mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
llama : support attention bias on LLaMA architecture (#4283)
* Support attention_bias on LLaMA architecture QKVO bias, should fix InternLM (https://github.com/ggerganov/llama.cpp/issues/3133) and works for LLaMAfied Qwen models (https://github.com/ggerganov/llama.cpp/pull/3743#issuecomment-1825923608). * check existence of qkvo bias while loading llama models Tested on LLaMA2, CUDA and CPU. * Update llama.cpp
This commit is contained in:
parent
37c746d687
commit
03562f3a86
50
llama.cpp
50
llama.cpp
@ -1266,6 +1266,9 @@ struct llama_layer {
|
|||||||
struct ggml_tensor * wqkv;
|
struct ggml_tensor * wqkv;
|
||||||
|
|
||||||
// attention bias
|
// attention bias
|
||||||
|
struct ggml_tensor * bq;
|
||||||
|
struct ggml_tensor * bk;
|
||||||
|
struct ggml_tensor * bv;
|
||||||
struct ggml_tensor * bo;
|
struct ggml_tensor * bo;
|
||||||
struct ggml_tensor * bqkv;
|
struct ggml_tensor * bqkv;
|
||||||
|
|
||||||
@ -2809,6 +2812,30 @@ static void llm_load_tensors(
|
|||||||
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
|
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
|
||||||
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||||
|
|
||||||
|
try {
|
||||||
|
layer.bq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, backend);
|
||||||
|
} catch (const std::runtime_error& e) {
|
||||||
|
if (std::string(e.what()).find("not found") != std::string::npos) layer.bq = NULL; else throw;
|
||||||
|
}
|
||||||
|
|
||||||
|
try {
|
||||||
|
layer.bk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, backend);
|
||||||
|
} catch (const std::runtime_error& e) {
|
||||||
|
if (std::string(e.what()).find("not found") != std::string::npos) layer.bk = NULL; else throw;
|
||||||
|
}
|
||||||
|
|
||||||
|
try {
|
||||||
|
layer.bv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, backend);
|
||||||
|
} catch (const std::runtime_error& e) {
|
||||||
|
if (std::string(e.what()).find("not found") != std::string::npos) layer.bv = NULL; else throw;
|
||||||
|
}
|
||||||
|
|
||||||
|
try {
|
||||||
|
layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
|
||||||
|
} catch (const std::runtime_error& e) {
|
||||||
|
if (std::string(e.what()).find("not found") != std::string::npos) layer.bo = NULL; else throw;
|
||||||
|
}
|
||||||
|
|
||||||
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||||
|
|
||||||
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
|
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
|
||||||
@ -2818,8 +2845,13 @@ static void llm_load_tensors(
|
|||||||
if (backend == GGML_BACKEND_GPU) {
|
if (backend == GGML_BACKEND_GPU) {
|
||||||
vram_weights +=
|
vram_weights +=
|
||||||
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
|
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
|
||||||
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
|
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) +
|
||||||
ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
|
(layer.bq ? ggml_nbytes(layer.bq) : 0) +
|
||||||
|
(layer.bk ? ggml_nbytes(layer.bk) : 0) +
|
||||||
|
(layer.bv ? ggml_nbytes(layer.bv) : 0) +
|
||||||
|
(layer.bo ? ggml_nbytes(layer.bo) : 0) +
|
||||||
|
ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_gate) +
|
||||||
|
ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
@ -3983,12 +4015,24 @@ struct llm_build_context {
|
|||||||
// compute Q and K and RoPE them
|
// compute Q and K and RoPE them
|
||||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||||
cb(Qcur, "Qcur", il);
|
cb(Qcur, "Qcur", il);
|
||||||
|
if (model.layers[il].bq) {
|
||||||
|
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||||
cb(Kcur, "Kcur", il);
|
cb(Kcur, "Kcur", il);
|
||||||
|
if (model.layers[il].bk) {
|
||||||
|
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||||
cb(Vcur, "Vcur", il);
|
cb(Vcur, "Vcur", il);
|
||||||
|
if (model.layers[il].bv) {
|
||||||
|
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
}
|
||||||
|
|
||||||
Qcur = ggml_rope_custom(
|
Qcur = ggml_rope_custom(
|
||||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||||
@ -4007,7 +4051,7 @@ struct llm_build_context {
|
|||||||
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
|
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
|
||||||
|
|
||||||
cur = llm_build_kqv(ctx0, hparams, kv_self,
|
cur = llm_build_kqv(ctx0, hparams, kv_self,
|
||||||
model.layers[il].wo, NULL,
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
|
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
|
||||||
cb(cur, "kqv_out", il);
|
cb(cur, "kqv_out", il);
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user