add basic tensor data validation function (#6884)

* add basic tensor data validation function

* add --check-tensors command line argument

tensor validation is disabled by default and can be enabled by adding
`--check-tensors` to the command line arguments.

quantize always validates tensors.
This commit is contained in:
slaren 2024-04-26 18:39:58 +02:00 committed by GitHub
parent e2764cd7ca
commit 017e6999b5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 371 additions and 19 deletions

View File

@ -1089,6 +1089,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
params.n_print = std::stoi(argv[i]); params.n_print = std::stoi(argv[i]);
return true; return true;
} }
if (arg == "--check-tensors") {
params.check_tensors = true;
return true;
}
if (arg == "--ppl-output-type") { if (arg == "--ppl-output-type") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -1554,6 +1558,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -ptc N, --print-token-count N\n"); printf(" -ptc N, --print-token-count N\n");
printf(" print token count every N tokens (default: %d)\n", params.n_print); printf(" print token count every N tokens (default: %d)\n", params.n_print);
printf(" --check-tensors check model tensor data for invalid values\n");
printf("\n"); printf("\n");
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
log_print_usage(); log_print_usage();
@ -1774,6 +1779,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.tensor_split = params.tensor_split; mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap; mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock; mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
if (params.kv_overrides.empty()) { if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL; mparams.kv_overrides = NULL;
} else { } else {

View File

@ -161,6 +161,7 @@ struct gpt_params {
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
std::string cache_type_k = "f16"; // KV cache data type for the K std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V std::string cache_type_v = "f16"; // KV cache data type for the V

View File

@ -12383,3 +12383,287 @@ void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k)
block_iq2_s * restrict y = vy; block_iq2_s * restrict y = vy;
quantize_row_iq2_s_reference(x, y, k); quantize_row_iq2_s_reference(x, y, k);
} }
static bool validate_float(float f, size_t i) {
if (isinf(f)) {
fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
return false;
}
if (isnan(f)) {
fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
return false;
}
return true;
}
static bool isinf_fp16(ggml_fp16_t f) {
return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
}
static bool isnan_fp16(ggml_fp16_t f) {
return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
}
static bool validate_fp16(ggml_fp16_t f, size_t i) {
if (isinf_fp16(f)) {
fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
return false;
}
if (isnan_fp16(f)) {
fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
return false;
}
return true;
}
#define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
if (!validate_fp16(q[i].d, i)) { \
return false; \
} \
}
#define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
return false; \
} \
}
bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
if (type < 0 || type >= GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid type %d\n", __func__, type);
return false;
}
if (nbytes % ggml_type_size(type) != 0) {
fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type);
return false;
}
const size_t nb = nbytes/ggml_type_size(type);
switch (type) {
case GGML_TYPE_F16:
{
const ggml_fp16_t * f = (const ggml_fp16_t *) data;
size_t i = 0;
#if defined(__AVX2__)
for (; i + 15 < nb; i += 16) {
__m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
__m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
__m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
int mask = _mm256_movemask_epi8(cmp);
if (mask) {
for (size_t j = 0; j < 16; ++j) {
if (!validate_fp16(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#elif defined(__ARM_NEON)
for (; i + 7 < nb; i += 8) {
uint16x8_t v = vld1q_u16(f + i);
uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
if (mask) {
for (size_t j = 0; j < 8; ++j) {
if (!validate_fp16(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#endif
for (; i < nb; ++i) {
if (!validate_fp16(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_F32:
{
const float * f = (const float *) data;
size_t i = 0;
#if defined(__AVX2__)
for (; i + 7 < nb; i += 8) {
__m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
__m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
__m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
int mask = _mm256_movemask_epi8(cmp);
if (mask) {
for (size_t j = 0; j < 8; ++j) {
if (!validate_float(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#elif defined(__ARM_NEON)
for (; i + 3 < nb; i += 4) {
uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
if (mask) {
for (size_t j = 0; j < 4; ++j) {
if (!validate_float(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#endif
for (; i < nb; ++i) {
if (!validate_float(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_F64:
{
const double * f = (const double *) data;
for (size_t i = 0; i < nb; ++i) {
if (!validate_float(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_Q4_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
} break;
case GGML_TYPE_Q4_1:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
} break;
case GGML_TYPE_Q5_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
} break;
case GGML_TYPE_Q5_1:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
} break;
case GGML_TYPE_Q8_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
} break;
case GGML_TYPE_Q2_K:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
} break;
case GGML_TYPE_Q3_K:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
} break;
case GGML_TYPE_Q4_K:
{
#ifdef GGML_QKK_64
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d[0], d[1]);
#else
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
#endif
} break;
case GGML_TYPE_Q5_K:
{
#ifdef GGML_QKK_64
VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_K, data, nb);
#else
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
#endif
} break;
case GGML_TYPE_Q6_K:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
} break;
case GGML_TYPE_Q8_K:
{
const block_q8_K * q = (const block_q8_K *) data;
for (size_t i = 0; i < nb; ++i) {
if (!validate_float(q[i].d, i)) {
return false;
}
}
} break;
case GGML_TYPE_IQ1_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
} break;
case GGML_TYPE_IQ1_M:
{
const block_iq1_m * q = (const block_iq1_m *) data;
for (size_t i = 0; i < nb; ++i) {
#if QK_K == 64
if (!validate_fp16(q[i].d, i)) {
return false;
}
#else
iq1m_scale_t scale;
const uint16_t * sc = (const uint16_t *)q[i].scales;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
if (!validate_fp16(scale.f16, i)) {
return false;
}
#endif
}
} break;
case GGML_TYPE_IQ2_XXS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
} break;
case GGML_TYPE_IQ2_XS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
} break;
case GGML_TYPE_IQ2_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
} break;
case GGML_TYPE_IQ3_XXS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
} break;
case GGML_TYPE_IQ3_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
} break;
case GGML_TYPE_IQ4_XS:
#if QK_K != 64
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
} break;
#endif
// with QK_K == 64, iq4_xs is iq4_nl
case GGML_TYPE_IQ4_NL:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
} break;
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
// nothing to validate
break;
default:
{
fprintf(stderr, "%s: invalid type %d\n", __func__, type);
return false;
}
}
return true;
}

2
ggml.h
View File

@ -762,6 +762,8 @@ extern "C" {
// use this to compute the memory overhead of a tensor // use this to compute the memory overhead of a tensor
GGML_API size_t ggml_tensor_overhead(void); GGML_API size_t ggml_tensor_overhead(void);
GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
// main // main
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params); GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);

View File

@ -75,6 +75,7 @@
#include <forward_list> #include <forward_list>
#include <fstream> #include <fstream>
#include <functional> #include <functional>
#include <future>
#include <initializer_list> #include <initializer_list>
#include <locale> #include <locale>
#include <map> #include <map>
@ -2985,6 +2986,7 @@ struct llama_model_loader {
size_t n_bytes = 0; size_t n_bytes = 0;
bool use_mmap = false; bool use_mmap = false;
bool check_tensors;
llama_files files; llama_files files;
llama_ftype ftype; llama_ftype ftype;
@ -3018,7 +3020,7 @@ struct llama_model_loader {
std::string arch_name; std::string arch_name;
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) { llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
int trace = 0; int trace = 0;
if (getenv("LLAMA_TRACE")) { if (getenv("LLAMA_TRACE")) {
trace = atoi(getenv("LLAMA_TRACE")); trace = atoi(getenv("LLAMA_TRACE"));
@ -3223,6 +3225,7 @@ struct llama_model_loader {
} }
this->use_mmap = use_mmap; this->use_mmap = use_mmap;
this->check_tensors = check_tensors;
} }
~llama_model_loader() { ~llama_model_loader() {
@ -3481,6 +3484,10 @@ struct llama_model_loader {
file->seek(w.offs, SEEK_SET); file->seek(w.offs, SEEK_SET);
file->read_raw(cur->data, ggml_nbytes(cur)); file->read_raw(cur->data, ggml_nbytes(cur));
} }
if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
}
} }
size_t size_done = 0; size_t size_done = 0;
@ -3497,6 +3504,8 @@ struct llama_model_loader {
GGML_ASSERT(size_data != 0 && "call init_mappings() first"); GGML_ASSERT(size_data != 0 && "call init_mappings() first");
std::vector<no_init<uint8_t>> read_buf; std::vector<no_init<uint8_t>> read_buf;
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
const auto * weight = get_weight(ggml_get_name(cur)); const auto * weight = get_weight(ggml_get_name(cur));
if (weight == nullptr) { if (weight == nullptr) {
@ -3518,37 +3527,66 @@ struct llama_model_loader {
if (bufs_mmap.count(weight->idx)) { if (bufs_mmap.count(weight->idx)) {
buf_mmap = bufs_mmap.at(weight->idx); buf_mmap = bufs_mmap.at(weight->idx);
} }
uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
if (check_tensors) {
validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
}));
}
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
if (buf_mmap && cur->data == nullptr) { if (buf_mmap && cur->data == nullptr) {
ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs); ggml_backend_tensor_alloc(buf_mmap, cur, data);
if (lmlocks) { if (lmlocks) {
const auto & lmlock = lmlocks->at(weight->idx); const auto & lmlock = lmlocks->at(weight->idx);
lmlock->grow_to(weight->offs + ggml_nbytes(cur)); lmlock->grow_to(weight->offs + n_size);
} }
auto & mmap_used = mmaps_used[weight->idx]; auto & mmap_used = mmaps_used[weight->idx];
mmap_used.first = std::min(mmap_used.first, weight->offs); mmap_used.first = std::min(mmap_used.first, weight->offs);
mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
} else { } else {
ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size); ggml_backend_tensor_set(cur, data, 0, n_size);
} }
} else { } else {
GGML_ASSERT(weight->idx < files.size()); GGML_ASSERT(weight->idx < files.size());
const auto & file = files.at(weight->idx); const auto & file = files.at(weight->idx);
if (ggml_backend_buffer_is_host(cur->buffer)) { if (ggml_backend_buffer_is_host(cur->buffer)) {
file->seek(weight->offs, SEEK_SET); file->seek(weight->offs, SEEK_SET);
file->read_raw(cur->data, ggml_nbytes(cur)); file->read_raw(cur->data, n_size);
if (check_tensors) {
validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
}));
}
} else { } else {
read_buf.resize(ggml_nbytes(cur)); read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET); file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), ggml_nbytes(cur)); file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
}
} }
} }
size_done += n_size; size_done += n_size;
} }
// check validation results
bool validation_failed = false;
for (auto & future : validation_result) {
auto result = future.get();
if (!result.second) {
LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
validation_failed = true;
}
}
if (validation_failed) {
throw std::runtime_error("found tensors with invalid data");
}
// check if this is the last call and do final cleanup // check if this is the last call and do final cleanup
if (size_done >= size_data) { if (size_done >= size_data) {
// unmap offloaded tensors and metadata // unmap offloaded tensors and metadata
@ -5975,7 +6013,7 @@ static bool llm_load_tensors(
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) { static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
try { try {
llama_model_loader ml(fname, params.use_mmap, params.kv_overrides); llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
model.hparams.vocab_only = params.vocab_only; model.hparams.vocab_only = params.vocab_only;
@ -14360,14 +14398,20 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
} }
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) { static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
if (nthread < 2) {
// single-thread
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
if (!ggml_validate_row_data(new_type, new_data, new_size)) {
throw std::runtime_error("quantized data validation failed");
}
return new_size;
}
std::mutex mutex; std::mutex mutex;
int64_t counter = 0; int64_t counter = 0;
size_t new_size = 0; size_t new_size = 0;
if (nthread < 2) { bool valid = true;
// single-thread auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
}
auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
nrows, n_per_row, imatrix]() { nrows, n_per_row, imatrix]() {
const int64_t nrows_per_chunk = chunk_size / n_per_row; const int64_t nrows_per_chunk = chunk_size / n_per_row;
size_t local_size = 0; size_t local_size = 0;
@ -14382,7 +14426,17 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
} }
lock.unlock(); lock.unlock();
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk); const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
local_size += this_size;
// validate the quantized data
const size_t row_size = ggml_row_size(new_type, n_per_row);
void * this_data = (char *) new_data + first_row * row_size;
if (!ggml_validate_row_data(new_type, this_data, this_size)) {
std::unique_lock<std::mutex> lock(mutex);
valid = false;
break;
}
} }
}; };
for (int it = 0; it < nthread - 1; ++it) { for (int it = 0; it < nthread - 1; ++it) {
@ -14391,6 +14445,9 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
compute(); compute();
for (auto & w : workers) { w.join(); } for (auto & w : workers) { w.join(); }
workers.clear(); workers.clear();
if (!valid) {
throw std::runtime_error("quantized data validation failed");
}
return new_size; return new_size;
} }
@ -14453,7 +14510,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides; auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data(); kv_overrides = v->data();
} }
llama_model_loader ml(fname_inp, use_mmap, kv_overrides); llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
ml.init_mappings(false); // no prefetching ml.init_mappings(false); // no prefetching
llama_model model; llama_model model;
@ -14814,7 +14871,7 @@ static int llama_apply_lora_from_file_internal(
std::unique_ptr<llama_model_loader> ml; std::unique_ptr<llama_model_loader> ml;
if (path_base_model) { if (path_base_model) {
LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model); LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr)); ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
ml->init_mappings(/*prefetch*/ false); // no prefetching ml->init_mappings(/*prefetch*/ false); // no prefetching
} }
@ -15073,6 +15130,7 @@ struct llama_model_params llama_model_default_params() {
/*.vocab_only =*/ false, /*.vocab_only =*/ false,
/*.use_mmap =*/ true, /*.use_mmap =*/ true,
/*.use_mlock =*/ false, /*.use_mlock =*/ false,
/*.check_tensors =*/ false,
}; };
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL

View File

@ -232,9 +232,10 @@ extern "C" {
const struct llama_model_kv_override * kv_overrides; const struct llama_model_kv_override * kv_overrides;
// Keep the booleans together to avoid misalignment during copy-by-value. // Keep the booleans together to avoid misalignment during copy-by-value.
bool vocab_only; // only load the vocabulary, no weights bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM bool use_mlock; // force system to keep model in RAM
bool check_tensors; // validate model tensor data
}; };
struct llama_context_params { struct llama_context_params {