mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 02:44:36 +00:00
chore: Remove rebase artifacts
This commit is contained in:
parent
07786a61a2
commit
01a5f06550
20
convert_hf_to_gguf_update.py
Normal file → Executable file
20
convert_hf_to_gguf_update.py
Normal file → Executable file
@ -50,7 +50,7 @@ class TOKENIZER_TYPE(IntEnum):
|
|||||||
|
|
||||||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
||||||
# will be updated with time - contributions welcome
|
# will be updated with time - contributions welcome
|
||||||
chktxt = "\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````\"\"\"\"......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL"
|
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||||||
|
|
||||||
if len(sys.argv) == 2:
|
if len(sys.argv) == 2:
|
||||||
token = sys.argv[1]
|
token = sys.argv[1]
|
||||||
@ -99,7 +99,7 @@ def download_file_with_auth(url, token, save_path):
|
|||||||
response = sess.get(url, headers=headers)
|
response = sess.get(url, headers=headers)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
||||||
with open(save_path, "wb") as f:
|
with open(save_path, 'wb') as f:
|
||||||
f.write(response.content)
|
f.write(response.content)
|
||||||
logger.info(f"File {save_path} downloaded successfully")
|
logger.info(f"File {save_path} downloaded successfully")
|
||||||
|
|
||||||
@ -156,9 +156,7 @@ for model in models:
|
|||||||
else:
|
else:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||||
except OSError as e:
|
except OSError as e:
|
||||||
logger.error(
|
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||||
f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}"
|
|
||||||
)
|
|
||||||
continue # Skip to the next model if the tokenizer can't be loaded
|
continue # Skip to the next model if the tokenizer can't be loaded
|
||||||
|
|
||||||
chktok = tokenizer.encode(chktxt)
|
chktok = tokenizer.encode(chktxt)
|
||||||
@ -178,15 +176,13 @@ for model in models:
|
|||||||
pre_tokenizer = cfg["pre_tokenizer"]
|
pre_tokenizer = cfg["pre_tokenizer"]
|
||||||
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||||
if "ignore_merges" in cfg["model"]:
|
if "ignore_merges" in cfg["model"]:
|
||||||
logger.info(
|
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
|
||||||
"ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)
|
|
||||||
)
|
|
||||||
|
|
||||||
logger.info("")
|
logger.info("")
|
||||||
|
|
||||||
src_ifs += f' if chkhsh == "{chkhsh}":\n'
|
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
|
||||||
src_ifs += f" # ref: {model['repo']}\n"
|
src_ifs += f" # ref: {model['repo']}\n"
|
||||||
src_ifs += f' res = "{name}"\n'
|
src_ifs += f" res = \"{name}\"\n"
|
||||||
|
|
||||||
src_func = f"""
|
src_func = f"""
|
||||||
def get_vocab_base_pre(self, tokenizer) -> str:
|
def get_vocab_base_pre(self, tokenizer) -> str:
|
||||||
@ -347,8 +343,6 @@ logger.info("\nRun the following commands to generate the vocab files for testin
|
|||||||
for model in models:
|
for model in models:
|
||||||
name = model["name"]
|
name = model["name"]
|
||||||
|
|
||||||
print(
|
print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100
|
||||||
f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only"
|
|
||||||
) # noqa: NP100
|
|
||||||
|
|
||||||
logger.info("\n")
|
logger.info("\n")
|
||||||
|
@ -1,149 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
import struct
|
|
||||||
import sys
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Any, BinaryIO, Sequence
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
|
|
||||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
|
||||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
|
||||||
import gguf
|
|
||||||
|
|
||||||
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
|
|
||||||
|
|
||||||
|
|
||||||
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
|
|
||||||
fout.write(b"ggla"[::-1]) # magic (ggml lora)
|
|
||||||
fout.write(struct.pack("i", 1)) # file version
|
|
||||||
fout.write(struct.pack("i", params["r"]))
|
|
||||||
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
|
|
||||||
# but some models ship a float value instead
|
|
||||||
# let's convert to int, but fail if lossless conversion is not possible
|
|
||||||
assert (
|
|
||||||
int(params["lora_alpha"]) == params["lora_alpha"]
|
|
||||||
), "cannot convert float to int losslessly"
|
|
||||||
fout.write(struct.pack("i", int(params["lora_alpha"])))
|
|
||||||
|
|
||||||
|
|
||||||
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
|
|
||||||
sname = name.encode("utf-8")
|
|
||||||
fout.write(
|
|
||||||
struct.pack(
|
|
||||||
"iii",
|
|
||||||
len(shape),
|
|
||||||
len(sname),
|
|
||||||
NUMPY_TYPE_TO_FTYPE[data_type.name],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
|
||||||
fout.write(sname)
|
|
||||||
fout.seek((fout.tell() + 31) & -32)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
if len(sys.argv) < 2:
|
|
||||||
print(f"Usage: python {sys.argv[0]} <path> [arch]")
|
|
||||||
print(
|
|
||||||
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
|
||||||
)
|
|
||||||
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
|
||||||
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
|
||||||
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
|
||||||
|
|
||||||
if os.path.exists(input_model):
|
|
||||||
model = torch.load(input_model, map_location="cpu")
|
|
||||||
else:
|
|
||||||
input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
|
|
||||||
# lazy import load_file only if lora is in safetensors format.
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
model = load_file(input_model, device="cpu")
|
|
||||||
|
|
||||||
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
|
|
||||||
|
|
||||||
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
|
|
||||||
print(f"Error: unsupported architecture {arch_name}")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
|
|
||||||
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
|
|
||||||
|
|
||||||
with open(input_json, "r") as f:
|
|
||||||
params = json.load(f)
|
|
||||||
|
|
||||||
if params["peft_type"] != "LORA":
|
|
||||||
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
if params["fan_in_fan_out"] is True:
|
|
||||||
print("Error: param fan_in_fan_out is not supported")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
if params["bias"] is not None and params["bias"] != "none":
|
|
||||||
print("Error: param bias is not supported")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# TODO: these seem to be layers that have been trained but without lora.
|
|
||||||
# doesn't seem widely used but eventually should be supported
|
|
||||||
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
|
||||||
print("Error: param modules_to_save is not supported")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
with open(output_path, "wb") as fout:
|
|
||||||
fout.truncate()
|
|
||||||
|
|
||||||
write_file_header(fout, params)
|
|
||||||
for k, v in model.items():
|
|
||||||
orig_k = k
|
|
||||||
if k.endswith(".default.weight"):
|
|
||||||
k = k.replace(".default.weight", ".weight")
|
|
||||||
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
|
||||||
continue
|
|
||||||
if k.endswith("lora_A.weight"):
|
|
||||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
|
||||||
v = v.float()
|
|
||||||
v = v.T
|
|
||||||
else:
|
|
||||||
v = v.float()
|
|
||||||
|
|
||||||
t = v.detach().numpy()
|
|
||||||
|
|
||||||
prefix = "base_model.model."
|
|
||||||
if k.startswith(prefix):
|
|
||||||
k = k[len(prefix) :]
|
|
||||||
|
|
||||||
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
|
|
||||||
if k.endswith(lora_suffixes):
|
|
||||||
suffix = k[-len(lora_suffixes[0]):]
|
|
||||||
k = k[: -len(lora_suffixes[0])]
|
|
||||||
else:
|
|
||||||
print(f"Error: unrecognized tensor name {orig_k}")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
tname = name_map.get_name(k)
|
|
||||||
if tname is None:
|
|
||||||
print(f"Error: could not map tensor name {orig_k}")
|
|
||||||
print(" Note: the arch parameter must be specified if the model is not llama")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
if suffix == ".lora_A.weight":
|
|
||||||
tname += ".weight.loraA"
|
|
||||||
elif suffix == ".lora_B.weight":
|
|
||||||
tname += ".weight.loraB"
|
|
||||||
else:
|
|
||||||
assert False
|
|
||||||
|
|
||||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
|
||||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
|
||||||
t.tofile(fout)
|
|
||||||
|
|
||||||
print(f"Converted {input_json} and {input_model} to {output_path}")
|
|
||||||
|
|
@ -1,137 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
import argparse
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
from pathlib import Path
|
|
||||||
from pprint import pprint
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from sentencepiece import SentencePieceProcessor
|
|
||||||
|
|
||||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
|
||||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
|
||||||
import gguf
|
|
||||||
|
|
||||||
|
|
||||||
def _flatten_dict(dct, tensors, prefix=None):
|
|
||||||
assert isinstance(dct, dict)
|
|
||||||
for key in dct.keys():
|
|
||||||
new_prefix = prefix + '.' + key if prefix is not None else key
|
|
||||||
if isinstance(dct[key], torch.Tensor):
|
|
||||||
tensors[new_prefix] = dct[key]
|
|
||||||
elif isinstance(dct[key], dict):
|
|
||||||
_flatten_dict(dct[key], tensors, new_prefix)
|
|
||||||
else:
|
|
||||||
raise ValueError(type(dct[key]))
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def _get_sentencepiece_tokenizer_info(dir_model: Path):
|
|
||||||
tokenizer_path = dir_model / 'adept_vocab.model'
|
|
||||||
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
|
|
||||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
|
||||||
print('gguf: adding tokens')
|
|
||||||
tokens: list[bytes] = []
|
|
||||||
scores: list[float] = []
|
|
||||||
toktypes: list[int] = []
|
|
||||||
|
|
||||||
for i in range(tokenizer.vocab_size()):
|
|
||||||
text: bytes
|
|
||||||
score: float
|
|
||||||
|
|
||||||
piece = tokenizer.id_to_piece(i)
|
|
||||||
text = piece.encode("utf-8")
|
|
||||||
score = tokenizer.get_score(i)
|
|
||||||
|
|
||||||
toktype = 1
|
|
||||||
if tokenizer.is_unknown(i):
|
|
||||||
toktype = 2
|
|
||||||
if tokenizer.is_control(i):
|
|
||||||
toktype = 3
|
|
||||||
if tokenizer.is_unused(i):
|
|
||||||
toktype = 5
|
|
||||||
if tokenizer.is_byte(i):
|
|
||||||
toktype = 6
|
|
||||||
|
|
||||||
tokens.append(text)
|
|
||||||
scores.append(score)
|
|
||||||
toktypes.append(toktype)
|
|
||||||
pass
|
|
||||||
return tokens, scores, toktypes
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
|
|
||||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
|
||||||
parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
|
|
||||||
parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
|
|
||||||
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
|
|
||||||
args = parser.parse_args()
|
|
||||||
sys.path.append(str(args.adept_inference_dir))
|
|
||||||
persimmon_model = torch.load(args.ckpt_path)
|
|
||||||
hparams = persimmon_model['args']
|
|
||||||
pprint(hparams)
|
|
||||||
tensors: dict[str, torch.Tensor] = {}
|
|
||||||
_flatten_dict(persimmon_model['model'], tensors, None)
|
|
||||||
|
|
||||||
arch = gguf.MODEL_ARCH.PERSIMMON
|
|
||||||
gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
|
|
||||||
|
|
||||||
block_count = hparams.num_layers
|
|
||||||
head_count = hparams.num_attention_heads
|
|
||||||
head_count_kv = head_count
|
|
||||||
ctx_length = hparams.seq_length
|
|
||||||
hidden_size = hparams.hidden_size
|
|
||||||
|
|
||||||
gguf_writer.add_name('persimmon-8b-chat')
|
|
||||||
gguf_writer.add_context_length(ctx_length)
|
|
||||||
gguf_writer.add_embedding_length(hidden_size)
|
|
||||||
gguf_writer.add_block_count(block_count)
|
|
||||||
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
|
|
||||||
# ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
|
|
||||||
gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
|
|
||||||
gguf_writer.add_head_count(head_count)
|
|
||||||
gguf_writer.add_head_count_kv(head_count_kv)
|
|
||||||
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
|
|
||||||
gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
|
|
||||||
|
|
||||||
tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
|
|
||||||
gguf_writer.add_tokenizer_model('llama')
|
|
||||||
gguf_writer.add_token_list(tokens)
|
|
||||||
gguf_writer.add_token_scores(scores)
|
|
||||||
gguf_writer.add_token_types(toktypes)
|
|
||||||
gguf_writer.add_bos_token_id(71013)
|
|
||||||
gguf_writer.add_eos_token_id(71013)
|
|
||||||
|
|
||||||
tensor_map = gguf.get_tensor_name_map(arch, block_count)
|
|
||||||
print(tensor_map)
|
|
||||||
for name in tensors.keys():
|
|
||||||
data = tensors[name]
|
|
||||||
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
|
||||||
continue
|
|
||||||
old_dtype = data.dtype
|
|
||||||
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
|
||||||
data = data.to(torch.float32).squeeze().numpy()
|
|
||||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
|
||||||
if new_name is None:
|
|
||||||
print("Can not map tensor '" + name + "'")
|
|
||||||
sys.exit()
|
|
||||||
n_dims = len(data.shape)
|
|
||||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
|
||||||
gguf_writer.add_tensor(new_name, data)
|
|
||||||
print("gguf: write header")
|
|
||||||
gguf_writer.write_header_to_file()
|
|
||||||
print("gguf: write metadata")
|
|
||||||
gguf_writer.write_kv_data_to_file()
|
|
||||||
print("gguf: write tensors")
|
|
||||||
gguf_writer.write_tensors_to_file()
|
|
||||||
|
|
||||||
gguf_writer.close()
|
|
||||||
|
|
||||||
print(f"gguf: model successfully exported to '{args.outfile}'")
|
|
||||||
print("")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
||||||
|
|
@ -38,7 +38,4 @@ build-backend = "poetry.core.masonry.api"
|
|||||||
[tool.poetry.scripts]
|
[tool.poetry.scripts]
|
||||||
llama-convert-hf-to-gguf = "convert_hf_to_gguf:main"
|
llama-convert-hf-to-gguf = "convert_hf_to_gguf:main"
|
||||||
llama-convert-llama-ggml-to-gguf = "convert_llama_ggml_to_gguf:main"
|
llama-convert-llama-ggml-to-gguf = "convert_llama_ggml_to_gguf:main"
|
||||||
llama-convert-lora-to-ggml = "convert_lora_to_ggml:main"
|
|
||||||
llama-convert-persimmon-to-gguf = "convert_persimmon_to_gguf:main"
|
|
||||||
llama-convert = "convert:main"
|
|
||||||
llama-ggml-vk-generate-shaders = "ggml_vk_generate_shaders:main"
|
llama-ggml-vk-generate-shaders = "ggml_vk_generate_shaders:main"
|
||||||
|
@ -9,5 +9,3 @@
|
|||||||
-r ./requirements/requirements-convert_hf_to_gguf.txt
|
-r ./requirements/requirements-convert_hf_to_gguf.txt
|
||||||
-r ./requirements/requirements-convert_hf_to_gguf_update.txt
|
-r ./requirements/requirements-convert_hf_to_gguf_update.txt
|
||||||
-r ./requirements/requirements-convert_llama_ggml_to_gguf.txt
|
-r ./requirements/requirements-convert_llama_ggml_to_gguf.txt
|
||||||
-r ./requirements/requirements-convert_lora_to_ggml.txt
|
|
||||||
-r ./requirements/requirements-convert_persimmon_to_gguf.txt
|
|
||||||
|
@ -1,3 +0,0 @@
|
|||||||
-r ./requirements-convert-legacy-llama.txt
|
|
||||||
torch~=2.2.1
|
|
||||||
|
|
@ -1,3 +0,0 @@
|
|||||||
-r ./requirements-convert-legacy-llama.txt
|
|
||||||
torch~=2.2.1
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user