
||||
if (view_src == NULL && !ctx->no_alloc) {
|
||||
if (ctx->scratch.data != NULL) {
|
||||
// allocate tensor data in the scratch buffer
|
||||
if (ctx->scratch.offs + data_size > ctx->scratch.size) {
|
||||
@ -5469,7 +5469,7 @@ static struct ggml_tensor * ggml_mul_impl(
|
||||
}
|
||||
|
||||
if (inplace) {
|
||||
GGML_ASSERT(is_node == false);
|
||||
GGML_ASSERT(!is_node);
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
@ -5512,7 +5512,7 @@ static struct ggml_tensor * ggml_div_impl(
|
||||
}
|
||||
|
||||
if (inplace) {
|
||||
GGML_ASSERT(is_node == false);
|
||||
GGML_ASSERT(!is_node);
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
@ -19957,7 +19957,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
|
||||
struct ggml_tensor * data = NULL;
|
||||
|
||||
if (params.no_alloc == false) {
|
||||
if (!params.no_alloc) {
|
||||
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
|
||||
|
||||
ok = ok && data != NULL;
|
||||
@ -19998,7 +19998,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
}
|
||||
|
||||
// point the data member to the appropriate location in the binary blob using the tensor infos
|
||||
if (params.no_alloc == false) {
|
||||
if (!params.no_alloc) {
|
||||
//cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
|
||||
cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
|
||||
}
|
||||
|
27
llama.cpp
27
llama.cpp
@ -3052,33 +3052,10 @@ static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
|
||||
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
|
||||
}
|
||||
|
||||
static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
|
||||
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
|
||||
}
|
||||
|
||||
static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
|
||||
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNUSED;
|
||||
}
|
||||
|
||||
static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
|
||||
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
|
||||
}
|
||||
|
||||
static bool llama_is_bos_token(const llama_vocab & vocab, llama_token id) {
|
||||
GGML_ASSERT(llama_is_control_token(vocab, id));
|
||||
return id == vocab.special_bos_id;
|
||||
}
|
||||
|
||||
static bool llama_is_eos_token(const llama_vocab & vocab, llama_token id ) {
|
||||
GGML_ASSERT(llama_is_control_token(vocab, id));
|
||||
return id == vocab.special_eos_id;
|
||||
}
|
||||
|
||||
static bool llama_is_pad_token(const llama_vocab & vocab, llama_token id ) {
|
||||
GGML_ASSERT(id < 0 || llama_is_control_token(vocab, id));
|
||||
return id == vocab.special_pad_id;
|
||||
}
|
||||
|
||||
static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
|
||||
GGML_ASSERT(llama_is_byte_token(vocab, id));
|
||||
const auto& token_data = vocab.id_to_token.at(id);
|
||||
@ -4800,9 +4777,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
std::vector<std::thread> workers;
|
||||
std::mutex mutex;
|
||||
|
||||
#ifdef GGML_USE_K_QUANTS
|
||||
auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
|
||||
return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
|
||||
};
|
||||
#endif
|
||||
|
||||
int idx = 0;
|
||||
|
||||
@ -5947,7 +5926,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
||||
rng_ss.str(std::string(&rng_buf[0], rng_size));
|
||||
rng_ss >> ctx->rng;
|
||||
|
||||
GGML_ASSERT(rng_ss.fail() == false);
|
||||
GGML_ASSERT(!rng_ss.fail());
|
||||
}
|
||||
|
||||
// set logits
|
||||
|
@ -76,7 +76,7 @@ void * align_with_offset(void * ptr, int offset) {
|
||||
return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset;
|
||||
}
|
||||
|
||||
void benchmark_function(size_t size, size_t q_size, int64_t iterations, std::function<size_t(void)> function) {
|
||||
void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function<size_t(void)> & function) {
|
||||
int64_t min_time_us = INT64_MAX;
|
||||
int64_t total_time_us = 0;
|
||||
int64_t min_time_cycles = INT64_MAX;
|
||||
|
Loading…
Reference in New Issue
Block a user