Merge branch 'ggerganov:master' into fix

This commit is contained in:
Xinpeng Dou 2024-09-11 14:33:08 +08:00 committed by GitHub
commit 03b52bf908
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
155 changed files with 20689 additions and 12950 deletions

View File

@ -1,18 +1,16 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=11.7.1
ARG CUDA_VERSION=12.6.0
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
# CUDA architecture to build for (defaults to all supported archs)
ARG CUDA_DOCKER_ARCH=default
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
@ -24,13 +22,12 @@ WORKDIR /app
COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV GGML_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
RUN make -j$(nproc)
# Use the default CUDA archs if not specified
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc) && \
cp build/bin/* .
ENTRYPOINT ["/app/.devops/tools.sh"]

View File

@ -1,6 +1,6 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=11.7.1
ARG CUDA_VERSION=12.6.0
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the CUDA runtime image
@ -8,28 +8,30 @@ ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_V
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
# CUDA architecture to build for (defaults to all supported archs)
ARG CUDA_DOCKER_ARCH=default
RUN apt-get update && \
apt-get install -y build-essential git
apt-get install -y build-essential git cmake
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV GGML_CUDA=1
RUN make -j$(nproc) llama-cli
# Use the default CUDA archs if not specified
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-cli -j$(nproc)
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
RUN apt-get update && \
apt-get install -y libgomp1
COPY --from=build /app/llama-cli /llama-cli
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
COPY --from=build /app/build/src/libllama.so /libllama.so
COPY --from=build /app/build/bin/llama-cli /llama-cli
ENTRYPOINT [ "/llama-cli" ]

View File

@ -1,6 +1,6 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=11.7.1
ARG CUDA_VERSION=12.6.0
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the CUDA runtime image
@ -8,31 +8,34 @@ ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_V
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
# CUDA architecture to build for (defaults to all supported archs)
ARG CUDA_DOCKER_ARCH=default
RUN apt-get update && \
apt-get install -y build-essential git libcurl4-openssl-dev
apt-get install -y build-essential git cmake libcurl4-openssl-dev
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV GGML_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
RUN make -j$(nproc) llama-server
# Use the default CUDA archs if not specified
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-server -j$(nproc)
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev libgomp1 curl
COPY --from=build /app/llama-server /llama-server
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
COPY --from=build /app/build/src/libllama.so /libllama.so
COPY --from=build /app/build/bin/llama-server /llama-server
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]

View File

@ -26,6 +26,8 @@ RUN apt-get update && \
COPY --from=build /app/build/bin/llama-server /llama-server
ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]

View File

@ -39,6 +39,8 @@ ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
ENV GGML_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
# Enable cURL
ENV LLAMA_CURL=1

View File

@ -23,6 +23,8 @@ RUN cp /app/build/bin/llama-server /llama-server && \
rm -rf /app
ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]

View File

@ -21,6 +21,8 @@ RUN apt-get update && \
COPY --from=build /app/llama-server /llama-server
ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]

View File

@ -1,13 +1,52 @@
{ inputs, ... }:
{
perSystem =
{ config, lib, ... }:
{
config,
lib,
system,
...
}:
{
devShells =
lib.concatMapAttrs
(name: package: {
${name} = package.passthru.shell;
${name + "-extra"} = package.passthru.shell-extra;
})
config.packages;
let
pkgs = import inputs.nixpkgs { inherit system; };
stdenv = pkgs.stdenv;
scripts = config.packages.python-scripts;
in
lib.pipe (config.packages) [
(lib.concatMapAttrs (
name: package: {
${name} = pkgs.mkShell {
name = "${name}";
inputsFrom = [ package ];
shellHook = ''
echo "Entering ${name} devShell"
'';
};
"${name}-extra" =
if (name == "python-scripts") then
null
else
pkgs.mkShell {
name = "${name}-extra";
inputsFrom = [
package
scripts
];
# Extra packages that *may* be used by some scripts
packages = [
pkgs.python3Packages.tiktoken
];
shellHook = ''
echo "Entering ${name} devShell"
addToSearchPath "LD_LIBRARY_PATH" "${lib.getLib stdenv.cc.cc}/lib"
'';
};
}
))
(lib.filterAttrs (name: value: value != null))
];
};
}

View File

@ -26,16 +26,14 @@
config.cudaSupport = true;
config.allowUnfreePredicate =
p:
builtins.all
(
builtins.all (
license:
license.free
|| builtins.elem license.shortName [
"CUDA EULA"
"cuDNN EULA"
]
)
(p.meta.licenses or [ p.meta.license ]);
) (p.meta.licenses or [ p.meta.license ]);
};
# Ensure dependencies use ROCm consistently
pkgsRocm = import inputs.nixpkgs {

View File

@ -0,0 +1,36 @@
{
lib,
llamaVersion,
numpy,
tqdm,
sentencepiece,
pyyaml,
poetry-core,
buildPythonPackage,
pytestCheckHook,
}:
buildPythonPackage {
pname = "gguf";
version = llamaVersion;
pyproject = true;
nativeBuildInputs = [ poetry-core ];
propagatedBuildInputs = [
numpy
tqdm
sentencepiece
pyyaml
];
src = lib.cleanSource ../../gguf-py;
pythonImportsCheck = [
"numpy"
"gguf"
];
nativeCheckInputs = [ pytestCheckHook ];
doCheck = true;
meta = with lib; {
description = "Python package for writing binary files in the GGUF format";
license = licenses.mit;
maintainers = [ maintainers.ditsuke ];
};
}

View File

@ -3,31 +3,33 @@
glibc,
config,
stdenv,
mkShell,
runCommand,
cmake,
ninja,
pkg-config,
git,
python3,
mpi,
blas,
cudaPackages,
autoAddDriverRunpath,
darwin,
rocmPackages,
vulkan-headers,
vulkan-loader,
curl,
shaderc,
useBlas ? builtins.all (x: !x) [
useBlas ?
builtins.all (x: !x) [
useCuda
useMetalKit
useRocm
useVulkan
] && blas.meta.available,
]
&& blas.meta.available,
useCuda ? config.cudaSupport,
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin,
useMpi ? false, # Increases the runtime closure size by ~700M
# Increases the runtime closure size by ~700M
useMpi ? false,
useRocm ? config.rocmSupport,
enableCurl ? true,
useVulkan ? false,
@ -37,8 +39,8 @@
# otherwise we get libstdc++ errors downstream.
effectiveStdenv ? if useCuda then cudaPackages.backendStdenv else stdenv,
enableStatic ? effectiveStdenv.hostPlatform.isStatic,
precompileMetalShaders ? false
}@inputs:
precompileMetalShaders ? false,
}:
let
inherit (lib)
@ -46,7 +48,6 @@ let
cmakeFeature
optionals
strings
versionOlder
;
stdenv = throw "Use effectiveStdenv instead";
@ -62,52 +63,9 @@ let
pnameSuffix =
strings.optionalString (suffices != [ ])
"-${strings.concatMapStringsSep "-" strings.toLower suffices}";
descriptionSuffix =
strings.optionalString (suffices != [ ])
", accelerated with ${strings.concatStringsSep ", " suffices}";
executableSuffix = effectiveStdenv.hostPlatform.extensions.executable;
# TODO: package the Python in this repository in a Nix-like way.
# It'd be nice to migrate to buildPythonPackage, as well as ensure this repo
# is PEP 517-compatible, and ensure the correct .dist-info is generated.
# https://peps.python.org/pep-0517/
#
# TODO: Package up each Python script or service appropriately, by making
# them into "entrypoints"
llama-python = python3.withPackages (
ps: [
ps.numpy
ps.sentencepiece
]
);
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
llama-python-extra = python3.withPackages (
ps: [
ps.numpy
ps.sentencepiece
ps.tiktoken
ps.torchWithoutCuda
ps.transformers
# server bench
ps.matplotlib
# server tests
ps.openai
ps.behave
ps.prometheus-client
# for examples/pydantic-models-to-grammar-examples.py
ps.docstring-parser
ps.pydantic
# for scripts/compare-llama-bench.py
ps.gitpython
ps.tabulate
]
);
descriptionSuffix = strings.optionalString (
suffices != [ ]
) ", accelerated with ${strings.concatStringsSep ", " suffices}";
xcrunHost = runCommand "xcrunHost" { } ''
mkdir -p $out/bin
@ -144,8 +102,7 @@ let
];
in
effectiveStdenv.mkDerivation (
finalAttrs: {
effectiveStdenv.mkDerivation (finalAttrs: {
pname = "llama-cpp${pnameSuffix}";
version = llamaVersion;
@ -193,15 +150,10 @@ effectiveStdenv.mkDerivation (
++ optionals useCuda [
cudaPackages.cuda_nvcc
# TODO: Replace with autoAddDriverRunpath
# once https://github.com/NixOS/nixpkgs/pull/275241 has been merged
cudaPackages.autoAddOpenGLRunpathHook
autoAddDriverRunpath
]
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [
glibc.static
] ++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [
xcrunHost
];
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [ glibc.static ]
++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [ xcrunHost ];
buildInputs =
optionals effectiveStdenv.isDarwin darwinBuildInputs
@ -256,35 +208,6 @@ effectiveStdenv.mkDerivation (
cp $src/include/llama.h $out/include/
'';
# Define the shells here, but don't add in the inputsFrom to avoid recursion.
passthru = {
inherit
useBlas
useCuda
useMetalKit
useMpi
useRocm
useVulkan
;
shell = mkShell {
name = "shell-${finalAttrs.finalPackage.name}";
description = "contains numpy and sentencepiece";
buildInputs = [ llama-python ];
inputsFrom = [ finalAttrs.finalPackage ];
shellHook = ''
addToSearchPath "LD_LIBRARY_PATH" "${lib.getLib effectiveStdenv.cc.cc}/lib"
'';
};
shell-extra = mkShell {
name = "shell-extra-${finalAttrs.finalPackage.name}";
description = "contains numpy, sentencepiece, torchWithoutCuda, and transformers";
buildInputs = [ llama-python-extra ];
inputsFrom = [ finalAttrs.finalPackage ];
};
};
meta = {
# Configurations we don't want even the CI to evaluate. Results in the
# "unsupported platform" messages. This is mostly a no-op, because
@ -320,5 +243,4 @@ effectiveStdenv.mkDerivation (
# Extend `badPlatforms` instead
platforms = lib.platforms.all;
};
}
)
})

View File

@ -0,0 +1,66 @@
{
lib,
stdenv,
buildPythonPackage,
poetry-core,
mkShell,
python3Packages,
gguf-py,
}@inputs:
let
llama-python-deps = with python3Packages; [
numpy
sentencepiece
transformers
protobuf
torchWithoutCuda
gguf-py
tqdm
# for scripts/compare-llama-bench.py
gitpython
tabulate
# for examples/pydantic-models-to-grammar-examples.py
docstring-parser
pydantic
];
llama-python-test-deps = with python3Packages; [
# Server bench
matplotlib
# server tests
openai
behave
prometheus-client
];
in
buildPythonPackage ({
pname = "llama-scripts";
version = "0.0.0";
pyproject = true;
# NOTE: The files filtered out here are not visible in the build sandbox, neither
# do they affect the output hash. They can be modified without triggering a rebuild.
src = lib.cleanSourceWith {
filter =
name: type:
let
any = builtins.any (x: x);
baseName = builtins.baseNameOf name;
in
any [
(lib.hasSuffix ".py" name)
(baseName == "README.md")
(baseName == "pyproject.toml")
];
src = lib.cleanSource ../../.;
};
nativeBuildInputs = [ poetry-core ];
nativeCheckInputs = llama-python-test-deps;
dependencies = llama-python-deps;
})

View File

@ -1,19 +1,41 @@
{
lib,
newScope,
python3,
llamaVersion ? "0.0.0",
}:
let
pythonPackages = python3.pkgs;
buildPythonPackage = pythonPackages.buildPythonPackage;
numpy = pythonPackages.numpy;
tqdm = pythonPackages.tqdm;
sentencepiece = pythonPackages.sentencepiece;
pyyaml = pythonPackages.pyyaml;
poetry-core = pythonPackages.poetry-core;
pytestCheckHook = pythonPackages.pytestCheckHook;
in
# We're using `makeScope` instead of just writing out an attrset
# because it allows users to apply overlays later using `overrideScope'`.
# Cf. https://noogle.dev/f/lib/makeScope
lib.makeScope newScope (
self: {
lib.makeScope newScope (self: {
inherit llamaVersion;
gguf-py = self.callPackage ./package-gguf-py.nix {
inherit
buildPythonPackage
numpy
tqdm
sentencepiece
poetry-core
pyyaml
pytestCheckHook
;
};
python-scripts = self.callPackage ./python-scripts.nix { inherit buildPythonPackage poetry-core; };
llama-cpp = self.callPackage ./package.nix { };
docker = self.callPackage ./docker.nix { };
docker-min = self.callPackage ./docker.nix { interactive = false; };
sif = self.callPackage ./sif.nix { };
}
)
})

2
.ecrc
View File

@ -1,5 +1,5 @@
{
"Exclude": ["^\\.gitmodules$"],
"Exclude": ["^\\.gitmodules$", "stb_image\\.h"],
"Disable": {
"IndentSize": true
}

View File

@ -857,7 +857,7 @@ jobs:
run: |
mkdir build
cd build
cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON
cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON
cmake --build . --config Release -j $((${env:NUMBER_OF_PROCESSORS} - 1)) -t ggml
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}

View File

@ -37,9 +37,9 @@ jobs:
- { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# Note: the full-rocm image is failing due to a "no space left on device" error. It is disabled for now to allow the workflow to complete.
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
#- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
#- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light-intel", dockerfile: ".devops/llama-cli-intel.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-intel", dockerfile: ".devops/llama-server-intel.Dockerfile", platforms: "linux/amd64" }
@ -96,21 +96,12 @@ jobs:
env:
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
- name: Build and push Docker image (versioned)
- name: Build and push Docker image (tagged + versioned)
if: github.event_name == 'push'
uses: docker/build-push-action@v4
uses: docker/build-push-action@v6
with:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
- name: Build and push Docker image (tagged)
uses: docker/build-push-action@v4
with:
context: .
push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
file: ${{ matrix.config.dockerfile }}

1
.gitignore vendored
View File

@ -61,6 +61,7 @@ llama-batched-swift
/rpc-server
out/
tmp/
autogen-*.md
# Deprecated

View File

@ -33,7 +33,7 @@
{
"name": "arm64-windows-msvc", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x86_64", "strategy": "external" },
"toolset": { "value": "host=x64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
}
@ -42,7 +42,7 @@
{
"name": "arm64-windows-llvm", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x86_64", "strategy": "external" },
"toolset": { "value": "host=x64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-llvm.cmake"
}

View File

@ -39,10 +39,12 @@ BUILD_TARGETS = \
llama-tokenize \
llama-vdot \
llama-cvector-generator \
llama-gen-docs \
tests/test-c.o
# Binaries only useful for tests
TEST_TARGETS = \
tests/test-arg-parser \
tests/test-autorelease \
tests/test-backend-ops \
tests/test-chat-template \
@ -923,11 +925,11 @@ OBJ_LLAMA = \
OBJ_COMMON = \
common/common.o \
common/arg.o \
common/console.o \
common/ngram-cache.o \
common/sampling.o \
common/train.o \
common/grammar-parser.o \
common/build-info.o \
common/json-schema-to-grammar.o
@ -1156,6 +1158,11 @@ common/common.o: \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/arg.o: \
common/arg.cpp \
common/arg.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/sampling.o: \
common/sampling.cpp \
common/sampling.h \
@ -1167,11 +1174,6 @@ common/console.o: \
common/console.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/grammar-parser.o: \
common/grammar-parser.cpp \
common/grammar-parser.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/json-schema-to-grammar.o: \
common/json-schema-to-grammar.cpp \
common/json-schema-to-grammar.h
@ -1448,6 +1450,11 @@ examples/server/%.hpp: examples/server/public/% Makefile
echo "unsigned int $${NAME}_len = $(shell cat $< | wc -c );" \
) > $@
llama-gen-docs: examples/gen-docs/gen-docs.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
libllava.a: examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
@ -1505,6 +1512,11 @@ run-benchmark-matmult: llama-benchmark-matmult
.PHONY: run-benchmark-matmult swift
tests/test-arg-parser: tests/test-arg-parser.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)

View File

@ -10,32 +10,14 @@
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
> [!IMPORTANT]
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
## Recent API changes
- [2024 Jun 26] The source code and CMake build scripts have been restructured https://github.com/ggerganov/llama.cpp/pull/8006
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
- [Changelog for `libllama` API](https://github.com/ggerganov/llama.cpp/issues/9289)
- [Changelog for `llama-server` REST API](https://github.com/ggerganov/llama.cpp/issues/9291)
## Hot topics
- **`convert.py` has been deprecated and moved to `examples/convert_legacy_llama.py`, please use `convert_hf_to_gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
- Multi-GPU pipeline parallelism support https://github.com/ggerganov/llama.cpp/pull/6017
- Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981
- Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962
- Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328
- Huggingface GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
----
@ -181,6 +163,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
- [AIKit](https://github.com/sozercan/aikit) (MIT)
- [LARS - The LLM & Advanced Referencing Solution](https://github.com/abgulati/LARS) (AGPL)
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*

View File

@ -13,6 +13,9 @@
# # with SYCL support
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with VULKAN support
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@ -40,7 +43,7 @@ if [ ! -z ${GG_BUILD_METAL} ]; then
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=1"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
@ -52,6 +55,10 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
fi
## helpers
# download a file if it does not exist or if it is outdated
@ -107,7 +114,7 @@ function gg_run_ctest_debug {
gg_check_build_requirements
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
@ -138,7 +145,7 @@ function gg_run_ctest_release {
gg_check_build_requirements
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
if [ -z ${GG_BUILD_LOW_PERF} ]; then
(time ctest --output-on-failure -L main ) 2>&1 | tee -a $OUT/${ci}-ctest.log
@ -266,7 +273,6 @@ function gg_sum_ctest_with_model_release {
}
# open_llama_7b_v2
# requires: GG_BUILD_CUDA
function gg_run_open_llama_7b_v2 {
cd ${SRC}
@ -290,8 +296,8 @@ function gg_run_open_llama_7b_v2 {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
@ -425,7 +431,7 @@ function gg_run_pythia_1_4b {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
@ -535,7 +541,6 @@ function gg_sum_pythia_1_4b {
}
# pythia_2_8b
# requires: GG_BUILD_CUDA
function gg_run_pythia_2_8b {
cd ${SRC}
@ -556,8 +561,8 @@ function gg_run_pythia_2_8b {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
@ -692,7 +697,7 @@ function gg_run_embd_bge_small {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
@ -761,7 +766,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ]; then
if [ -z ${GG_BUILD_CUDA} ] && [ -z ${GG_BUILD_VULKAN} ]; then
test $ret -eq 0 && gg_run pythia_1_4b
else
test $ret -eq 0 && gg_run pythia_2_8b

View File

@ -54,12 +54,12 @@ add_library(${TARGET} STATIC
base64.hpp
common.h
common.cpp
arg.h
arg.cpp
sampling.h
sampling.cpp
console.h
console.cpp
grammar-parser.h
grammar-parser.cpp
json.hpp
json-schema-to-grammar.cpp
train.h

1987
common/arg.cpp Normal file

File diff suppressed because it is too large Load Diff

77
common/arg.h Normal file
View File

@ -0,0 +1,77 @@
#pragma once
#include "common.h"
#include <set>
#include <string>
#include <vector>
//
// CLI argument parsing
//
struct llama_arg {
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
std::vector<const char *> args;
const char * value_hint = nullptr; // help text or example for arg value
const char * value_hint_2 = nullptr; // for second arg value
const char * env = nullptr;
std::string help;
bool is_sparam = false; // is current arg a sampling param?
void (*handler_void) (gpt_params & params) = nullptr;
void (*handler_string) (gpt_params & params, const std::string &) = nullptr;
void (*handler_str_str)(gpt_params & params, const std::string &, const std::string &) = nullptr;
void (*handler_int) (gpt_params & params, int) = nullptr;
llama_arg(
const std::initializer_list<const char *> & args,
const char * value_hint,
const std::string & help,
void (*handler)(gpt_params & params, const std::string &)
) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
llama_arg(
const std::initializer_list<const char *> & args,
const char * value_hint,
const std::string & help,
void (*handler)(gpt_params & params, int)
) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
llama_arg(
const std::initializer_list<const char *> & args,
const std::string & help,
void (*handler)(gpt_params & params)
) : args(args), help(help), handler_void(handler) {}
// support 2 values for arg
llama_arg(
const std::initializer_list<const char *> & args,
const char * value_hint,
const char * value_hint_2,
const std::string & help,
void (*handler)(gpt_params & params, const std::string &, const std::string &)
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
llama_arg & set_examples(std::initializer_list<enum llama_example> examples);
llama_arg & set_env(const char * env);
llama_arg & set_sparam();
bool in_example(enum llama_example ex);
bool get_value_from_env(std::string & output);
bool has_value_from_env();
std::string to_string();
};
struct gpt_params_context {
enum llama_example ex = LLAMA_EXAMPLE_COMMON;
gpt_params & params;
std::vector<llama_arg> options;
void(*print_usage)(int, char **) = nullptr;
gpt_params_context(gpt_params & params) : params(params) {}
};
// parse input arguments from CLI
// if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
bool gpt_params_parse(int argc, char ** argv, gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
// function to be used by test-arg-parser
gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);

File diff suppressed because it is too large Load Diff

View File

@ -4,18 +4,11 @@
#include "llama.h"
#include "sampling.h"
#define LOG_NO_FILE_LINE_FUNCTION
#include "log.h"
#include <cmath>
#include <string>
#include <vector>
#include <random>
#include <thread>
#include <unordered_map>
#include <tuple>
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
@ -54,26 +47,102 @@ struct llama_control_vector_load_info;
// CPU utils
//
struct cpu_params {
int n_threads = -1;
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
bool mask_valid = false; // Default: any CPU
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
bool strict_cpu = false; // Use strict CPU placement
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
};
int32_t cpu_get_num_physical_cores();
int32_t cpu_get_num_math();
//
// CLI argument parsing
// Common params
//
enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_INFILL,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
LLAMA_EXAMPLE_PASSKEY,
LLAMA_EXAMPLE_IMATRIX,
LLAMA_EXAMPLE_BENCH,
LLAMA_EXAMPLE_SERVER,
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
LLAMA_EXAMPLE_EXPORT_LORA,
LLAMA_EXAMPLE_LLAVA,
LLAMA_EXAMPLE_LOOKUP,
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_COUNT,
};
enum gpt_sampler_type {
GPT_SAMPLER_TYPE_NONE = 0,
GPT_SAMPLER_TYPE_TOP_K = 1,
GPT_SAMPLER_TYPE_TOP_P = 2,
GPT_SAMPLER_TYPE_MIN_P = 3,
GPT_SAMPLER_TYPE_TFS_Z = 4,
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
};
// dimensionality reduction methods, used by cvector-generator
enum dimre_method {
DIMRE_METHOD_PCA,
DIMRE_METHOD_MEAN,
};
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
// sampler parameters
struct gpt_sampler_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
int32_t n_threads = cpu_get_num_math();
int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1;
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
bool ignore_eos = false;
std::vector<enum gpt_sampler_type> samplers = {
GPT_SAMPLER_TYPE_TOP_K,
GPT_SAMPLER_TYPE_TFS_Z,
GPT_SAMPLER_TYPE_TYPICAL_P,
GPT_SAMPLER_TYPE_TOP_P,
GPT_SAMPLER_TYPE_MIN_P,
GPT_SAMPLER_TYPE_TEMPERATURE
};
std::string grammar; // optional BNF-like grammar to constrain sampling
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
// print the parameters into a string
std::string print() const;
};
struct gpt_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
@ -100,6 +169,11 @@ struct gpt_params {
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
struct cpu_params draft_cpuparams;
struct cpu_params draft_cpuparams_batch;
ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr;
@ -110,26 +184,25 @@ struct gpt_params {
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
// // sampling parameters
struct llama_sampling_params sparams;
struct gpt_sampler_params sparams;
std::string model = ""; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string model_url = ""; // model url to download
std::string hf_token = ""; // HF token
std::string hf_repo = ""; // HF repo
std::string hf_file = ""; // HF file
std::string prompt = "";
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::string logdir = ""; // directory in which to save YAML log files
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
std::string logits_file = ""; // file for saving *all* logits
std::string rpc_servers = ""; // comma separated list of RPC servers
std::string model = ""; // model path // NOLINT
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
std::string model_alias = "unknown"; // model alias // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string hf_token = ""; // HF token // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string prompt = ""; // NOLINT
std::string prompt_file = ""; // store the external prompt file name // NOLINT
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
std::string logdir = ""; // directory in which to save YAML log files // NOLINT
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
@ -175,13 +248,11 @@ struct gpt_params {
bool flash_attn = false; // flash attention
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
bool infill = false; // use infill mode
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
@ -191,7 +262,7 @@ struct gpt_params {
std::string cache_type_v = "f16"; // KV cache data type for the V
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector
std::string mmproj = ""; // path to multimodal projector // NOLINT
std::vector<std::string> image; // path to image file(s)
// embedding
@ -204,18 +275,18 @@ struct gpt_params {
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
std::string hostname = "127.0.0.1";
std::string public_path = "";
std::string chat_template = "";
std::string system_prompt = "";
std::string public_path = ""; // NOLINT
std::string chat_template = ""; // NOLINT
std::string system_prompt = ""; // NOLINT
bool enable_chat_template = true;
std::vector<std::string> api_keys;
std::string ssl_file_key = "";
std::string ssl_file_cert = "";
std::string ssl_file_key = ""; // NOLINT
std::string ssl_file_cert = ""; // NOLINT
bool endpoint_slots = true;
bool endpoint_metrics = false;
@ -265,18 +336,18 @@ struct gpt_params {
bool spm_infill = false; // suffix/prefix/middle pattern for infill
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
// batched-bench params
bool batched_bench_output_jsonl = false;
};
void gpt_params_parse_from_env(gpt_params & params);
void gpt_params_handle_model_default(gpt_params & params);
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_params_get_system_info(const gpt_params & params);
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
bool set_process_priority(enum ggml_sched_priority prio);
//
// String utils
//
@ -329,6 +400,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);

View File

@ -1,539 +0,0 @@
#include "grammar-parser.h"
#include <cstdint>
#include <cwchar>
#include <string>
#include <utility>
#include <stdexcept>
#include <exception>
namespace grammar_parser {
// NOTE: assumes valid utf8 (but checks for overrun)
// copied from llama.cpp
static std::pair<uint32_t, const char *> decode_utf8(const char * src) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t first_byte = static_cast<uint8_t>(*src);
uint8_t highbits = first_byte >> 4;
int len = lookup[highbits];
uint8_t mask = (1 << (8 - len)) - 1;
uint32_t value = first_byte & mask;
const char * end = src + len; // may overrun!
const char * pos = src + 1;
for ( ; pos < end && *pos; pos++) {
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
}
return std::make_pair(value, pos);
}
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
auto result = state.symbol_ids.emplace(std::string(src, len), next_id);
return result.first->second;
}
static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
return next_id;
}
static void add_rule(
parse_state & state,
uint32_t rule_id,
const std::vector<llama_grammar_element> & rule) {
if (state.rules.size() <= rule_id) {
state.rules.resize(rule_id + 1);
}
state.rules[rule_id] = rule;
}
static bool is_digit_char(char c) {
return '0' <= c && c <= '9';
}
static bool is_word_char(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || is_digit_char(c);
}
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
const char * pos = src;
const char * end = src + size;
uint32_t value = 0;
for ( ; pos < end && *pos; pos++) {
value <<= 4;
char c = *pos;
if ('a' <= c && c <= 'f') {
value += c - 'a' + 10;
} else if ('A' <= c && c <= 'F') {
value += c - 'A' + 10;
} else if ('0' <= c && c <= '9') {
value += c - '0';
} else {
break;
}
}
if (pos != end) {
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
}
return std::make_pair(value, pos);
}
static const char * parse_space(const char * src, bool newline_ok) {
const char * pos = src;
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
if (*pos == '#') {
while (*pos && *pos != '\r' && *pos != '\n') {
pos++;
}
} else {
pos++;
}
}
return pos;
}
static const char * parse_name(const char * src) {
const char * pos = src;
while (is_word_char(*pos)) {
pos++;
}
if (pos == src) {
throw std::runtime_error(std::string("expecting name at ") + src);
}
return pos;
}
static const char * parse_int(const char * src) {
const char * pos = src;
while (is_digit_char(*pos)) {
pos++;
}
if (pos == src) {
throw std::runtime_error(std::string("expecting integer at ") + src);
}
return pos;
}
static std::pair<uint32_t, const char *> parse_char(const char * src) {
if (*src == '\\') {
switch (src[1]) {
case 'x': return parse_hex(src + 2, 2);
case 'u': return parse_hex(src + 2, 4);
case 'U': return parse_hex(src + 2, 8);
case 't': return std::make_pair('\t', src + 2);
case 'r': return std::make_pair('\r', src + 2);
case 'n': return std::make_pair('\n', src + 2);
case '\\':
case '"':
case '[':
case ']':
return std::make_pair(src[1], src + 2);
default:
throw std::runtime_error(std::string("unknown escape at ") + src);
}
} else if (*src) {
return decode_utf8(src);
}
throw std::runtime_error("unexpected end of input");
}
const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested);
static const char * parse_sequence(
parse_state & state,
const char * src,
const std::string & rule_name,
std::vector<llama_grammar_element> & out_elements,
bool is_nested) {
size_t last_sym_start = out_elements.size();
const char * pos = src;
auto handle_repetitions = [&](int min_times, int max_times) {
if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
// the following rewrite rules:
// S{m,n} --> S S S (m times) S'(n-m)
// S'(x) ::= S S'(x-1) |
// (... n-m definitions of these S' rules ...)
// S'(1) ::= S |
// S{m,} --> S S S (m times) S'
// S' ::= S S' |
// S* --> S{0,}
// --> S' ::= S S' |
// S+ --> S{1,}
// --> S S'
// S' ::= S S' |
// S? --> S{0,1}
// --> S'
// S' ::= S |
std::vector<llama_grammar_element> previous_elements(out_elements.begin() + last_sym_start, out_elements.end());
if (min_times == 0) {
out_elements.resize(last_sym_start);
} else {
// Repeat the previous elements (min_times - 1) times
for (int i = 1; i < min_times; i++) {
out_elements.insert(out_elements.end(), previous_elements.begin(), previous_elements.end());
}
}
uint32_t last_rec_rule_id = 0;
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
std::vector<llama_grammar_element> rec_rule(previous_elements);
for (int i = 0; i < n_opt; i++) {
rec_rule.resize(previous_elements.size());
uint32_t rec_rule_id = generate_symbol_id(state, rule_name);
if (i > 0 || max_times < 0) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
}
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule(state, rec_rule_id, rec_rule);
last_rec_rule_id = rec_rule_id;
}
if (n_opt > 0) {
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id});
}
};
while (*pos) {
if (*pos == '"') { // literal string
pos++;
last_sym_start = out_elements.size();
while (*pos != '"') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '[') { // char range(s)
pos++;
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
if (*pos == '^') {
pos++;
start_type = LLAMA_GRETYPE_CHAR_NOT;
}
last_sym_start = out_elements.size();
while (*pos != ']') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
enum llama_gretype type = last_sym_start < out_elements.size()
? LLAMA_GRETYPE_CHAR_ALT
: start_type;
out_elements.push_back({type, char_pair.first});
if (pos[0] == '-' && pos[1] != ']') {
if (!pos[1]) {
throw std::runtime_error("unexpected end of input");
}
auto endchar_pair = parse_char(pos + 1);
pos = endchar_pair.second;
out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
}
}
pos = parse_space(pos + 1, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
pos = parse_space(name_end, is_nested);
last_sym_start = out_elements.size();
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
} else if (*pos == '(') { // grouping
// parse nested alternates into synthesized rule
pos = parse_space(pos + 1, true);
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
last_sym_start = out_elements.size();
// output reference to synthesized rule
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
if (*pos != ')') {
throw std::runtime_error(std::string("expecting ')' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '.') { // any char
last_sym_start = out_elements.size();
out_elements.push_back({LLAMA_GRETYPE_CHAR_ANY, 0});
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, -1);
} else if (*pos == '+') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(1, -1);
} else if (*pos == '?') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, 1);
} else if (*pos == '{') {
pos = parse_space(pos + 1, is_nested);
if (!is_digit_char(*pos)) {
throw std::runtime_error(std::string("expecting an int at ") + pos);
}
const char * int_end = parse_int(pos);
int min_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
int max_times = -1;
if (*pos == '}') {
max_times = min_times;
pos = parse_space(pos + 1, is_nested);
} else if (*pos == ',') {
pos = parse_space(pos + 1, is_nested);
if (is_digit_char(*pos)) {
const char * int_end = parse_int(pos);
max_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
}
if (*pos != '}') {
throw std::runtime_error(std::string("expecting '}' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else {
throw std::runtime_error(std::string("expecting ',' at ") + pos);
}
handle_repetitions(min_times, max_times);
} else {
break;
}
}
return pos;
}
const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested) {
std::vector<llama_grammar_element> rule;
const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
while (*pos == '|') {
rule.push_back({LLAMA_GRETYPE_ALT, 0});
pos = parse_space(pos + 1, true);
pos = parse_sequence(state, pos, rule_name, rule, is_nested);
}
rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule(state, rule_id, rule);
return pos;
}
static const char * parse_rule(parse_state & state, const char * src) {
const char * name_end = parse_name(src);
const char * pos = parse_space(name_end, false);
size_t name_len = name_end - src;
uint32_t rule_id = get_symbol_id(state, src, name_len);
const std::string name(src, name_len);
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
throw std::runtime_error(std::string("expecting ::= at ") + pos);
}
pos = parse_space(pos + 3, true);
pos = parse_alternates(state, pos, name, rule_id, false);
if (*pos == '\r') {
pos += pos[1] == '\n' ? 2 : 1;
} else if (*pos == '\n') {
pos++;
} else if (*pos) {
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
}
return parse_space(pos, true);
}
parse_state parse(const char * src) {
try {
parse_state state;
const char * pos = parse_space(src, true);
while (*pos) {
pos = parse_rule(state, pos);
}
// Validate the state to ensure that all rules are defined
for (const auto & rule : state.rules) {
if (rule.empty()) {
throw std::runtime_error("Undefined rule");
}
for (const auto & elem : rule) {
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
// Ensure that the rule at that location exists
if (elem.value >= state.rules.size() || state.rules[elem.value].empty()) {
// Get the name of the rule that is missing
for (const auto & kv : state.symbol_ids) {
if (kv.second == elem.value) {
throw std::runtime_error("Undefined rule identifier '" + kv.first + "'");
}
}
}
}
}
}
return state;
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
return parse_state();
}
}
static void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
} else {
// cop out of encoding UTF-8
fprintf(file, "<U+%04X>", c);
}
}
static bool is_char_element(llama_grammar_element elem) {
switch (elem.type) {
case LLAMA_GRETYPE_CHAR: return true;
case LLAMA_GRETYPE_CHAR_NOT: return true;
case LLAMA_GRETYPE_CHAR_ALT: return true;
case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true;
case LLAMA_GRETYPE_CHAR_ANY: return true;
default: return false;
}
}
static void print_rule_binary(FILE * file, const std::vector<llama_grammar_element> & rule) {
for (auto elem : rule) {
switch (elem.type) {
case LLAMA_GRETYPE_END: fprintf(file, "END"); break;
case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break;
case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break;
}
switch (elem.type) {
case LLAMA_GRETYPE_END:
case LLAMA_GRETYPE_ALT:
case LLAMA_GRETYPE_RULE_REF:
fprintf(file, "(%u) ", elem.value);
break;
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
case LLAMA_GRETYPE_CHAR_ALT:
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, "(\"");
print_grammar_char(file, elem.value);
fprintf(file, "\") ");
break;
}
}
fprintf(file, "\n");
}
static void print_rule(
FILE * file,
uint32_t rule_id,
const std::vector<llama_grammar_element> & rule,
const std::map<uint32_t, std::string> & symbol_id_names) {
if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) {
throw std::runtime_error(
"malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id));
}
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
llama_grammar_element elem = rule[i];
switch (elem.type) {
case LLAMA_GRETYPE_END:
throw std::runtime_error(
"unexpected end of rule: " + std::to_string(rule_id) + "," +
std::to_string(i));
case LLAMA_GRETYPE_ALT:
fprintf(file, "| ");
break;
case LLAMA_GRETYPE_RULE_REF:
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
break;
case LLAMA_GRETYPE_CHAR:
fprintf(file, "[");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_NOT:
fprintf(file, "[^");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
fprintf(file, "-");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_ALT:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"LLAMA_GRETYPE_CHAR_ALT without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, ".");
break;
}
if (is_char_element(elem)) {
switch (rule[i + 1].type) {
case LLAMA_GRETYPE_CHAR_ALT:
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
case LLAMA_GRETYPE_CHAR_ANY:
break;
default:
fprintf(file, "] ");
}
}
}
fprintf(file, "\n");
}
void print_grammar(FILE * file, const parse_state & state) {
try {
std::map<uint32_t, std::string> symbol_id_names;
for (const auto & kv : state.symbol_ids) {
symbol_id_names[kv.second] = kv.first;
}
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
// fprintf(file, "%zu: ", i);
// print_rule_binary(file, state.rules[i]);
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
// fprintf(file, "\n");
}
} catch (const std::exception & err) {
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
}
}
std::vector<const llama_grammar_element *> parse_state::c_rules() {
std::vector<const llama_grammar_element *> ret;
ret.reserve(rules.size());
for (const auto & rule : rules) {
ret.push_back(rule.data());
}
return ret;
}
}

View File

@ -1,29 +0,0 @@
// Implements a parser for an extended Backus-Naur form (BNF), producing the
// binary context-free grammar format specified by llama.h. Supports character
// ranges, grouping, and repetition operators. As an example, a grammar for
// arithmetic might look like:
//
// root ::= expr
// expr ::= term ([-+*/] term)*
// term ::= num | "(" space expr ")" space
// num ::= [0-9]+ space
// space ::= [ \t\n]*
#pragma once
#include "llama.h"
#include <vector>
#include <map>
#include <cstdint>
#include <string>
namespace grammar_parser {
struct parse_state {
std::map<std::string, uint32_t> symbol_ids;
std::vector<std::vector<llama_grammar_element>> rules;
std::vector<const llama_grammar_element *> c_rules();
};
parse_state parse(const char * src);
void print_grammar(FILE * file, const parse_state & state);
}

View File

@ -1,395 +1,119 @@
#define LLAMA_API_INTERNAL
#include "sampling.h"
#include <random>
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
struct llama_sampling_context * result = new llama_sampling_context();
#include "common.h"
result->params = params;
result->grammar = nullptr;
#include <cmath>
#include <unordered_map>
// if there is a grammar, parse it
if (!params.grammar.empty()) {
result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
template<typename T>
struct ring_buffer {
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
// will be empty (default) if there are parse errors
if (result->parsed_grammar.rules.empty()) {
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
delete result;
return nullptr;
T & front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
// Ensure that there is a "root" node.
if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
delete result;
return nullptr;
const T & front() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
struct llama_grammar * grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
if (grammar == nullptr) {
throw std::runtime_error("Failed to initialize llama_grammar");
T & back() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
result->grammar = grammar;
return data[pos];
}
result->prev.resize(params.n_prev);
const T & back() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
result->n_valid = 0;
void push_back(const T & value) {
if (sz == capacity) {
// advance the start when buffer is full
first = (first + 1) % capacity;
} else {
sz++;
}
data[pos] = value;
pos = (pos + 1) % capacity;
}
llama_sampling_set_rng_seed(result, params.seed);
T pop_front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
T value = data[first];
first = (first + 1) % capacity;
sz--;
return value;
}
const T & rat(size_t i) const {
if (i >= sz) {
throw std::runtime_error("ring buffer: index out of bounds");
}
return data[(first + sz - i - 1) % capacity];
}
std::vector<T> to_vector() const {
std::vector<T> result;
result.reserve(sz);
for (size_t i = 0; i < sz; i++) {
result.push_back(data[(first + i) % capacity]);
}
return result;
}
void llama_sampling_free(struct llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
void clear() {
// here only reset the status of the buffer
sz = 0;
first = 0;
pos = 0;
}
delete ctx;
bool empty() const {
return sz == 0;
}
void llama_sampling_reset(llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
ctx->grammar = NULL;
size_t size() const {
return sz;
}
if (!ctx->parsed_grammar.rules.empty()) {
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
struct llama_grammar * grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
if (grammar == nullptr) {
throw std::runtime_error("Failed to initialize llama_grammar");
}
ctx->grammar = grammar;
}
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
ctx->cur.clear();
ctx->n_valid = 0;
}
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
seed = std::random_device{}();
}
ctx->rng.seed(seed);
}
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
if (dst->grammar) {
llama_grammar_free(dst->grammar);
dst->grammar = nullptr;
}
if (src->grammar) {
dst->grammar = llama_grammar_copy(src->grammar);
}
dst->prev = src->prev;
}
llama_token llama_sampling_last(llama_sampling_context * ctx) {
return ctx->prev.back();
}
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
const int size = ctx_sampling->prev.size();
n = std::min(n, size);
std::string result;
for (int i = size - n; i < size; i++) {
result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
}
return result;
}
std::string llama_sampling_print(const llama_sampling_params & params) {
char result[1024];
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
params.mirostat, params.mirostat_eta, params.mirostat_tau);
return std::string(result);
}
std::string llama_sampling_order_print(const llama_sampling_params & params) {
std::string result = "CFG -> Penalties ";
if (params.mirostat == 0) {
for (auto sampler_type : params.samplers_sequence) {
const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
if (!sampler_type_name.empty()) {
result += "-> " + sampler_type_name + " ";
}
}
} else {
result += "-> mirostat ";
}
return result;
}
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
switch (sampler_type) {
case llama_sampler_type::TOP_K: return "top_k";
case llama_sampler_type::TFS_Z: return "tfs_z";
case llama_sampler_type::TYPICAL_P: return "typical_p";
case llama_sampler_type::TOP_P: return "top_p";
case llama_sampler_type::MIN_P: return "min_p";
case llama_sampler_type::TEMPERATURE: return "temperature";
default : return "";
}
}
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
{"top_k", llama_sampler_type::TOP_K},
{"top_p", llama_sampler_type::TOP_P},
{"typical_p", llama_sampler_type::TYPICAL_P},
{"min_p", llama_sampler_type::MIN_P},
{"tfs_z", llama_sampler_type::TFS_Z},
{"temperature", llama_sampler_type::TEMPERATURE}
size_t capacity = 0;
size_t sz = 0;
size_t first = 0;
size_t pos = 0;
std::vector<T> data;
};
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
{"top-k", llama_sampler_type::TOP_K},
{"top-p", llama_sampler_type::TOP_P},
{"nucleus", llama_sampler_type::TOP_P},
{"typical-p", llama_sampler_type::TYPICAL_P},
{"typical", llama_sampler_type::TYPICAL_P},
{"min-p", llama_sampler_type::MIN_P},
{"tfs-z", llama_sampler_type::TFS_Z},
{"tfs", llama_sampler_type::TFS_Z},
{"temp", llama_sampler_type::TEMPERATURE}
};
struct gpt_sampler {
gpt_sampler_params params;
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names.size());
for (const auto & name : names)
{
auto sampler_item = sampler_canonical_name_map.find(name);
if (sampler_item != sampler_canonical_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
else
{
if (allow_alt_names)
{
sampler_item = sampler_alt_name_map.find(name);
if (sampler_item != sampler_alt_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
}
}
}
return sampler_types;
}
struct llama_sampler * grmr;
struct llama_sampler * chain;
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
std::unordered_map<char, llama_sampler_type> sampler_name_map {
{'k', llama_sampler_type::TOP_K},
{'p', llama_sampler_type::TOP_P},
{'y', llama_sampler_type::TYPICAL_P},
{'m', llama_sampler_type::MIN_P},
{'f', llama_sampler_type::TFS_Z},
{'t', llama_sampler_type::TEMPERATURE}
};
ring_buffer<llama_token> prev;
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names_string.size());
for (const auto & c : names_string) {
const auto sampler_item = sampler_name_map.find(c);
if (sampler_item != sampler_name_map.end()) {
sampler_types.push_back(sampler_item->second);
}
}
return sampler_types;
}
std::vector<llama_token_data> cur;
// no reasons to expose this function in header
static void sampler_queue(
struct llama_context * ctx_main,
const llama_sampling_params & params,
llama_token_data_array & cur_p,
size_t min_keep) {
const float temp = params.temp;
const float dynatemp_range = params.dynatemp_range;
const float dynatemp_exponent = params.dynatemp_exponent;
const int32_t top_k = params.top_k;
const float top_p = params.top_p;
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
llama_token_data_array cur_p;
for (auto sampler_type : samplers_sequence) {
switch (sampler_type) {
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
case llama_sampler_type::TEMPERATURE:
if (dynatemp_range > 0) {
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
} else {
llama_sample_temp(ctx_main, &cur_p, temp);
}
break;
default : break;
}
}
}
void set_logits(struct llama_context * ctx, int idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
static llama_token llama_sampling_sample_impl(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool is_resampling) {
const llama_sampling_params & params = ctx_sampling->params;
const float temp = params.temp;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
std::vector<float> original_logits;
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
if (ctx_sampling->grammar != NULL && !is_resampling) {
GGML_ASSERT(!original_logits.empty());
}
llama_token id = 0;
if (temp < 0.0) {
// greedy sampling, with probs
llama_sample_softmax(ctx_main, &cur_p);
id = cur_p.data[0].id;
} else if (temp == 0.0) {
// greedy sampling, no probs
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
const int mirostat_m = 100;
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
} else if (mirostat == 2) {
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// temperature sampling
size_t min_keep = std::max(1, params.min_keep);
sampler_queue(ctx_main, params, cur_p, min_keep);
id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
//{
// const int n_top = 10;
// LOG("top %d candidates:\n", n_top);
// for (int i = 0; i < n_top; i++) {
// const llama_token id = cur_p.data[i].id;
// (void)id; // To avoid a warning that id is unused when logging is disabled.
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
// }
//}
//LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
}
}
if (ctx_sampling->grammar != NULL && !is_resampling) {
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
// Create an array with a single token data element for the sampled id
llama_token_data single_token_data = {id, logits[id], 0.0f};
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
// Apply grammar constraints to the single token
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &single_token_data_array);
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
// If the token is not valid according to the grammar, perform resampling
if (!is_valid) {
LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
// Restore logits from the copy
std::copy(original_logits.begin(), original_logits.end(), logits);
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
}
}
ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
return id;
}
static llama_token_data_array llama_sampling_prepare_impl(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool apply_grammar,
std::vector<float> * original_logits) {
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present;
const bool penalize_nl = params.penalize_nl;
auto & prev = ctx_sampling->prev;
auto & cur = ctx_sampling->cur;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
if (ctx_sampling->grammar != NULL && !apply_grammar) {
GGML_ASSERT(original_logits != NULL);
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
*original_logits = {logits, logits + n_vocab};
}
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
if (ctx_cfg) {
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
}
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
cur.resize(n_vocab);
@ -397,64 +121,330 @@ static llama_token_data_array llama_sampling_prepare_impl(
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
}
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
cur_p = { cur.data(), cur.size(), -1, false };
}
};
// apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
if (penalty_tokens_used_size) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
std::string gpt_sampler_params::print() const {
char result[1024];
llama_sample_repetition_penalties(ctx_main, &cur_p,
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
top_k, tfs_z, top_p, min_p, typ_p, temp,
mirostat, mirostat_eta, mirostat_tau);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
cur_p.data[idx].logit = nl_logit;
return std::string(result);
}
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
lparams.no_perf = false; // TODO: control via params
auto * result = new gpt_sampler {
/* .params = */ params,
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
/* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
llama_sampler_chain_add(result->chain,
llama_sampler_init_logit_bias(
llama_n_vocab(model),
params.logit_bias.size(),
params.logit_bias.data()));
llama_sampler_chain_add(result->chain,
llama_sampler_init_penalties(
llama_n_vocab (model),
llama_token_eos(model),
llama_token_nl (model),
params.penalty_last_n,
params.penalty_repeat,
params.penalty_freq,
params.penalty_present,
params.penalize_nl,
params.ignore_eos));
if (params.temp > 0.0f) {
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case GPT_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case GPT_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case GPT_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case GPT_SAMPLER_TYPE_TFS_Z:
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
break;
case GPT_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case GPT_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
} else if (params.mirostat == 2) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
} else {
GGML_ASSERT(false && "unknown mirostat version");
}
} else {
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
}
return result;
}
void gpt_sampler_free(struct gpt_sampler * gsmpl) {
if (gsmpl) {
llama_sampler_free(gsmpl->grmr);
llama_sampler_free(gsmpl->chain);
delete gsmpl;
}
}
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) {
if (accept_grammar) {
llama_sampler_accept(gsmpl->grmr, token);
}
llama_sampler_accept(gsmpl->chain, token);
gsmpl->prev.push_back(token);
}
void gpt_sampler_reset(struct gpt_sampler * gsmpl) {
llama_sampler_reset(gsmpl->grmr);
llama_sampler_reset(gsmpl->chain);
}
struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
return new gpt_sampler {
/* .params = */ gsmpl->params,
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
};
}
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) {
// TODO: measure grammar performance
if (gsmpl) {
llama_perf_print(gsmpl->chain, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
}
if (ctx) {
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
}
}
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
gsmpl->set_logits(ctx, idx);
auto & grmr = gsmpl->grmr;
auto & chain = gsmpl->chain;
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
if (grammar_first) {
llama_sampler_apply(grmr, &cur_p);
}
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
const llama_token id = cur_p.data[cur_p.selected].id;
if (grammar_first) {
return id;
}
// check if it the sampled token fits the grammar
{
llama_token_data single_token_data = { id, 1.0f, 0.0f };
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
llama_sampler_apply(grmr, &single_token_data_array);
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
if (is_valid) {
return id;
}
}
// resampling:
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
gsmpl->set_logits(ctx, idx);
llama_sampler_apply(grmr, &cur_p);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
return cur_p.data[cur_p.selected].id;
}
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
return llama_sampler_get_seed(gsmpl->chain);
}
// helpers
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
return &gsmpl->cur_p;
}
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
return gsmpl->prev.rat(0);
}
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
std::string result = "\tlogits ";
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
result += std::string("-> ") + llama_sampler_name(smpl) + " ";
}
return result;
}
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) {
n = std::min(n, (int) gsmpl->prev.size());
if (n <= 0) {
return "";
}
std::string result;
result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
for (int i = n - 1; i >= 0; i--) {
const llama_token id = gsmpl->prev.rat(i);
GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
result += llama_token_to_piece(ctx_main, id);
}
return result;
}
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) {
switch (cnstr) {
case GPT_SAMPLER_TYPE_TOP_K: return 'k';
case GPT_SAMPLER_TYPE_TFS_Z: return 'f';
case GPT_SAMPLER_TYPE_TYPICAL_P: return 'y';
case GPT_SAMPLER_TYPE_TOP_P: return 'p';
case GPT_SAMPLER_TYPE_MIN_P: return 'm';
case GPT_SAMPLER_TYPE_TEMPERATURE: return 't';
default : return '?';
}
}
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) {
switch (cnstr) {
case GPT_SAMPLER_TYPE_TOP_K: return "top_k";
case GPT_SAMPLER_TYPE_TFS_Z: return "tfs_z";
case GPT_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
case GPT_SAMPLER_TYPE_TOP_P: return "top_p";
case GPT_SAMPLER_TYPE_MIN_P: return "min_p";
case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature";
default : return "";
}
}
std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, gpt_sampler_type> sampler_canonical_name_map {
{ "top_k", GPT_SAMPLER_TYPE_TOP_K },
{ "top_p", GPT_SAMPLER_TYPE_TOP_P },
{ "typ_p", GPT_SAMPLER_TYPE_TYPICAL_P },
{ "min_p", GPT_SAMPLER_TYPE_MIN_P },
{ "tfs_z", GPT_SAMPLER_TYPE_TFS_Z },
{ "temperature", GPT_SAMPLER_TYPE_TEMPERATURE },
};
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, gpt_sampler_type> sampler_alt_name_map {
{ "top-k", GPT_SAMPLER_TYPE_TOP_K },
{ "top-p", GPT_SAMPLER_TYPE_TOP_P },
{ "nucleus", GPT_SAMPLER_TYPE_TOP_P },
{ "typical-p", GPT_SAMPLER_TYPE_TYPICAL_P },
{ "typical", GPT_SAMPLER_TYPE_TYPICAL_P },
{ "typ-p", GPT_SAMPLER_TYPE_TYPICAL_P },
{ "typ", GPT_SAMPLER_TYPE_TYPICAL_P },
{ "min-p", GPT_SAMPLER_TYPE_MIN_P },
{ "tfs-z", GPT_SAMPLER_TYPE_TFS_Z },
{ "tfs", GPT_SAMPLER_TYPE_TFS_Z },
{ "temp", GPT_SAMPLER_TYPE_TEMPERATURE },
};
std::vector<gpt_sampler_type> samplers;
samplers.reserve(names.size());
for (const auto & name : names) {
auto sampler = sampler_canonical_name_map.find(name);
if (sampler != sampler_canonical_name_map.end()) {
samplers.push_back(sampler->second);
} else {
if (allow_alt_names) {
sampler = sampler_alt_name_map.find(name);
if (sampler != sampler_alt_name_map.end()) {
samplers.push_back(sampler->second);
}
}
}
}
// apply grammar checks before sampling logic
if (apply_grammar && ctx_sampling->grammar != NULL) {
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p);
return samplers;
}
return cur_p;
std::vector<gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars) {
std::unordered_map<char, gpt_sampler_type> sampler_name_map = {
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K), GPT_SAMPLER_TYPE_TOP_K },
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z), GPT_SAMPLER_TYPE_TFS_Z },
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P), GPT_SAMPLER_TYPE_TYPICAL_P },
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P), GPT_SAMPLER_TYPE_TOP_P },
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P), GPT_SAMPLER_TYPE_MIN_P },
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE }
};
std::vector<gpt_sampler_type> samplers;
samplers.reserve(chars.size());
for (const auto & c : chars) {
const auto sampler = sampler_name_map.find(c);
if (sampler != sampler_name_map.end()) {
samplers.push_back(sampler->second);
}
}
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
// Call the implementation function with is_resampling set to false by default
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
}
llama_token_data_array llama_sampling_prepare(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool apply_grammar,
std::vector<float> * original_logits) {
return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
}
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id,
bool apply_grammar) {
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
ctx_sampling->prev.push_back(id);
if (ctx_sampling->grammar != NULL && apply_grammar) {
llama_grammar_accept_token(ctx_sampling->grammar, ctx_main, id);
}
return samplers;
}

View File

@ -2,159 +2,82 @@
#include "llama.h"
#include "grammar-parser.h"
#include <random>
#include <string>
#include <unordered_map>
#include <vector>
// sampler types
enum class llama_sampler_type : char {
TOP_K = 'k',
TOP_P = 'p',
MIN_P = 'm',
TFS_Z = 'f',
TYPICAL_P = 'y',
TEMPERATURE = 't'
};
// sampling parameters
typedef struct llama_sampling_params {
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
std::vector<llama_sampler_type> samplers_sequence = {
llama_sampler_type::TOP_K,
llama_sampler_type::TFS_Z,
llama_sampler_type::TYPICAL_P,
llama_sampler_type::TOP_P,
llama_sampler_type::MIN_P,
llama_sampler_type::TEMPERATURE
};
std::string grammar; // optional BNF-like grammar to constrain sampling
// Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806
std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // how strong is guidance
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
std::vector<llama_token> penalty_prompt_tokens;
bool use_penalty_prompt_tokens = false;
} llama_sampling_params;
// general sampler context
// TODO: move to llama.h
struct llama_sampling_context {
// parameters that will be used for sampling
llama_sampling_params params;
// mirostat sampler state
float mirostat_mu;
llama_grammar * grammar;
// internal
grammar_parser::parse_state parsed_grammar;
// TODO: replace with ring-buffer
std::vector<llama_token> prev;
std::vector<llama_token_data> cur;
size_t n_valid; // Number of correct top tokens with correct probabilities.
std::mt19937 rng;
};
#include "common.h"
// Create a new sampling context instance.
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
#include <string>
#include <vector>
void llama_sampling_free(struct llama_sampling_context * ctx);
// Reset the sampler context
// - clear prev tokens
// - reset grammar
void llama_sampling_reset(llama_sampling_context * ctx);
// Set the sampler seed
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed);
// Copy the sampler context
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
// Get the last sampled token
llama_token llama_sampling_last(llama_sampling_context * ctx);
// Get a string representation of the last sampled tokens
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n);
// Print sampling parameters into a string
std::string llama_sampling_print(const llama_sampling_params & params);
// Print sampling order into a string
std::string llama_sampling_order_print(const llama_sampling_params & params);
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type);
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string);
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
// Note: When using multiple sequences, it is the caller's responsibility to call
// llama_sampling_reset when a sequence ends
// gpt_sampler extends llama_sampler with additional functionality:
//
// required:
// - ctx_main: context to use for sampling
// - ctx_sampling: sampling-specific context
// - grammar support
// - custom sampler logic based on the parameters
// - history of the last accepted tokens
// - performance metrics
//
// optional:
// - ctx_cfg: context to use for classifier-free guidance
// - idx: sample from llama_get_logits_ith(ctx, idx)
// This goal is to have a common implementation of the sampling logic shared across the examples.
// For example, depending on the temperature, the sampling chain can be very simple (greedy) or more
// complex (top-k, top-p, etc).
//
// returns:
// - token: sampled token
// - candidates: vector of candidate tokens
// Another example is related to the grammar. In general, the grammar constraints applied on the full
// vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
// grammar constraints are applied to the full vocabulary and the token is resampled.
//
// The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
// be moved into the core llama library.
//
// For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
// This can be used to access the probabilities of the rest of the non-sampled tokens.
//
// TODO: measure grammar performance
//
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = -1);
// Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters.
llama_token_data_array llama_sampling_prepare(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = 0,
bool apply_grammar = true,
std::vector<float> * original_logits = nullptr);
struct gpt_sampler;
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id,
bool apply_grammar);
// llama_sampler API overloads
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
void gpt_sampler_free(struct gpt_sampler * gsmpl);
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
void gpt_sampler_reset (struct gpt_sampler * gsmpl);
struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
// arguments can be nullptr to skip printing
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
// extended sampling implementation:
//
// - set logits
// - apply the configured sampler chain
// - check if the token fits the grammar (if any)
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
//
// if grammar_first is true, the grammar is applied before the samplers (slower)
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
//
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl);
// helpers
// access the internal list of current candidate tokens
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
// get the last accepted token
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
// print the sampler chain into a string
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
// get a string representation of the last accepted tokens
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);

File diff suppressed because it is too large Load Diff

View File

@ -3,6 +3,7 @@
from __future__ import annotations
import ast
import logging
import argparse
import contextlib
@ -298,12 +299,31 @@ class Model:
gguf.MODEL_TENSOR.POS_EMBD,
gguf.MODEL_TENSOR.TOKEN_TYPES,
gguf.MODEL_TENSOR.SSM_CONV1D,
gguf.MODEL_TENSOR.TIME_MIX_FIRST,
gguf.MODEL_TENSOR.TIME_MIX_W1,
gguf.MODEL_TENSOR.TIME_MIX_W2,
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
)
)
or not name.endswith(".weight")
or not new_name.endswith(".weight")
):
data_qtype = gguf.GGMLQuantizationType.F32
if data_qtype is False and any(
self.match_model_tensor_name(new_name, key, bid)
for key in (
gguf.MODEL_TENSOR.TOKEN_EMBD,
gguf.MODEL_TENSOR.OUTPUT,
)
):
if self.ftype in (
gguf.LlamaFileType.MOSTLY_TQ1_0,
gguf.LlamaFileType.MOSTLY_TQ2_0,
):
# TODO: use Q4_K and Q6_K
data_qtype = gguf.GGMLQuantizationType.F16
# No override (data_qtype is False), or wants to be quantized (data_qtype is True)
if isinstance(data_qtype, bool):
if self.ftype == gguf.LlamaFileType.ALL_F32:
@ -314,6 +334,10 @@ class Model:
data_qtype = gguf.GGMLQuantizationType.BF16
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
data_qtype = gguf.GGMLQuantizationType.Q8_0
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
data_qtype = gguf.GGMLQuantizationType.TQ1_0
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
data_qtype = gguf.GGMLQuantizationType.TQ2_0
else:
raise ValueError(f"Unknown file type: {self.ftype.name}")
@ -1572,7 +1596,7 @@ class LlamaModel(Model):
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
@ -1619,15 +1643,16 @@ class BitnetModel(Model):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(1.0)
def weight_quant(self, weight):
def weight_quant(self, weight: Tensor) -> Tensor:
dtype = weight.dtype
weight = weight.float()
s = 1 / weight.abs().mean().clamp(min=1e-5)
weight = (weight * s).round().clamp(-1, 1) / s
scale = weight.abs().max().unsqueeze(0)
weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
weight = torch.sign(weight).type(dtype)
return weight.type(dtype), scale.type(torch.float32)
scale = weight.abs().mean().clamp(min=1e-5)
iscale = 1 / scale
# TODO: multiply by the scale directly instead of inverting it twice
# (this is also unnecessarily doubly inverted upstream)
# ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
result = (weight * iscale).round().clamp(-1, 1) / iscale
return result.type(dtype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
new_name = self.map_tensor_name(name)
@ -1642,10 +1667,8 @@ class BitnetModel(Model):
gguf.MODEL_TENSOR.FFN_GATE,
]):
# transform weight into 1/0/-1 (in fp32)
weight_torch, scale_torch = self.weight_quant(data_torch)
yield (new_name, weight_torch)
yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
else:
data_torch = self.weight_quant(data_torch)
yield (new_name, data_torch)
@ -2716,6 +2739,84 @@ class StarCoder2Model(Model):
model_arch = gguf.MODEL_ARCH.STARCODER2
@Model.register("Rwkv6ForCausalLM")
class Rwkv6Model(Model):
model_arch = gguf.MODEL_ARCH.RWKV6
def set_vocab(self):
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
vocab_size = self.hparams.get("vocab_size", 65536)
tokens: list[bytes] = ['<s>'.encode("utf-8")]
toktypes: list[int] = [gguf.TokenType.CONTROL]
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
parts = line.split(' ')
assert len(parts) >= 3
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
token = token.encode("utf-8") if isinstance(token, str) else token
assert isinstance(token, bytes)
assert len(token) == token_len
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
tokens.append(token_text.encode("utf-8"))
toktypes.append(gguf.TokenType.NORMAL)
remainder = vocab_size - len(tokens)
assert remainder >= 0
for i in range(len(tokens), vocab_size):
tokens.append(f"[PAD{i}]".encode("utf-8"))
toktypes.append(gguf.TokenType.UNUSED)
self.gguf_writer.add_tokenizer_model("rwkv")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
head_size = self.hparams["head_size"]
hidden_size = self.hparams["hidden_size"]
layer_norm_eps = self.hparams["layer_norm_epsilon"]
rescale_every_n_layers = self.hparams["rescale_every"]
intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
time_mix_extra_dim = 64 if hidden_size == 4096 else 32
time_decay_extra_dim = 128 if hidden_size == 4096 else 64
# RWKV isn't context limited
self.gguf_writer.add_context_length(1048576)
self.gguf_writer.add_embedding_length(hidden_size)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
self.gguf_writer.add_wkv_head_size(head_size)
self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
self.gguf_writer.add_feed_forward_length(intermediate_size)
self.gguf_writer.add_file_type(self.ftype)
# required by llama.cpp, unused
self.gguf_writer.add_head_count(0)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
new_name = self.map_tensor_name(name)
if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
new_name += ".weight"
if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
data_torch = data_torch.transpose(0, 1)
if new_name.endswith("time_mix_w2.weight"):
data_torch = data_torch.permute(0, 2, 1)
rescale_every_n_layers = self.hparams["rescale_every"]
if rescale_every_n_layers > 0:
if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
yield (new_name, data_torch)
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
class MambaModel(Model):
model_arch = gguf.MODEL_ARCH.MAMBA
@ -3820,7 +3921,7 @@ class ExaoneModel(Model):
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
@ -3929,8 +4030,8 @@ def parse_args() -> argparse.Namespace:
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
)
parser.add_argument(
"--bigendian", action="store_true",
@ -4017,6 +4118,8 @@ def main() -> None:
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
"tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
"tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
"auto": gguf.LlamaFileType.GUESSED,
}

View File

@ -336,12 +336,12 @@ Choose one of following methods to run.
- Use device 0:
```sh
./examples/sycl/run_llama2.sh 0
./examples/sycl/run-llama2.sh 0
```
- Use multiple devices:
```sh
./examples/sycl/run_llama2.sh
./examples/sycl/run-llama2.sh
```
2. Command line

View File

@ -380,3 +380,9 @@ For detailed info, such as model/device supports, CANN install, please refer to
### Android
To read documentation for how to build on Android, [click here](./android.md)
### Arm CPU optimized mulmat kernels
Llama.cpp includes a set of optimized mulmat kernels for the Arm architecture, leveraging Arm® Neon™, int8mm and SVE instructions. These kernels are enabled at build time through the appropriate compiler cpu-type flags, such as `-DCMAKE_C_FLAGS=-march=armv8.2a+i8mm+sve`. Note that these optimized kernels require the model to be quantized into one of the formats: `Q4_0_4_4` (Arm Neon), `Q4_0_4_8` (int8mm) or `Q4_0_8_8` (SVE). The SVE mulmat kernel specifically requires a vector width of 256 bits. When running on devices with a different vector width, it is recommended to use the `Q4_0_4_8` (int8mm) or `Q4_0_4_4` (Arm Neon) formats for better performance. Refer to [examples/quantize/README.md](../examples/quantize/README.md) for more information on the quantization formats.
To support `Q4_0_4_4`, you must build with `GGML_NO_LLAMAFILE=1` (`make`) or `-DGGML_LLAMAFILE=OFF` (`cmake`).

View File

@ -20,7 +20,7 @@ Additionally, there the following images, similar to the above:
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
## Usage
@ -66,8 +66,8 @@ You may want to pass in some different `ARGS`, depending on the CUDA environment
The defaults are:
- `CUDA_VERSION` set to `11.7.1`
- `CUDA_DOCKER_ARCH` set to `all`
- `CUDA_VERSION` set to `12.6.0`
- `CUDA_DOCKER_ARCH` set to the cmake build default, which includes all the supported architectures
The resulting images, are essentially the same as the non-CUDA images:

View File

@ -18,7 +18,7 @@ constexpr float rms_norm_eps = 5e-6f;
#endif
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
if (plan.work_size > 0) {
buf.resize(plan.work_size);

View File

@ -49,3 +49,12 @@ There are 2 modes of operation:
| 128 | 256 | 8 | 3072 | 0.751 | 1363.92 | 15.110 | 135.54 | 15.861 | 193.69 |
| 128 | 256 | 16 | 6144 | 1.569 | 1304.93 | 18.073 | 226.64 | 19.642 | 312.80 |
| 128 | 256 | 32 | 12288 | 3.409 | 1201.35 | 19.223 | 426.15 | 22.633 | 542.93 |
### JSONL output
Pass `--output-format jsonl` to output JSONL instead of Markdown, á la
```json lines
{"n_kv_max": 2048, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "is_pp_shared": 0, "n_gpu_layers": 99, "n_threads": 8, "n_threads_batch": 8, "pp": 128, "tg": 128, "pl": 1, "n_kv": 256, "t_pp": 0.233810, "speed_pp": 547.453064, "t_tg": 3.503684, "speed_tg": 36.532974, "t": 3.737494, "speed": 68.495094}
{"n_kv_max": 2048, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "is_pp_shared": 0, "n_gpu_layers": 99, "n_threads": 8, "n_threads_batch": 8, "pp": 128, "tg": 128, "pl": 2, "n_kv": 512, "t_pp": 0.422602, "speed_pp": 605.770935, "t_tg": 11.106112, "speed_tg": 23.050371, "t": 11.528713, "speed": 44.410854}
```

View File

@ -1,3 +1,4 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
@ -28,9 +29,7 @@ static std::vector<int> parse_list(char * p) {
return ret;
}
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void print_usage(int, char ** argv) {
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
LOG_TEE("\n");
@ -39,8 +38,7 @@ static void print_usage(int argc, char ** argv, const gpt_params & params) {
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) {
return 1;
}
@ -122,12 +120,13 @@ int main(int argc, char ** argv) {
}
}
if (!params.batched_bench_output_jsonl) {
LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
}
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
@ -195,12 +194,22 @@ int main(int argc, char ** argv) {
const float speed_tg = pl*tg / t_tg;
const float speed = n_kv / t;
if(params.batched_bench_output_jsonl) {
LOG_TEE(
"{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"is_pp_shared\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, "
"\"pp\": %d, \"tg\": %d, \"pl\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f, \"t\": %f, \"speed\": %f}\n",
n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch,
pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed
);
} else {
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
}
}
}
}
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
llama_batch_free(batch);

View File

@ -27,7 +27,6 @@ guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), mo
print("Failed to load model")
exit(1)
}
defer {
llama_free_model(model)
}
@ -37,7 +36,6 @@ var tokens = tokenize(text: prompt, add_bos: true)
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
var context_params = llama_context_default_params()
context_params.seed = 1234
context_params.n_ctx = n_kv_req
context_params.n_batch = UInt32(max(n_len, n_parallel))
context_params.n_threads = 8
@ -48,11 +46,26 @@ guard context != nil else {
print("Failed to initialize context")
exit(1)
}
defer {
llama_free(context)
}
var sparams = llama_sampler_chain_default_params()
let smpl = llama_sampler_chain_init(sparams)
guard smpl != nil else {
print("Failed to initialize sampling")
exit(1)
}
defer {
llama_sampler_free(smpl)
}
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(40));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.4));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (1234));
let n_ctx = llama_n_ctx(context)
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
@ -125,32 +138,7 @@ while n_cur <= n_len {
continue
}
var n_vocab = llama_n_vocab(model)
var logits = llama_get_logits_ith(context, i_batch[i])
var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))
for token_id in 0 ..< n_vocab {
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
}
var candidates_p: llama_token_data_array = .init(
data: &candidates,
size: candidates.count,
sorted: false
)
let top_k: Int32 = 40
let top_p: Float = 0.9
let temp: Float = 0.4
llama_sample_top_k(context, &candidates_p, top_k, 1)
llama_sample_top_p(context, &candidates_p, top_p, 1)
llama_sample_temp(context, &candidates_p, temp)
let new_token_id = llama_sample_token(context, &candidates_p)
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
let new_token_id = llama_sampler_sample(smpl, context, i_batch[i])
// is it an end of stream? -> mark the stream as finished
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
@ -210,9 +198,10 @@ if n_parallel > 1 {
let t_main_end = ggml_time_us()
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n\n")
llama_print_timings(context)
llama_perf_print(UnsafeRawPointer(context), LLAMA_PERF_TYPE_CONTEXT)
llama_perf_print(UnsafeRawPointer(smpl), LLAMA_PERF_TYPE_SAMPLER_CHAIN)
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let utf8Count = text.utf8.count

View File

@ -1,15 +1,13 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void print_usage(int, char ** argv) {
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
LOG_TEE("\n");
@ -21,8 +19,7 @@ int main(int argc, char ** argv) {
params.prompt = "Hello my name is";
params.n_predict = 32;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
return 1;
}
@ -65,6 +62,15 @@ int main(int argc, char ** argv) {
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
auto sparams = llama_sampler_chain_default_params();
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sparams.top_k));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sparams.top_p, params.sparams.min_keep));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sparams.temp));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed));
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
@ -164,29 +170,7 @@ int main(int argc, char ** argv) {
continue;
}
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
const int top_k = 40;
const float top_p = 0.9f;
const float temp = 0.4f;
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temp (ctx, &candidates_p, temp);
const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]);
// is it an end of generation? -> mark the stream as finished
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
@ -244,12 +228,15 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);

View File

@ -21,7 +21,7 @@
#endif
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
@ -54,7 +54,7 @@ static void tensor_dump(const ggml_tensor * tensor, const char * name) {
#define TENSOR_DUMP(tensor) tensor_dump(tensor, #tensor)
struct benchmark_params_struct {
int32_t n_threads = 1;
int n_threads = 1;
int32_t n_iterations = 10;
};

View File

@ -1,3 +1,4 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
#include "ggml.h"
@ -35,9 +36,7 @@ static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
return ret;
}
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void print_usage(int, char ** argv) {
printf("\nexample usage:\n");
printf("\n CPU only: %s -m ./llama-3.Q4_K_M.gguf\n", argv[0]);
printf("\n with GPU: %s -m ./llama-3.Q4_K_M.gguf -ngl 99\n", argv[0]);
@ -390,8 +389,7 @@ static int prepare_entries(gpt_params & params, train_context & ctx_train) {
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
return 1;
}
@ -486,7 +484,7 @@ int main(int argc, char ** argv) {
if (use_pca) {
// run PCA
PCA::pca_params pca_params;
pca_params.n_threads = params.n_threads;
pca_params.n_threads = params.cpuparams.n_threads;
pca_params.n_batch = params.n_pca_batch;
pca_params.n_iterations = params.n_pca_iterations;
PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);

View File

@ -12,12 +12,9 @@
#include <cstdio>
#include <ctime>
#include <random>
#include <string>
#include <tuple>
#include <vector>
#include <algorithm>
#include <iostream>
#include <fstream>
#define DEBUG_POS 5

View File

@ -1,3 +1,4 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
@ -79,8 +80,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
return 1;
}
@ -90,14 +90,6 @@ int main(int argc, char ** argv) {
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
llama_backend_init();
llama_numa_init(params.numa);
@ -313,8 +305,10 @@ int main(int argc, char ** argv) {
if (notArray) fprintf(stdout, "\n}\n");
}
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
// clean up
llama_print_timings(ctx);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);

View File

@ -1,3 +1,4 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
#include "ggml.h"
@ -144,15 +145,12 @@ int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
return 1;
}
print_build_info();
std::mt19937 rng(params.seed);
llama_backend_init();
llama_numa_init(params.numa);
@ -183,7 +181,8 @@ int main(int argc, char ** argv) {
return 1;
}
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
llama_free(ctx);
llama_free_model(model);

View File

@ -1,3 +1,4 @@
#include "arg.h"
#include "common.h"
#include "ggml.h"
#include "ggml-alloc.h"
@ -391,9 +392,7 @@ struct lora_merge_ctx {
}
};
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void print_usage(int, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]);
printf("\nNOTE: output model is F16\n");
@ -403,14 +402,13 @@ static void print_usage(int argc, char ** argv, const gpt_params & params) {
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
return 1;
}
g_verbose = (params.verbosity == 1);
try {
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.n_threads);
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
ctx.run_merge();
} catch (const std::exception & err) {
fprintf(stderr, "%s\n", err.what());

View File

@ -1,9 +1,5 @@
#define LLAMA_API_INTERNAL
#include "grammar-parser.h"
#include "ggml.h"
#include "llama.h"
#include "unicode.h"
#include "llama-grammar.h"
#include <cstdio>
#include <cstdlib>
@ -12,29 +8,28 @@
#include <string>
#include <vector>
static bool llama_sample_grammar_string(struct llama_grammar * grammar, const std::string & input_str, size_t & error_pos, std::string & error_msg) {
auto decoded = decode_utf8(input_str, {});
const auto & code_points = decoded.first;
static bool llama_grammar_validate(struct llama_grammar * grammar, const std::string & input_str, size_t & error_pos, std::string & error_msg) {
const auto cpts = unicode_cpts_from_utf8(input_str);
const llama_grammar_rules & rules = llama_grammar_get_rules (grammar);
llama_grammar_stacks & cur_stacks = llama_grammar_get_stacks(grammar);
llama_grammar_stacks & stacks_cur = llama_grammar_get_stacks(grammar);
size_t pos = 0;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
const llama_grammar_stacks prev_stacks = llama_grammar_get_stacks(grammar); // copy
for (const auto & cpt : cpts) {
const llama_grammar_stacks stacks_prev = llama_grammar_get_stacks(grammar); // copy
llama_grammar_accept(rules, prev_stacks, *it, cur_stacks);
llama_grammar_accept(rules, stacks_prev, cpt, stacks_cur);
if (cur_stacks.empty()) {
if (stacks_cur.empty()) {
error_pos = pos;
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(*it) + "'";
cur_stacks = prev_stacks;
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(cpt) + "'";
stacks_cur = stacks_prev;
return false;
}
++pos;
}
for (const auto & stack : cur_stacks) {
for (const auto & stack : stacks_cur) {
if (stack.empty()) {
return true;
}
@ -85,27 +80,7 @@ int main(int argc, char** argv) {
grammar_str = buffer.str();
}
// Parse the GBNF grammar
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
// will be empty (default) if there are parse errors
if (parsed_grammar.rules.empty()) {
fprintf(stdout, "%s: failed to parse grammar\n", __func__);
return 1;
}
// Ensure that there is a "root" node.
if (parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()) {
fprintf(stdout, "%s: grammar does not contain a 'root' symbol\n", __func__);
return 1;
}
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
// Create the LLAMA grammar
auto grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
llama_grammar * grammar = llama_grammar_init_impl(nullptr, grammar_str.c_str(), "root");
if (grammar == nullptr) {
throw std::runtime_error("Failed to initialize llama_grammar");
}
@ -122,7 +97,7 @@ int main(int argc, char** argv) {
// Validate the input string against the grammar
size_t error_pos;
std::string error_msg;
bool is_valid = llama_sample_grammar_string(grammar, input_str, error_pos, error_msg);
bool is_valid = llama_grammar_validate(grammar, input_str, error_pos, error_msg);
if (is_valid) {
fprintf(stdout, "Input string is valid according to the grammar.\n");
@ -131,7 +106,7 @@ int main(int argc, char** argv) {
}
// Clean up
llama_grammar_free(grammar);
llama_grammar_free_impl(grammar);
return 0;
}

View File

@ -0,0 +1,5 @@
set(TARGET llama-gen-docs)
add_executable(${TARGET} gen-docs.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@ -0,0 +1,52 @@
#include "arg.h"
#include "common.h"
#include <fstream>
#include <string>
// Export usage message (-h) to markdown format
static void export_md(std::string fname, llama_example ex) {
std::ofstream file(fname, std::ofstream::out | std::ofstream::trunc);
gpt_params params;
auto ctx_arg = gpt_params_parser_init(params, ex);
file << "| Argument | Explanation |\n";
file << "| -------- | ----------- |\n";
for (auto & opt : ctx_arg.options) {
file << "| `";
// args
for (const auto & arg : opt.args) {
if (arg == opt.args.front()) {
file << arg;
if (opt.args.size() > 1) file << ", ";
} else {
file << arg << (arg != opt.args.back() ? ", " : "");
}
}
// value hint
if (opt.value_hint) {
std::string md_value_hint(opt.value_hint);
string_replace_all(md_value_hint, "|", "\\|");
file << " " << md_value_hint;
}
if (opt.value_hint_2) {
std::string md_value_hint_2(opt.value_hint_2);
string_replace_all(md_value_hint_2, "|", "\\|");
file << " " << md_value_hint_2;
}
// help text
std::string md_help(opt.help);
string_replace_all(md_help, "\n", "<br/>");
string_replace_all(md_help, "|", "\\|");
file << "` | " << md_help << " |\n";
}
}
int main(int, char **) {
export_md("autogen-main.md", LLAMA_EXAMPLE_MAIN);
export_md("autogen-server.md", LLAMA_EXAMPLE_SERVER);
return 0;
}

View File

@ -1,3 +1,4 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
@ -9,7 +10,7 @@
static std::vector<std::vector<float>> encode(llama_context * ctx, const std::vector<std::string> & sentences, const std::string & instruction) {
std::vector<std::vector<float>> result;
const llama_model * mdl = llama_get_model(ctx);
const llama_model * model = llama_get_model(ctx);
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
@ -18,16 +19,16 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
const std::string input_string = instruction + sentences[i];
std::vector<llama_token> inputs = llama_tokenize(mdl, input_string, true, false);
std::vector<llama_token> inputs = llama_tokenize(model, input_string, true, false);
const int32_t n_toks = inputs.size();
// GritLM seems to have EOS = ""
// https://github.com/ContextualAI/gritlm/blob/92025b16534712b31b3c4aaaf069350e222bd5f8/gritlm/gritlm.py#L18
// inputs.push_back(llama_token_eos(mdl));
// inputs.push_back(llama_token_eos(model));
// we want to ignore instruction tokens for mean pooling
const int32_t n_inst = llama_tokenize(mdl, instruction, true, false).size();
const int32_t n_inst = llama_tokenize(model, instruction, true, false).size();
#ifdef GRIT_DEBUG
// debug tokens - should be matching as referenced in the GritLM sample
@ -51,7 +52,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
llama_decode(ctx, batch);
// get embedding dimensions
uint64_t n_embd = llama_n_embd(mdl);
uint64_t n_embd = llama_n_embd(model);
// allocate embedding output
std::vector<float> emb_unorm(n_embd, 0.0f);
@ -92,11 +93,11 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
return result;
}
static std::string generate(llama_context * ctx, const std::string & prompt, bool stream) {
static std::string generate(llama_context * ctx, llama_sampler * smpl, const std::string & prompt, bool stream) {
std::string result;
const llama_model * mdl = llama_get_model(ctx);
llama_token eos_token = llama_token_eos(mdl);
const llama_model * model = llama_get_model(ctx);
llama_token eos_token = llama_token_eos(model);
llama_kv_cache_clear(ctx);
llama_set_embeddings(ctx, false);
@ -104,28 +105,24 @@ static std::string generate(llama_context * ctx, const std::string & prompt, boo
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
std::vector<llama_token> inputs = llama_tokenize(model, prompt, false, true);
int32_t i_current_token = 0;
while (true) {
llama_batch_clear(bat);
auto n_inputs = (int32_t)inputs.size();
{
const int32_t n_inputs = inputs.size();
for (int32_t i = 0; i < n_inputs; i++) {
llama_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
}
}
inputs.clear();
llama_decode(ctx, bat);
auto logits = llama_get_logits_ith(ctx, bat.n_tokens - 1);
auto candidates = std::vector<llama_token_data>(llama_n_vocab(mdl));
auto n_candidates = (int32_t)candidates.size();
for (int32_t token = 0; token < n_candidates; token++) {
candidates[token] = llama_token_data{ token, logits[token], 0.0f };
}
auto candidates_p = llama_token_data_array{ candidates.data(), candidates.size(), false };
llama_token token = llama_sampler_sample(smpl, ctx, bat.n_tokens - 1);
llama_token token = llama_sample_token_greedy(ctx, &candidates_p);
if (token == eos_token) {
break;
}
@ -157,8 +154,7 @@ static std::string gritlm_instruction(const std::string & instruction) {
int main(int argc, char * argv[]) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
return 1;
}
@ -167,10 +163,18 @@ int main(int argc, char * argv[]) {
llama_backend_init();
llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams);
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
// create generation context
llama_context * ctx = llama_new_context_with_model(mdl, cparams);
llama_context * ctx = llama_new_context_with_model(model, cparams);
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
// ### Embedding/Representation ###
// samples taken from: https://github.com/ContextualAI/gritlm#basic
@ -191,7 +195,7 @@ int main(int argc, char * argv[]) {
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
const int n_embd = llama_n_embd(mdl);
const int n_embd = llama_n_embd(model);
const float cosine_sim_q0_d0 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q0_d1 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
@ -208,11 +212,12 @@ int main(int argc, char * argv[]) {
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
{
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
std::string response = generate(ctx, prompt, true);
std::string response = generate(ctx, smpl, prompt, true);
}
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(mdl);
llama_free_model(model);
llama_backend_free();
return 0;

View File

@ -1,3 +1,4 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
@ -17,9 +18,7 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void print_usage(int, char ** argv) {
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s \\\n"
" -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \\\n"
@ -579,8 +578,7 @@ int main(int argc, char ** argv) {
params.logits_all = true;
params.verbosity = 1;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
return 1;
}
@ -638,7 +636,8 @@ int main(int argc, char ** argv) {
g_collector.save_imatrix();
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
llama_free(ctx);
llama_free_model(model);

View File

@ -1,8 +1,8 @@
#include "arg.h"
#include "common.h"
#include "console.h"
#include "sampling.h"
#include "llama.h"
#include "grammar-parser.h"
#include <cassert>
#include <cinttypes>
@ -34,6 +34,7 @@
static llama_context ** g_ctx;
static llama_model ** g_model;
static gpt_sampler ** g_smpl;
static gpt_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
@ -81,7 +82,7 @@ static void write_logfile(
yaml_dump_string_multiline(logfile, "output", output.c_str());
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
llama_dump_timing_info_yaml(logfile, ctx);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
@ -93,7 +94,7 @@ static void sigint_handler(int signo) {
} else {
console::cleanup();
printf("\n");
llama_print_timings(*g_ctx);
gpt_perf_print(*g_ctx, *g_smpl);
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
_exit(130);
}
@ -103,14 +104,14 @@ static void sigint_handler(int signo) {
int main(int argc, char ** argv) {
gpt_params params;
llama_sampling_params & sparams = params.sparams;
g_params = &params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
return 1;
}
auto & sparams = params.sparams;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("infill", "log"));
LOG_TEE("Log start\n");
@ -156,26 +157,19 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
print_build_info();
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model;
llama_context * ctx;
llama_model * model = nullptr;
llama_context * ctx = nullptr;
gpt_sampler * smpl = nullptr;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
// load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
@ -305,16 +299,14 @@ int main(int argc, char ** argv) {
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
}
}
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
smpl = gpt_sampler_init(model, sparams);
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
LOG_TEE("\n\n");
LOG_TEE("\n##### Infill mode #####\n\n");
if (params.infill) {
printf("\n************\n");
printf("no need to specify '--infill', always running infill\n");
printf("************\n\n");
}
if (params.interactive) {
const char *control_message;
if (params.multiline_input) {
@ -349,8 +341,6 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd;
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
while (n_remain != 0 || params.interactive) {
// predict
if (!embd.empty()) {
@ -421,11 +411,11 @@ int main(int argc, char ** argv) {
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, nullptr);
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
llama_sampling_accept(ctx_sampling, ctx, id, true);
gpt_sampler_accept(smpl, id, true);
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
// LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
embd.push_back(id);
@ -444,7 +434,7 @@ int main(int argc, char ** argv) {
// push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
gpt_sampler_accept(smpl, embd_inp[n_consumed], false);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
@ -476,7 +466,7 @@ int main(int argc, char ** argv) {
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// deal with eot token in infill mode
if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){
if ((gpt_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
if (is_interacting && !params.interactive_first) {
// print an eot token
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
@ -542,7 +532,7 @@ int main(int argc, char ** argv) {
is_interacting = false;
}
// deal with end of generation tokens in interactive mode
else if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
else if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
LOG("found EOS token\n");
if (params.interactive) {
@ -615,7 +605,7 @@ int main(int argc, char ** argv) {
if (n_past > 0) {
if (is_interacting) {
llama_sampling_reset(ctx_sampling);
gpt_sampler_reset(smpl);
}
is_interacting = false;
}
@ -638,13 +628,14 @@ int main(int argc, char ** argv) {
fflush(stdout);
}
llama_print_timings(ctx);
LOG_TEE("\n");
gpt_perf_print(ctx, smpl);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
llama_free(ctx);
llama_free_model(model);
llama_sampling_free(ctx_sampling);
gpt_sampler_free(smpl);
llama_backend_free();
#ifndef LOG_DISABLE_LOGS

View File

@ -14,7 +14,8 @@ Performance testing tool for llama.cpp.
1. [Markdown](#markdown)
2. [CSV](#csv)
3. [JSON](#json)
4. [SQL](#sql)
4. [JSONL](#jsonl)
5. [SQL](#sql)
## Syntax
@ -26,13 +27,17 @@ options:
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
-p, --n-prompt <n> (default: 512)
-n, --n-gen <n> (default: 128)
-pg <pp,tg> (default: 512,128)
-pg <pp,tg> (default: )
-b, --batch-size <n> (default: 2048)
-ub, --ubatch-size <n> (default: 512)
-ctk, --cache-type-k <t> (default: f16)
-ctv, --cache-type-v <t> (default: f16)
-t, --threads <n> (default: 16)
-t, --threads <n> (default: 8)
-C, --cpu-mask <hex,hex> (default: 0x0)
--cpu-strict <0|1> (default: 0)
--poll <0...100> (default: 50)
-ngl, --n-gpu-layers <n> (default: 99)
-rpc, --rpc <rpc_servers> (default: )
-sm, --split-mode <none|layer|row> (default: layer)
-mg, --main-gpu <i> (default: 0)
-nkvo, --no-kv-offload <0|1> (default: 0)
@ -42,7 +47,10 @@ options:
-embd, --embeddings <0|1> (default: 0)
-ts, --tensor-split <ts0/ts1/..> (default: 0)
-r, --repetitions <n> (default: 5)
-o, --output <csv|json|md|sql> (default: md)
--prio <0|1|2|3> (default: 0)
--delay <0...N> (seconds) (default: 0)
-o, --output <csv|json|jsonl|md|sql> (default: md)
-oe, --output-err <csv|json|jsonl|md|sql> (default: none)
-v, --verbose (default: 0)
Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.
@ -238,6 +246,19 @@ $ ./llama-bench -o json
]
```
### JSONL
```sh
$ ./llama-bench -o jsonl
```
```json lines
{"build_commit":"3469684","build_number":1275,"cuda":true,"metal":false,"gpu_blas":true,"blas":true,"cpu_info":"13th Gen Intel(R) Core(TM) i9-13900K","gpu_info":"NVIDIA GeForce RTX 3090 Ti","model_filename":"models/7B/ggml-model-q4_0.gguf","model_type":"llama 7B mostly Q4_0","model_size":3825065984,"model_n_params":6738415616,"n_batch":512,"n_threads":16,"f16_kv":true,"n_gpu_layers":99,"main_gpu":0,"mul_mat_q":true,"tensor_split":"0.00","n_prompt":512,"n_gen":0,"test_time":"2023-09-23T12:09:57Z","avg_ns":212365953,"stddev_ns":985423,"avg_ts":2410.974041,"stddev_ts":11.163766,"samples_ns":[213837238,211635853,212328053,211329715,212698907],"samples_ts":[2394.34,2419.25,2411.36,2422.75,2407.16]}
{"build_commit":"3469684","build_number":1275,"cuda":true,"metal":false,"gpu_blas":true,"blas":true,"cpu_info":"13th Gen Intel(R) Core(TM) i9-13900K","gpu_info":"NVIDIA GeForce RTX 3090 Ti","model_filename":"models/7B/ggml-model-q4_0.gguf","model_type":"llama 7B mostly Q4_0","model_size":3825065984,"model_n_params":6738415616,"n_batch":512,"n_threads":16,"f16_kv":true,"n_gpu_layers":99,"main_gpu":0,"mul_mat_q":true,"tensor_split":"0.00","n_prompt":0,"n_gen":128,"test_time":"2023-09-23T12:09:59Z","avg_ns":977425219,"stddev_ns":9268593,"avg_ts":130.965708,"stddev_ts":1.238924,"samples_ns":[984472709,974901233,989474741,970729355,967548060],"samples_ts":[130.019,131.295,129.362,131.86,132.293]}
```
### SQL
SQL output is suitable for importing into a SQLite database. The output can be piped into the `sqlite3` command line tool to add the results to a database.

View File

@ -16,6 +16,7 @@
#include <sstream>
#include <string>
#include <vector>
#include <thread>
#include "ggml.h"
#include "llama.h"
@ -123,6 +124,9 @@ static std::string get_cpu_info() {
(LPBYTE)cpu_brand,
&cpu_brand_size) == ERROR_SUCCESS) {
id.assign(cpu_brand, cpu_brand_size);
if (id.find('\0') != std::string::npos) {
id.resize(id.find('\0'));
}
}
RegCloseKey(hKey);
#endif
@ -170,13 +174,14 @@ static std::string get_gpu_info() {
}
// command line params
enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL};
enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL};
static const char * output_format_str(output_formats format) {
switch (format) {
case NONE: return "none";
case CSV: return "csv";
case JSON: return "json";
case JSONL: return "jsonl";
case MARKDOWN: return "md";
case SQL: return "sql";
default: GGML_ABORT("invalid output format");
@ -190,6 +195,8 @@ static bool output_format_from_str(const std::string & s, output_formats & forma
format = CSV;
} else if (s == "json") {
format = JSON;
} else if (s == "jsonl") {
format = JSONL;
} else if (s == "md") {
format = MARKDOWN;
} else if (s == "sql") {
@ -225,6 +232,9 @@ struct cmd_params {
std::vector<ggml_type> type_k;
std::vector<ggml_type> type_v;
std::vector<int> n_threads;
std::vector<std::string> cpu_mask;
std::vector<bool> cpu_strict;
std::vector<int> poll;
std::vector<int> n_gpu_layers;
std::vector<std::string> rpc_servers;
std::vector<llama_split_mode> split_mode;
@ -236,7 +246,10 @@ struct cmd_params {
std::vector<bool> embeddings;
ggml_numa_strategy numa;
int reps;
ggml_sched_priority prio;
int delay;
bool verbose;
bool progress;
output_formats output_format;
output_formats output_format_stderr;
};
@ -251,6 +264,9 @@ static const cmd_params cmd_params_defaults = {
/* type_k */ {GGML_TYPE_F16},
/* type_v */ {GGML_TYPE_F16},
/* n_threads */ {cpu_get_num_math()},
/* cpu_mask */ {"0x0"},
/* cpu_strict */ {false},
/* poll */ {50},
/* n_gpu_layers */ {99},
/* rpc_servers */ {""},
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
@ -262,7 +278,10 @@ static const cmd_params cmd_params_defaults = {
/* embeddings */ {false},
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
/* reps */ 5,
/* prio */ GGML_SCHED_PRIO_NORMAL,
/* delay */ 0,
/* verbose */ false,
/* progress */ false,
/* output_format */ MARKDOWN,
/* output_format_stderr */ NONE,
};
@ -281,8 +300,13 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
#ifdef GGML_USE_RPC
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
#endif
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
@ -292,9 +316,12 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
printf("\n");
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
}
@ -338,6 +365,9 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
params.output_format_stderr = cmd_params_defaults.output_format_stderr;
params.reps = cmd_params_defaults.reps;
params.numa = cmd_params_defaults.numa;
params.prio = cmd_params_defaults.prio;
params.delay = cmd_params_defaults.delay;
params.progress = cmd_params_defaults.progress;
for (int i = 1; i < argc; i++) {
arg = argv[i];
@ -433,6 +463,27 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = string_split<int>(argv[i], split_delim);
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
} else if (arg == "-C" || arg == "--cpu-mask") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], split_delim);
params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
} else if (arg == "--cpu-strict") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
} else if (arg == "--poll") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.poll.insert(params.poll.end(), p.begin(), p.end());
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
@ -440,12 +491,14 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = string_split<int>(argv[i], split_delim);
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
#ifdef GGML_USE_RPC
} else if (arg == "-rpc" || arg == "--rpc") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rpc_servers.push_back(argv[i]);
#endif
} else if (arg == "-sm" || arg == "--split-mode") {
if (++i >= argc) {
invalid_param = true;
@ -541,6 +594,18 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
break;
}
params.reps = std::stoi(argv[i]);
} else if (arg == "--prio") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
} else if (arg == "--delay") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.delay = std::stoi(argv[i]);
} else if (arg == "-o" || arg == "--output") {
if (++i >= argc) {
invalid_param = true;
@ -555,6 +620,8 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
} else if (arg == "-v" || arg == "--verbose") {
params.verbose = true;
} else if (arg == "--progress") {
params.progress = true;
} else {
invalid_param = true;
break;
@ -585,6 +652,9 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
return params;
}
@ -598,6 +668,9 @@ struct cmd_params_instance {
ggml_type type_k;
ggml_type type_v;
int n_threads;
std::string cpu_mask;
bool cpu_strict;
int poll;
int n_gpu_layers;
std::string rpc_servers;
llama_split_mode split_mode;
@ -667,7 +740,10 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & tv : params.type_v)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & fa : params.flash_attn)
for (const auto & nt : params.n_threads) {
for (const auto & nt : params.n_threads)
for (const auto & cm : params.cpu_mask)
for (const auto & cs : params.cpu_strict)
for (const auto & pl : params.poll) {
for (const auto & n_prompt : params.n_prompt) {
if (n_prompt == 0) {
continue;
@ -681,6 +757,9 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .cpu_mask = */ cm,
/* .cpu_strict = */ cs,
/* .poll = */ pl,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
@ -707,6 +786,9 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .cpu_mask = */ cm,
/* .cpu_strict = */ cs,
/* .poll = */ pl,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
@ -733,6 +815,9 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .cpu_mask = */ cm,
/* .cpu_strict = */ cs,
/* .poll = */ pl,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
@ -769,6 +854,9 @@ struct test {
int n_batch;
int n_ubatch;
int n_threads;
std::string cpu_mask;
bool cpu_strict;
int poll;
bool has_rpc;
ggml_type type_k;
ggml_type type_v;
@ -795,6 +883,9 @@ struct test {
n_batch = inst.n_batch;
n_ubatch = inst.n_ubatch;
n_threads = inst.n_threads;
cpu_mask = inst.cpu_mask;
cpu_strict = inst.cpu_strict;
poll = inst.poll;
has_rpc = !inst.rpc_servers.empty();
type_k = inst.type_k;
type_v = inst.type_v;
@ -872,13 +963,14 @@ struct test {
"cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_ubatch",
"n_threads", "type_k", "type_v",
"n_threads", "cpu_mask", "cpu_strict", "poll",
"type_k", "type_v",
"n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload", "flash_attn",
"tensor_split", "use_mmap", "embeddings",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"avg_ts", "stddev_ts"
"avg_ts", "stddev_ts",
};
return fields;
}
@ -887,7 +979,7 @@ struct test {
static field_type get_field_type(const std::string & field) {
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
field == "n_threads" ||
field == "n_threads" || field == "poll" ||
field == "model_size" || field == "model_n_params" ||
field == "n_gpu_layers" || field == "main_gpu" ||
field == "n_prompt" || field == "n_gen" ||
@ -896,6 +988,7 @@ struct test {
}
if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
field == "cpu_strict" ||
field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
return BOOL;
}
@ -928,7 +1021,8 @@ struct test {
cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_ubatch),
std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
@ -996,8 +1090,6 @@ struct csv_printer : public printer {
}
};
struct json_printer : public printer {
bool first = true;
static std::string escape_json(const std::string & value) {
std::string escaped;
@ -1017,7 +1109,7 @@ struct json_printer : public printer {
return escaped;
}
static std::string format_value(const std::string & field, const std::string & value) {
static std::string format_json_value(const std::string & field, const std::string & value) {
switch (test::get_field_type(field)) {
case test::STRING:
return "\"" + escape_json(value) + "\"";
@ -1028,6 +1120,9 @@ struct json_printer : public printer {
}
}
struct json_printer : public printer {
bool first = true;
void print_header(const cmd_params & params) override {
fprintf(fout, "[\n");
(void) params;
@ -1036,7 +1131,7 @@ struct json_printer : public printer {
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
assert(fields.size() == values.size());
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
}
}
@ -1059,6 +1154,25 @@ struct json_printer : public printer {
}
};
struct jsonl_printer : public printer {
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
assert(fields.size() == values.size());
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
}
}
void print_test(const test & t) override {
fprintf(fout, "{");
print_fields(test::get_fields(), t.get_values());
fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
fprintf(fout, "}\n");
fflush(fout);
}
};
struct markdown_printer : public printer {
std::vector<std::string> fields;
@ -1067,7 +1181,7 @@ struct markdown_printer : public printer {
return -30;
}
if (field == "t/s") {
return 16;
return 20;
}
if (field == "size" || field == "params") {
return 10;
@ -1149,6 +1263,15 @@ struct markdown_printer : public printer {
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
fields.emplace_back("n_threads");
}
if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
fields.emplace_back("cpu_mask");
}
if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
fields.emplace_back("cpu_strict");
}
if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
fields.emplace_back("poll");
}
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
fields.emplace_back("n_batch");
}
@ -1350,6 +1473,8 @@ static std::unique_ptr<printer> create_printer(output_formats format) {
return std::unique_ptr<printer>(new csv_printer());
case JSON:
return std::unique_ptr<printer>(new json_printer());
case JSONL:
return std::unique_ptr<printer>(new jsonl_printer());
case MARKDOWN:
return std::unique_ptr<printer>(new markdown_printer());
case SQL:
@ -1383,6 +1508,8 @@ int main(int argc, char ** argv) {
llama_backend_init();
llama_numa_init(params.numa);
set_process_priority(params.prio);
// initialize printer
std::unique_ptr<printer> p = create_printer(params.output_format);
std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
@ -1402,7 +1529,13 @@ int main(int argc, char ** argv) {
llama_model * lmodel = nullptr;
const cmd_params_instance * prev_inst = nullptr;
int params_idx = 0;
auto params_count = params_instances.size();
for (const auto & inst : params_instances) {
params_idx ++;
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count);
}
// keep the same model between tests when possible
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
if (lmodel) {
@ -1428,12 +1561,40 @@ int main(int argc, char ** argv) {
llama_kv_cache_clear(ctx);
// cool off before the test
if (params.delay) {
std::this_thread::sleep_for(std::chrono::seconds(params.delay));
}
struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
exit(1);
}
tpp.strict_cpu = t.cpu_strict;
tpp.poll = t.poll;
tpp.prio = params.prio;
struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
if (!threadpool) {
fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
exit(1);
}
llama_attach_threadpool(ctx, threadpool, NULL);
// warmup run
if (t.n_prompt > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup prompt run\n", params_idx, params_count);
}
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup generation run\n", params_idx, params_count);
}
test_gen(ctx, 1, 0, t.n_threads);
}
@ -1443,9 +1604,15 @@ int main(int argc, char ** argv) {
uint64_t t_start = get_time_ns();
if (t.n_prompt > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps);
}
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps);
}
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
}
@ -1463,9 +1630,11 @@ int main(int argc, char ** argv) {
fflush(p_err->fout);
}
llama_print_timings(ctx);
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
llama_free(ctx);
ggml_threadpool_free(threadpool);
}
llama_free_model(lmodel);

View File

@ -120,7 +120,7 @@ Java_android_llama_cpp_LLamaAndroid_new_1context(JNIEnv *env, jobject, jlong jmo
LOGi("Using %d threads", n_threads);
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = 2048;
ctx_params.n_threads = n_threads;
ctx_params.n_threads_batch = n_threads;
@ -269,12 +269,6 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
return env->NewStringUTF(result.str().c_str());
}
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer));
}
extern "C"
JNIEXPORT jlong JNICALL
Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) {
@ -311,6 +305,29 @@ Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens,
return reinterpret_cast<jlong>(batch);
}
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer));
}
extern "C"
JNIEXPORT jlong JNICALL
Java_android_llama_cpp_LLamaAndroid_new_1sampler(JNIEnv *, jobject) {
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = true;
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
return reinterpret_cast<jlong>(smpl);
}
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_free_1sampler(JNIEnv *, jobject, jlong sampler_pointer) {
llama_sampler_free(reinterpret_cast<llama_sampler *>(sampler_pointer));
}
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_backend_1init(JNIEnv *, jobject) {
@ -381,31 +398,21 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
jobject,
jlong context_pointer,
jlong batch_pointer,
jlong sampler_pointer,
jint n_len,
jobject intvar_ncur
) {
const auto context = reinterpret_cast<llama_context *>(context_pointer);
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
const auto sampler = reinterpret_cast<llama_sampler *>(sampler_pointer);
const auto model = llama_get_model(context);
if (!la_int_var) la_int_var = env->GetObjectClass(intvar_ncur);
if (!la_int_var_value) la_int_var_value = env->GetMethodID(la_int_var, "getValue", "()I");
if (!la_int_var_inc) la_int_var_inc = env->GetMethodID(la_int_var, "inc", "()V");
auto n_vocab = llama_n_vocab(model);
auto logits = llama_get_logits_ith(context, batch->n_tokens - 1);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// sample the most likely token
const auto new_token_id = llama_sample_token_greedy(context, &candidates_p);
const auto new_token_id = llama_sampler_sample(sampler, context, -1);
const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value);
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {

View File

@ -45,8 +45,10 @@ class LLamaAndroid {
private external fun free_context(context: Long)
private external fun backend_init(numa: Boolean)
private external fun backend_free()
private external fun free_batch(batch: Long)
private external fun new_batch(nTokens: Int, embd: Int, nSeqMax: Int): Long
private external fun free_batch(batch: Long)
private external fun new_sampler(): Long
private external fun free_sampler(sampler: Long)
private external fun bench_model(
context: Long,
model: Long,
@ -69,6 +71,7 @@ class LLamaAndroid {
private external fun completion_loop(
context: Long,
batch: Long,
sampler: Long,
nLen: Int,
ncur: IntVar
): String?
@ -101,8 +104,11 @@ class LLamaAndroid {
val batch = new_batch(512, 0, 1)
if (batch == 0L) throw IllegalStateException("new_batch() failed")
val sampler = new_sampler()
if (sampler == 0L) throw IllegalStateException("new_sampler() failed")
Log.i(tag, "Loaded model $pathToModel")
threadLocalState.set(State.Loaded(model, context, batch))
threadLocalState.set(State.Loaded(model, context, batch, sampler))
}
else -> throw IllegalStateException("Model already loaded")
}
@ -114,7 +120,7 @@ class LLamaAndroid {
is State.Loaded -> {
val ncur = IntVar(completion_init(state.context, state.batch, message, nlen))
while (ncur.value <= nlen) {
val str = completion_loop(state.context, state.batch, nlen, ncur)
val str = completion_loop(state.context, state.batch, state.sampler, nlen, ncur)
if (str == null) {
break
}
@ -138,6 +144,7 @@ class LLamaAndroid {
free_context(state.context)
free_model(state.model)
free_batch(state.batch)
free_sampler(state.sampler);
threadLocalState.set(State.Idle)
}
@ -161,7 +168,7 @@ class LLamaAndroid {
private sealed interface State {
data object Idle: State
data class Loaded(val model: Long, val context: Long, val batch: Long): State
data class Loaded(val model: Long, val context: Long, val batch: Long, val sampler: Long): State
}
// Enforce only one instance of Llm.

View File

@ -24,6 +24,7 @@ func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama
actor LlamaContext {
private var model: OpaquePointer
private var context: OpaquePointer
private var sampling: UnsafeMutablePointer<llama_sampler>
private var batch: llama_batch
private var tokens_list: [llama_token]
var is_done: Bool = false
@ -42,9 +43,15 @@ actor LlamaContext {
self.tokens_list = []
self.batch = llama_batch_init(512, 0, 1)
self.temporary_invalid_cchars = []
let sparams = llama_sampler_chain_default_params()
self.sampling = llama_sampler_chain_init(sparams)
llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4))
llama_sampler_chain_add(self.sampling, llama_sampler_init_softmax())
llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234))
}
deinit {
llama_sampler_free(sampling)
llama_batch_free(batch)
llama_free(context)
llama_free_model(model)
@ -69,10 +76,9 @@ actor LlamaContext {
print("Using \(n_threads) threads")
var ctx_params = llama_context_default_params()
ctx_params.seed = 1234
ctx_params.n_ctx = 2048
ctx_params.n_threads = UInt32(n_threads)
ctx_params.n_threads_batch = UInt32(n_threads)
ctx_params.n_threads = Int32(n_threads)
ctx_params.n_threads_batch = Int32(n_threads)
let context = llama_new_context_with_model(model, ctx_params)
guard let context else {
@ -144,20 +150,7 @@ actor LlamaContext {
func completion_loop() -> String {
var new_token_id: llama_token = 0
let n_vocab = llama_n_vocab(model)
let logits = llama_get_logits_ith(context, batch.n_tokens - 1)
var candidates = Array<llama_token_data>()
candidates.reserveCapacity(Int(n_vocab))
for token_id in 0..<n_vocab {
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
}
candidates.withUnsafeMutableBufferPointer() { buffer in
var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)
new_token_id = llama_sample_token_greedy(context, &candidates_p)
}
new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1)
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
print("\n")

View File

@ -15,8 +15,8 @@ cd llama.cpp
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
```bash
python ./examples/minicpmv/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
python ./examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
# quantize int4 version

View File

@ -1623,7 +1623,7 @@ static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32*
}
}
inline float clip(float x, float lower, float upper) {
inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
@ -1827,10 +1827,6 @@ static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size
return refine_size;
}
inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
std::vector<int> candidate_split_grids_nums;
for (int i : {multiple - 1, multiple, multiple + 1}) {

View File

@ -1,11 +1,12 @@
#include "ggml.h"
#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "base64.hpp"
#include "ggml.h"
#include <cstdio>
#include <cstdlib>
@ -40,11 +41,11 @@ static bool eval_string(struct llama_context * ctx_llama, const char* str, int n
return true;
}
static const char * sample(struct llama_sampling_context * ctx_sampling,
static const char * sample(struct gpt_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
gpt_sampler_accept(smpl, id, true);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
ret = "</s>";
@ -112,9 +113,7 @@ struct llava_context {
struct llama_model * model = NULL;
};
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void print_usage(int, char ** argv) {
LOG_TEE("\n example usage:\n");
LOG_TEE("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
@ -129,14 +128,14 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
if (!params->image.empty()) {
LOG_TEE("using base64 encoded image instead of command line image path\n");
}
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
if (!embed) {
LOG_TEE("%s: can't load image from prompt\n", __func__);
return NULL;
}
params->prompt = remove_image_from_prompt(prompt);
} else {
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, fname.c_str());
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
if (!embed) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
return NULL;
@ -191,15 +190,15 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
LOG_TEE("\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
if (!ctx_sampling) {
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
if (!smpl) {
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
@ -211,7 +210,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
gpt_sampler_free(smpl);
printf("\n");
}
@ -280,8 +279,7 @@ int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
return 1;
}
@ -293,7 +291,7 @@ int main(int argc, char ** argv) {
#endif // LOG_DISABLE_LOGS
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv, {});
print_usage(argc, argv);
return 1;
}
auto model = llava_init(&params);
@ -310,7 +308,7 @@ int main(int argc, char ** argv) {
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_print_timings(ctx_llava->ctx_llama);
llama_perf_print(ctx_llava->ctx_llama, LLAMA_PERF_TYPE_CONTEXT);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
@ -327,7 +325,7 @@ int main(int argc, char ** argv) {
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_print_timings(ctx_llava->ctx_llama);
llama_perf_print(ctx_llava->ctx_llama, LLAMA_PERF_TYPE_CONTEXT);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);

View File

@ -1,9 +1,11 @@
#include "ggml.h"
#include "arg.h"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "ggml.h"
#include <cstdio>
#include <cstdlib>
@ -163,11 +165,11 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
}
static const char * sample(struct llama_sampling_context * ctx_sampling,
static const char * sample(struct gpt_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
gpt_sampler_accept(smpl, id, true);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
ret = "</s>";
@ -180,7 +182,7 @@ static const char * sample(struct llama_sampling_context * ctx_sampling,
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
auto ctx_clip = clip_init_context(params);
auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->n_threads, fname.c_str());
auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
if (!embeds) {
std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
return NULL;
@ -214,7 +216,7 @@ static struct llava_context * minicpmv_init(gpt_params * params, const std::stri
return ctx_llava;
}
static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
std::string user_prompt = prompt;
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
if (!is_first) {
@ -238,13 +240,13 @@ static struct llama_sampling_context * llama_init(struct llava_context * ctx_lla
LOG_TEE("\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
return ctx_sampling;
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
return smpl;
}
static const char * llama_loop(struct llava_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
static const char * llama_loop(struct llava_context * ctx_llava,struct gpt_sampler * smpl, int &n_past){
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
return tmp;
}
@ -253,8 +255,7 @@ int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
show_additional_info(argc, argv);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, show_additional_info)) {
return 1;
}
@ -266,7 +267,6 @@ int main(int argc, char ** argv) {
#endif // LOG_DISABLE_LOGS
if (params.mmproj.empty() || (params.image.empty())) {
gpt_params_print_usage(argc, argv, params);
show_additional_info(argc, argv);
return 1;
}
@ -278,12 +278,12 @@ int main(int argc, char ** argv) {
if (!params.prompt.empty()) {
LOG_TEE("<user>%s\n", params.prompt.c_str());
LOG_TEE("<assistant>");
auto ctx_sampling = llama_init(ctx_llava, &params, params.prompt.c_str(), n_past, true);
auto smpl = llama_init(ctx_llava, &params, params.prompt.c_str(), n_past, true);
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
std::string response = "";
bool have_tmp = false;
for (int i = 0; i < max_tgt_len; i++) {
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
auto tmp = llama_loop(ctx_llava, smpl, n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0){
if(!have_tmp)continue;
@ -296,18 +296,18 @@ int main(int argc, char ** argv) {
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
gpt_sampler_free(smpl);
}else {
while (true) {
LOG_TEE("<user>");
std::string prompt;
std::getline(std::cin, prompt);
LOG_TEE("<assistant>");
auto ctx_sampling = llama_init(ctx_llava, &params, prompt, n_past, true);
auto smpl = llama_init(ctx_llava, &params, prompt, n_past, true);
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
auto tmp = llama_loop(ctx_llava, smpl, n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
@ -315,11 +315,11 @@ int main(int argc, char ** argv) {
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
gpt_sampler_free(smpl);
}
}
printf("\n");
llama_print_timings(ctx_llava->ctx_llama);
llama_perf_print(ctx_llava->ctx_llama, LLAMA_PERF_TYPE_CONTEXT);
ctx_llava->model = NULL;
llava_free(ctx_llava);

View File

@ -1,7 +1,8 @@
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
@ -37,8 +38,7 @@ struct ngram_container {
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
return 1;
}
@ -118,7 +118,7 @@ int main(int argc, char ** argv) {
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
// target model sampling context
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
// verification n-grams
std::vector<ngram_data> ngrams_cur(G);
@ -159,9 +159,9 @@ int main(int argc, char ** argv) {
// sample first token
{
id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
id = gpt_sampler_sample(smpl, ctx, 0);
llama_sampling_accept(ctx_sampling, ctx, id, true);
gpt_sampler_accept(smpl, id, true);
{
const std::string token_str = llama_token_to_piece(ctx, id);
@ -284,9 +284,9 @@ int main(int argc, char ** argv) {
}
// sample the next token
id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch);
id = gpt_sampler_sample(smpl, ctx, i_batch);
llama_sampling_accept(ctx_sampling, ctx, id, true);
gpt_sampler_accept(smpl, id, true);
// print
{
@ -361,7 +361,7 @@ int main(int argc, char ** argv) {
if (v == 0) {
// sample from the last level
for (int i = 0; i < W; i++) {
tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
tokens_j[N - 2][i] = gpt_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
}
} else {
for (int i = 0; i < W; i++) {
@ -468,10 +468,12 @@ int main(int argc, char ** argv) {
LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_accept = %d\n", n_accept);
llama_print_timings(ctx);
LOG_TEE("\n");
gpt_perf_print(ctx, smpl);
gpt_sampler_free(smpl);
llama_kv_cache_view_free(&kvc_view);
llama_sampling_free(ctx_sampling);
llama_batch_free(batch);

View File

@ -1,7 +1,8 @@
#include "ggml.h"
#include "llama.h"
#include "arg.h"
#include "common.h"
#include "ngram-cache.h"
#include "ggml.h"
#include "llama.h"
#include <cstdint>
#include <fstream>
@ -13,8 +14,7 @@
int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
return 1;
}
@ -40,4 +40,6 @@ int main(int argc, char ** argv){
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
llama_ngram_cache_save(ngram_cache, params.lookup_cache_static);
return 0;
}

View File

@ -1,8 +1,9 @@
#include "ggml.h"
#include "arg.h"
#include "common.h"
#include "llama.h"
#include "log.h"
#include "ngram-cache.h"
#include "llama.h"
#include "ggml.h"
#include <cmath>
#include <cstdint>
@ -15,8 +16,7 @@
int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
return 1;
}

View File

@ -1,21 +1,20 @@
#include "arg.h"
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "ngram-cache.h"
#include "sampling.h"
#include "llama.h"
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <fstream>
#include <string>
#include <vector>
#include <unordered_map>
int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
return 1;
}
@ -106,7 +105,7 @@ int main(int argc, char ** argv){
bool has_eos = false;
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
std::vector<llama_token> draft;
@ -130,9 +129,9 @@ int main(int argc, char ** argv){
int i_dft = 0;
while (true) {
// sample from the target model
llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
llama_token id = gpt_sampler_sample(smpl, ctx, i_dft);
llama_sampling_accept(ctx_sampling, ctx, id, true);
gpt_sampler_accept(smpl, id, true);
const std::string token_str = llama_token_to_piece(ctx, id);
@ -240,10 +239,12 @@ int main(int argc, char ** argv){
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_TEE("\ntarget:\n");
llama_print_timings(ctx);
LOG_TEE("\ntarget:\n\n");
llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
gpt_sampler_free(smpl);
llama_sampling_free(ctx_sampling);
llama_batch_free(batch_tgt);
llama_free(ctx);

View File

@ -1,6 +1,7 @@
#include "arg.h"
#include "common.h"
#include "console.h"
#include "sampling.h"
#include "llama.h"
#include <cassert>
@ -33,6 +34,7 @@
static llama_context ** g_ctx;
static llama_model ** g_model;
static gpt_sampler ** g_smpl;
static gpt_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
@ -40,6 +42,13 @@ static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
static bool need_insert_eot = false;
static void print_usage(int, char ** argv) {
printf("\nexample usage:\n");
printf("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
printf("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
printf("\n");
}
static bool file_exists(const std::string & path) {
std::ifstream f(path.c_str());
return f.good();
@ -92,7 +101,7 @@ static void write_logfile(
yaml_dump_string_multiline(logfile, "output", output.c_str());
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
llama_dump_timing_info_yaml(logfile, ctx);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
@ -105,7 +114,7 @@ static void sigint_handler(int signo) {
} else {
console::cleanup();
printf("\n");
llama_print_timings(*g_ctx);
gpt_perf_print(*g_ctx, *g_smpl);
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
_exit(130);
}
@ -121,8 +130,7 @@ static void llama_log_callback_logTee(ggml_log_level level, const char * text, v
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, std::string role, std::string content) {
llama_chat_msg new_msg{role, content};
auto formatted = llama_chat_format_single(
model, g_params->chat_template, chat_msgs, new_msg, role == "user");
auto formatted = llama_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
chat_msgs.push_back({role, content});
LOG("formatted: %s\n", formatted.c_str());
return formatted;
@ -131,13 +139,11 @@ static std::string chat_add_and_format(struct llama_model * model, std::vector<l
int main(int argc, char ** argv) {
gpt_params params;
g_params = &params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
return 1;
}
llama_sampling_params & sparams = params.sparams;
auto & sparams = params.sparams;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("main", "log"));
@ -183,27 +189,21 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
print_build_info();
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model;
llama_context * ctx;
llama_context * ctx_guidance = NULL;
llama_model * model = nullptr;
llama_context * ctx = nullptr;
gpt_sampler * smpl = nullptr;
std::vector<llama_chat_msg> chat_msgs;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
// load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
@ -211,16 +211,43 @@ int main(int argc, char ** argv) {
model = llama_init.model;
ctx = llama_init.context;
if (sparams.cfg_scale > 1.f) {
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
ctx_guidance = llama_new_context_with_model(model, lparams);
}
if (model == NULL) {
LOG_TEE("%s: error: unable to load model\n", __func__);
return 1;
}
LOG("%s: llama threadpool init = n_threads = %d\n",
__func__,
(int) params.cpuparams.n_threads
);
struct ggml_threadpool_params tpp_batch =
ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
struct ggml_threadpool_params tpp =
ggml_threadpool_params_from_cpu_params(params.cpuparams);
set_process_priority(params.cpuparams.priority);
struct ggml_threadpool * threadpool_batch = NULL;
if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
threadpool_batch = ggml_threadpool_new(&tpp_batch);
if (!threadpool_batch) {
LOG_TEE("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
exit(1);
}
// Start the non-batch threadpool in the paused state
tpp.paused = true;
}
struct ggml_threadpool * threadpool = ggml_threadpool_new(&tpp);
if (!threadpool) {
LOG_TEE("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
exit(1);
}
llama_attach_threadpool(ctx, threadpool, threadpool_batch);
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
LOG("n_ctx: %d\n", n_ctx);
@ -303,24 +330,6 @@ int main(int argc, char ** argv) {
}
// Tokenize negative prompt
std::vector<llama_token> guidance_inp;
int guidance_offset = 0;
int original_prompt_len = 0;
if (ctx_guidance) {
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true, true);
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true, true);
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
original_prompt_len = original_inp.size();
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
LOG("guidance_offset: %s", log_tostr(guidance_offset));
}
if ((int) embd_inp.size() > n_ctx - 4) {
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
@ -352,8 +361,8 @@ int main(int argc, char ** argv) {
}
LOGLN(
"recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu",
log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size());
"recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu",
log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
// if we will use the cache for the full prompt without reaching the end of the cache, force
// reevaluation of the last token to recalculate the cached logits
@ -387,15 +396,6 @@ int main(int argc, char ** argv) {
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
}
if (ctx_guidance) {
LOG_TEE("\n");
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
for (int i = 0; i < (int) guidance_inp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
}
}
if (params.n_keep > add_bos) {
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
@ -461,8 +461,17 @@ int main(int argc, char ** argv) {
}
}
}
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
LOG_TEE("sampling order: \n%s\n", llama_sampling_order_print(sparams).c_str());
smpl = gpt_sampler_init(model, sparams);
if (!smpl) {
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
LOG_TEE("sampling params: \n%s\n", sparams.print().c_str());
LOG_TEE("sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
// group-attention state
@ -509,7 +518,6 @@ int main(int argc, char ** argv) {
int n_remain = params.n_predict;
int n_consumed = 0;
int n_session_consumed = 0;
int n_past_guidance = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
@ -521,7 +529,6 @@ int main(int argc, char ** argv) {
display = params.display_prompt;
std::vector<llama_token> embd;
std::vector<llama_token> embd_guidance;
// tokenized antiprompts
std::vector<std::vector<llama_token>> antiprompt_ids;
@ -531,12 +538,6 @@ int main(int argc, char ** argv) {
antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
}
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
if (!ctx_sampling) {
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
if (llama_model_has_encoder(model)) {
int enc_input_size = embd_inp.size();
llama_token * enc_input_buf = embd_inp.data();
@ -578,7 +579,7 @@ int main(int argc, char ** argv) {
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) >= n_ctx) {
if (n_past + (int) embd.size() >= n_ctx) {
if (params.n_predict == -2) {
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
@ -595,11 +596,7 @@ int main(int argc, char ** argv) {
n_past -= n_discard;
if (ctx_guidance) {
n_past_guidance -= n_discard;
}
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
LOG("after swap: n_past = %d\n", n_past);
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
@ -652,46 +649,6 @@ int main(int argc, char ** argv) {
}
}
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always
if (ctx_guidance) {
int input_size = 0;
llama_token * input_buf = NULL;
if (n_past_guidance < (int) guidance_inp.size()) {
// Guidance context should have the same data with these modifications:
//
// * Replace the initial prompt
// * Shift everything by guidance_offset
embd_guidance = guidance_inp;
if (embd.begin() + original_prompt_len < embd.end()) {
embd_guidance.insert(
embd_guidance.end(),
embd.begin() + original_prompt_len,
embd.end()
);
}
input_buf = embd_guidance.data();
input_size = embd_guidance.size();
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
} else {
input_buf = embd.data();
input_size = embd.size();
}
for (int i = 0; i < input_size; i += params.n_batch) {
int n_eval = std::min(input_size - i, params.n_batch);
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
LOG_TEE("%s : failed to eval\n", __func__);
return 1;
}
n_past_guidance += n_eval;
}
}
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
@ -721,7 +678,6 @@ int main(int argc, char ** argv) {
}
embd.clear();
embd_guidance.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
// optionally save the session on first sample (for faster prompt loading next time)
@ -732,11 +688,11 @@ int main(int argc, char ** argv) {
LOG("saved session to %s\n", path_session.c_str());
}
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
llama_sampling_accept(ctx_sampling, ctx, id, /* apply_grammar= */ true);
gpt_sampler_accept(smpl, id, /* apply_grammar= */ true);
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
// LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
embd.push_back(id);
@ -755,7 +711,7 @@ int main(int argc, char ** argv) {
// push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], /* apply_grammar= */ false);
gpt_sampler_accept(smpl, embd_inp[n_consumed], /* apply_grammar= */ false);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
@ -798,7 +754,7 @@ int main(int argc, char ** argv) {
// check for reverse prompt in the last n_prev tokens
if (!params.antiprompt.empty()) {
const int n_prev = 32;
const std::string last_output = llama_sampling_prev_str(ctx_sampling, ctx, n_prev);
const std::string last_output = gpt_sampler_prev_str(smpl, ctx, n_prev);
is_antiprompt = false;
// Check if each of the reverse prompts appears at the end of the output.
@ -820,7 +776,7 @@ int main(int argc, char ** argv) {
}
// check for reverse prompt using special tokens
llama_token last_token = llama_sampling_last(ctx_sampling);
llama_token last_token = gpt_sampler_last(smpl);
for (std::vector<llama_token> ids : antiprompt_ids) {
if (ids.size() == 1 && last_token == ids[0]) {
if (params.interactive) {
@ -837,7 +793,7 @@ int main(int argc, char ** argv) {
}
// deal with end of generation tokens in interactive mode
if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
LOG("found an EOG token\n");
if (params.interactive) {
@ -858,7 +814,7 @@ int main(int argc, char ** argv) {
// if current token is not EOG, we add it to current assistant message
if (params.conversation) {
auto id = llama_sampling_last(ctx_sampling);
const auto id = gpt_sampler_last(smpl);
assistant_ss << llama_token_to_piece(ctx, id, false);
}
@ -954,7 +910,7 @@ int main(int argc, char ** argv) {
if (n_past > 0) {
if (is_interacting) {
llama_sampling_reset(ctx_sampling);
gpt_sampler_reset(smpl);
}
is_interacting = false;
}
@ -979,16 +935,20 @@ int main(int argc, char ** argv) {
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
llama_print_timings(ctx);
LOG_TEE("\n");
gpt_perf_print(ctx, smpl);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
if (ctx_guidance) { llama_free(ctx_guidance); }
gpt_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_sampling_free(ctx_sampling);
llama_backend_free();
ggml_threadpool_free(threadpool);
ggml_threadpool_free(threadpool_batch);
#ifndef LOG_DISABLE_LOGS
LOG_TEE("Log end\n");
#endif // LOG_DISABLE_LOGS

View File

@ -1,7 +1,9 @@
// A basic application simulating a server with multiple clients.
// The clients submit requests to the server and they are processed in parallel.
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "llama.h"
#include <cmath>
@ -50,8 +52,8 @@ static std::vector<std::string> k_prompts = {
struct client {
~client() {
if (ctx_sampling) {
llama_sampling_free(ctx_sampling);
if (smpl) {
gpt_sampler_free(smpl);
}
}
@ -72,7 +74,7 @@ struct client {
std::string prompt;
std::string response;
struct llama_sampling_context * ctx_sampling = nullptr;
struct gpt_sampler * smpl = nullptr;
};
static void print_date_time() {
@ -100,8 +102,7 @@ int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
return 1;
}
@ -161,7 +162,7 @@ int main(int argc, char ** argv) {
for (size_t i = 0; i < clients.size(); ++i) {
auto & client = clients[i];
client.id = i;
client.ctx_sampling = llama_sampling_init(params.sparams);
client.smpl = gpt_sampler_init(model, params.sparams);
}
std::vector<llama_token> tokens_system;
@ -253,7 +254,7 @@ int main(int argc, char ** argv) {
client.prompt = client.input + "\nAssistant:";
client.response = "";
llama_sampling_reset(client.ctx_sampling);
gpt_sampler_reset(client.smpl);
// do not prepend BOS because we have a system prompt!
std::vector<llama_token> tokens_prompt;
@ -341,9 +342,9 @@ int main(int argc, char ** argv) {
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
const llama_token id = llama_sampling_sample(client.ctx_sampling, ctx, NULL, client.i_batch - i);
const llama_token id = gpt_sampler_sample(client.smpl, ctx, client.i_batch - i);
llama_sampling_accept(client.ctx_sampling, ctx, id, true);
gpt_sampler_accept(client.smpl, id, true);
if (client.n_decoded == 1) {
// start measuring generation time after the first token to make sure all concurrent clients
@ -413,7 +414,8 @@ int main(int argc, char ** argv) {
LOG_TEE("\n");
llama_print_timings(ctx);
// TODO: print sampling/grammar timings for all clients
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
llama_batch_free(batch);

View File

@ -1,3 +1,4 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
@ -6,9 +7,7 @@
#include <string>
#include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void print_usage(int, char ** argv) {
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]);
LOG_TEE("\n");
@ -21,13 +20,10 @@ int main(int argc, char ** argv) {
params.n_keep = 32;
params.i_pos = -1;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) {
return 1;
}
srand(params.seed == LLAMA_DEFAULT_SEED ? time(NULL) : params.seed);
int n_junk = params.n_junk;
int n_keep = params.n_keep;
int n_grp = params.grp_attn_n;
@ -80,12 +76,17 @@ int main(int argc, char ** argv) {
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
auto sparams = llama_sampler_chain_default_params();
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
@ -217,20 +218,7 @@ int main(int argc, char ** argv) {
while (n_cur <= n_len) {
// sample the next token
{
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
// is it an end of generation?
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
@ -267,10 +255,13 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
fprintf(stderr, "\n");
llama_sampler_free(smpl);
llama_batch_free(batch);
llama_free(ctx);

View File

@ -1,18 +1,19 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
#include <array>
#include <atomic>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <mutex>
#include <random>
#include <sstream>
#include <thread>
#include <mutex>
#include <atomic>
#include <vector>
#include <array>
#include <fstream>
#include <sstream>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
@ -76,7 +77,7 @@ static void write_logfile(
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
yaml_dump_vector_float(logfile, "probs", results.probs);
llama_dump_timing_info_yaml(logfile, ctx);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
@ -1967,8 +1968,7 @@ int main(int argc, char ** argv) {
params.n_ctx = 512;
params.logits_all = true;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
return 1;
}
@ -2007,14 +2007,6 @@ int main(int argc, char ** argv) {
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
llama_backend_init();
llama_numa_init(params.numa);
@ -2054,7 +2046,8 @@ int main(int argc, char ** argv) {
results = perplexity(ctx, params, n_ctx);
}
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
write_logfile(ctx, params, model, results);
llama_free(ctx);

View File

@ -1,7 +1,7 @@
#define LLAMA_API_INTERNAL
#include "common.h"
#include "ggml.h"
#include "llama.h"
#include "llama-impl.h"
#include <algorithm>
#include <cassert>
@ -320,7 +320,6 @@ int main(int argc, char ** argv) {
auto cparams = llama_context_default_params();
cparams.n_ctx = 256;
cparams.seed = 1;
ctx = llama_new_context_with_model(model, cparams);

View File

@ -54,6 +54,8 @@ As the models are currently fully loaded into memory, you will need adequate dis
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
The quantization formats `Q4_0_4_4`, `Q4_0_4_8` and `Q4_0_8_8` are block interleaved variants of the `Q4_0` format, providing a data layout that is better suited for specific implementations of optimized mulmat kernels. Since these formats differ only in data layout, they have the same quantized size as the `Q4_0` format.
*(outdated)*
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |

View File

@ -26,6 +26,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
{ "TQ1_0", LLAMA_FTYPE_MOSTLY_TQ1_0, " 1.69 bpw ternarization", },
{ "TQ2_0", LLAMA_FTYPE_MOSTLY_TQ2_0, " 2.06 bpw ternarization", },
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
{ "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },

View File

@ -1,12 +1,11 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
#include <algorithm>
#include <fstream>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void print_usage(int, char ** argv) {
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
LOG_TEE("\n");
@ -113,8 +112,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
return 1;
}
@ -293,9 +291,11 @@ int main(int argc, char ** argv) {
}
}
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
// clean up
llama_batch_free(query_batch);
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();

View File

@ -10,20 +10,21 @@ This can be used for distributed LLM inference with `llama.cpp` in the following
```mermaid
flowchart TD
rpcb---|TCP|srva
rpcb---|TCP|srvb
rpcb-.-|TCP|srvn
rpcb<-->|TCP|srva
rpcb<-->|TCP|srvb
rpcb<-.->|TCP|srvn
subgraph hostn[Host N]
srvn[rpc-server]-.-backend3["Backend (CUDA,Metal,etc.)"]
srvn[rpc-server]<-.->backend3["Backend (CUDA,Metal,etc.)"]
end
subgraph hostb[Host B]
srvb[rpc-server]---backend2["Backend (CUDA,Metal,etc.)"]
srvb[rpc-server]<-->backend2["Backend (CUDA,Metal,etc.)"]
end
subgraph hosta[Host A]
srva[rpc-server]---backend["Backend (CUDA,Metal,etc.)"]
srva[rpc-server]<-->backend["Backend (CUDA,Metal,etc.)"]
end
subgraph host[Main Host]
ggml[llama.cpp]---rpcb[RPC backend]
local["Backend (CUDA,Metal,etc.)"]<-->ggml[llama-cli]
ggml[llama-cli]<-->rpcb[RPC backend]
end
style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5
```
@ -62,17 +63,12 @@ $ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052
This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device.
On the main host build `llama.cpp` only with `-DGGML_RPC=ON`:
```bash
mkdir build-rpc
cd build-rpc
cmake .. -DGGML_RPC=ON
cmake --build . --config Release
```
Finally, use the `--rpc` option to specify the host and port of each `rpc-server`:
On the main host build `llama.cpp` for the local backend and add `-DGGML_RPC=ON` to the build options.
Finally, when running `llama-cli`, use the `--rpc` option to specify the host and port of each `rpc-server`:
```bash
$ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99
```
This way you can offload model layers to both local and remote devices.

View File

@ -1,17 +1,17 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
#include <vector>
#include <cstdio>
#include <chrono>
int main(int argc, char ** argv) {
gpt_params params;
params.prompt = "The quick brown fox";
params.sparams.seed = 1234;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
return 1;
}
@ -38,6 +38,13 @@ int main(int argc, char ** argv) {
return 1;
}
auto sparams = llama_sampler_chain_default_params();
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_softmax());
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sparams.seed));
// tokenize prompt
auto tokens = llama_tokenize(ctx, params.prompt, true);
@ -64,16 +71,7 @@ int main(int argc, char ** argv) {
printf("\nfirst run: %s", params.prompt.c_str());
for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx, &candidates_p);
auto next_token = llama_sampler_sample(smpl, ctx, -1);
auto next_token_str = llama_token_to_piece(ctx, next_token);
printf("%s", next_token_str.c_str());
@ -96,6 +94,11 @@ int main(int argc, char ** argv) {
// make new context
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl2, llama_sampler_init_softmax());
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sparams.seed));
printf("\nsecond run: %s", params.prompt.c_str());
// load state (rng, logits, embedding and kv_cache) from file
@ -124,15 +127,7 @@ int main(int argc, char ** argv) {
// second run
for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx2);
auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx2, &candidates_p);
auto next_token = llama_sampler_sample(smpl2, ctx2, -1);
auto next_token_str = llama_token_to_piece(ctx2, next_token);
printf("%s", next_token_str.c_str());
@ -159,6 +154,11 @@ int main(int argc, char ** argv) {
// make new context
auto * ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl3, llama_sampler_init_softmax());
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sparams.seed));
printf("\nsingle seq run: %s", params.prompt.c_str());
// load state (rng, logits, embedding and kv_cache) from file
@ -215,15 +215,7 @@ int main(int argc, char ** argv) {
// third run with seq 1 instead of 0
for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx3);
auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx3, &candidates_p);
auto next_token = llama_sampler_sample(smpl3, ctx3, -1);
auto next_token_str = llama_token_to_piece(ctx3, next_token);
printf("%s", next_token_str.c_str());
@ -240,6 +232,10 @@ int main(int argc, char ** argv) {
printf("\n");
llama_sampler_free(smpl);
llama_sampler_free(smpl2);
llama_sampler_free(smpl3);
llama_free(ctx3);
llama_free_model(model);

View File

@ -17,255 +17,145 @@ The project is under active development, and we are [looking for feedback and co
## Usage
| Argument | Explanation |
| -------- | ----------- |
| `-h, --help, --usage` | print usage and exit |
| `--version` | show version and build info |
| `-v, --verbose` | print verbose information |
| `--verbosity N` | set specific verbosity level (default: 0) |
| `-t, --threads N` | number of threads to use during generation (default: -1)<br/>(env: LLAMA_ARG_THREADS) |
| `-tb, --threads-batch N` | number of threads to use during batch and prompt processing (default: same as --threads) |
| `-C, --cpu-mask M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: "") |
| `-Cr, --cpu-range lo-hi` | range of CPUs for affinity. Complements --cpu-mask |
| `--cpu-strict <0\|1>` | use strict CPU placement (default: 0)<br/> |
| `--prio N` | set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: 0)<br/> |
| `--poll <0...100>` | use polling level to wait for work (0 - no polling, default: 50)<br/> |
| `-Cb, --cpu-mask-batch M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask) |
| `-Crb, --cpu-range-batch lo-hi` | ranges of CPUs for affinity. Complements --cpu-mask-batch |
| `--cpu-strict-batch <0\|1>` | use strict CPU placement (default: same as --cpu-strict) |
| `--prio-batch N` | set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: 0)<br/> |
| `--poll-batch <0\|1>` | use polling to wait for work (default: same as --poll) |
| `-c, --ctx-size N` | size of the prompt context (default: 0, 0 = loaded from model)<br/>(env: LLAMA_ARG_CTX_SIZE) |
| `-n, --predict, --n-predict N` | number of tokens to predict (default: -1, -1 = infinity, -2 = until context filled)<br/>(env: LLAMA_ARG_N_PREDICT) |
| `-b, --batch-size N` | logical maximum batch size (default: 2048)<br/>(env: LLAMA_ARG_BATCH) |
| `-ub, --ubatch-size N` | physical maximum batch size (default: 512)<br/>(env: LLAMA_ARG_UBATCH) |
| `--keep N` | number of tokens to keep from the initial prompt (default: 0, -1 = all) |
| `-fa, --flash-attn` | enable Flash Attention (default: disabled)<br/>(env: LLAMA_ARG_FLASH_ATTN) |
| `-p, --prompt PROMPT` | prompt to start generation with |
| `-f, --file FNAME` | a file containing the prompt (default: none) |
| `-bf, --binary-file FNAME` | binary file containing the prompt (default: none) |
| `-e, --escape` | process escapes sequences (\n, \r, \t, \', \", \\) (default: true) |
| `--no-escape` | do not process escape sequences |
| `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) |
| `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'<br/>(default: top_k;tfs_z;typ_p;top_p;min_p;temperature) |
| `-s, --seed SEED` | RNG seed (default: -1, use random seed for < 0) |
| `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: kfypmt) |
| `--ignore-eos` | ignore end of stream token and continue generating (implies --logit-bias EOS-inf) |
| `--penalize-nl` | penalize newline tokens (default: false) |
| `--temp N` | temperature (default: 0.8) |
| `--top-k N` | top-k sampling (default: 40, 0 = disabled) |
| `--top-p N` | top-p sampling (default: 0.9, 1.0 = disabled) |
| `--min-p N` | min-p sampling (default: 0.1, 0.0 = disabled) |
| `--tfs N` | tail free sampling, parameter z (default: 1.0, 1.0 = disabled) |
| `--typical N` | locally typical sampling, parameter p (default: 1.0, 1.0 = disabled) |
| `--repeat-last-n N` | last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size) |
| `--repeat-penalty N` | penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled) |
| `--presence-penalty N` | repeat alpha presence penalty (default: 0.0, 0.0 = disabled) |
| `--frequency-penalty N` | repeat alpha frequency penalty (default: 0.0, 0.0 = disabled) |
| `--dynatemp-range N` | dynamic temperature range (default: 0.0, 0.0 = disabled) |
| `--dynatemp-exp N` | dynamic temperature exponent (default: 1.0) |
| `--mirostat N` | use Mirostat sampling.<br/>Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.<br/>(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) |
| `--mirostat-lr N` | Mirostat learning rate, parameter eta (default: 0.1) |
| `--mirostat-ent N` | Mirostat target entropy, parameter tau (default: 5.0) |
| `-l, --logit-bias TOKEN_ID(+/-)BIAS` | modifies the likelihood of token appearing in the completion,<br/>i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',<br/>or `--logit-bias 15043-1` to decrease likelihood of token ' Hello' |
| `--grammar GRAMMAR` | BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '') |
| `--grammar-file FNAME` | file to read grammar from |
| `-j, --json-schema SCHEMA` | JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object<br/>For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead |
| `--rope-scaling {none,linear,yarn}` | RoPE frequency scaling method, defaults to linear unless specified by the model |
| `--rope-scale N` | RoPE context scaling factor, expands context by a factor of N |
| `--rope-freq-base N` | RoPE base frequency, used by NTK-aware scaling (default: loaded from model) |
| `--rope-freq-scale N` | RoPE frequency scaling factor, expands context by a factor of 1/N |
| `--yarn-orig-ctx N` | YaRN: original context size of model (default: 0 = model training context size) |
| `--yarn-ext-factor N` | YaRN: extrapolation mix factor (default: -1.0, 0.0 = full interpolation) |
| `--yarn-attn-factor N` | YaRN: scale sqrt(t) or attention magnitude (default: 1.0) |
| `--yarn-beta-slow N` | YaRN: high correction dim or alpha (default: 1.0) |
| `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: 32.0) |
| `-gan, --grp-attn-n N` | group-attention factor (default: 1) |
| `-gaw, --grp-attn-w N` | group-attention width (default: 512.0) |
| `-dkvc, --dump-kv-cache` | verbose print of the KV cache |
| `-nkvo, --no-kv-offload` | disable KV offload |
| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16) |
| `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16) |
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: -1.0, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
| `-np, --parallel N` | number of parallel sequences to decode (default: 1) |
| `-cb, --cont-batching` | enable continuous batching (a.k.a dynamic batching) (default: enabled)<br/>(env: LLAMA_ARG_CONT_BATCHING) |
| `-nocb, --no-cont-batching` | disable continuous batching<br/>(env: LLAMA_ARG_NO_CONT_BATCHING) |
| `--mlock` | force system to keep model in RAM rather than swapping or compressing |
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock) |
| `--numa TYPE` | attempt optimizations that help on some NUMA systems<br/>- distribute: spread execution evenly over all nodes<br/>- isolate: only spawn threads on CPUs on the node that execution started on<br/>- numactl: use the CPU map provided by numactl<br/>if run without this previously, it is recommended to drop the system page cache before using this<br/>see https://github.com/ggerganov/llama.cpp/issues/1437 |
| `-ngl, --gpu-layers, --n-gpu-layers N` | number of layers to store in VRAM<br/>(env: LLAMA_ARG_N_GPU_LAYERS) |
| `-sm, --split-mode {none,layer,row}` | how to split the model across multiple GPUs, one of:<br/>- none: use one GPU only<br/>- layer (default): split layers and KV across GPUs<br/>- row: split rows across GPUs |
| `-ts, --tensor-split N0,N1,N2,...` | fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1 |
| `-mg, --main-gpu INDEX` | the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: 0) |
| `--check-tensors` | check model tensor data for invalid values (default: false) |
| `--override-kv KEY=TYPE:VALUE` | advanced option to override model metadata by key. may be specified multiple times.<br/>types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false |
| `--lora FNAME` | path to LoRA adapter (can be repeated to use multiple adapters) |
| `--lora-scaled FNAME SCALE` | path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters) |
| `--control-vector FNAME` | add a control vector<br/>note: this argument can be repeated to add multiple control vectors |
| `--control-vector-scaled FNAME SCALE` | add a control vector with user defined scaling SCALE<br/>note: this argument can be repeated to add multiple scaled control vectors |
| `--control-vector-layer-range START END` | layer range to apply the control vector(s) to, start and end inclusive |
| `-a, --alias STRING` | set alias for model name (to be used by REST API) |
| `-m, --model FNAME` | model path (default: `models/$filename` with filename from `--hf-file` or `--model-url` if set, otherwise models/7B/ggml-model-f16.gguf)<br/>(env: LLAMA_ARG_MODEL) |
| `-mu, --model-url MODEL_URL` | model download url (default: unused)<br/>(env: LLAMA_ARG_MODEL_URL) |
| `-hfr, --hf-repo REPO` | Hugging Face model repository (default: unused)<br/>(env: LLAMA_ARG_HF_REPO) |
| `-hff, --hf-file FILE` | Hugging Face model file (default: unused)<br/>(env: LLAMA_ARG_HF_FILE) |
| `-hft, --hf-token TOKEN` | Hugging Face access token (default: value from HF_TOKEN environment variable)<br/>(env: HF_TOKEN) |
| `--host HOST` | ip address to listen (default: 127.0.0.1)<br/>(env: LLAMA_ARG_HOST) |
| `--port PORT` | port to listen (default: 8080)<br/>(env: LLAMA_ARG_PORT) |
| `--path PATH` | path to serve static files from (default: ) |
| `--embedding, --embeddings` | restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)<br/>(env: LLAMA_ARG_EMBEDDINGS) |
| `--api-key KEY` | API key to use for authentication (default: none)<br/>(env: LLAMA_API_KEY) |
| `--api-key-file FNAME` | path to file containing API keys (default: none) |
| `--ssl-key-file FNAME` | path to file a PEM-encoded SSL private key |
| `--ssl-cert-file FNAME` | path to file a PEM-encoded SSL certificate |
| `-to, --timeout N` | server read/write timeout in seconds (default: 600) |
| `--threads-http N` | number of threads used to process HTTP requests (default: -1)<br/>(env: LLAMA_ARG_THREADS_HTTP) |
| `-spf, --system-prompt-file FNAME` | set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications |
| `--log-format {text, json}` | log output format: json or text (default: json) |
| `--metrics` | enable prometheus compatible metrics endpoint (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_METRICS) |
| `--no-slots` | disables slots monitoring endpoint (default: enabled)<br/>(env: LLAMA_ARG_NO_ENDPOINT_SLOTS) |
| `--slot-save-path PATH` | path to save slot kv cache (default: disabled) |
| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>only commonly used templates are accepted:<br/>https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template<br/>(env: LLAMA_ARG_CHAT_TEMPLATE) |
| `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)<br/> |
| `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) |
| `-ld, --logdir LOGDIR` | path under which to save YAML logs (no logging if unset) |
| `--log-test` | Log test |
| `--log-disable` | Log disable |
| `--log-enable` | Log enable |
| `--log-new` | Log new |
| `--log-append` | Log append |
| `--log-file FNAME` | Log file |
Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var.
Example usage of docker compose with environment variables:
```yml
services:
llamacpp-server:
image: ghcr.io/ggerganov/llama.cpp:server
ports:
- 8080:8080
volumes:
- ./models:/models
environment:
# alternatively, you can use "LLAMA_ARG_MODEL_URL" to download the model
LLAMA_ARG_MODEL: /models/my_model.gguf
LLAMA_ARG_CTX_SIZE: 4096
LLAMA_ARG_N_PARALLEL: 2
LLAMA_ARG_ENDPOINT_METRICS: 1
LLAMA_ARG_PORT: 8080
```
usage: ./llama-server [options]
general:
-h, --help, --usage print usage and exit
--version show version and build info
-v, --verbose print verbose information
--verbosity N set specific verbosity level (default: 0)
--verbose-prompt print a verbose prompt before generation (default: false)
--no-display-prompt don't print prompt at generation (default: false)
-co, --color colorise output to distinguish prompt and user input from generations (default: false)
-s, --seed SEED RNG seed (default: -1, use random seed for < 0)
-t, --threads N number of threads to use during generation (default: 8)
-tb, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)
-td, --threads-draft N number of threads to use during generation (default: same as --threads)
-tbd, --threads-batch-draft N number of threads to use during batch and prompt processing (default: same as --threads-draft)
--draft N number of tokens to draft for speculative decoding (default: 5)
-ps, --p-split N speculative decoding split probability (default: 0.1)
-lcs, --lookup-cache-static FNAME
path to static lookup cache to use for lookup decoding (not updated by generation)
-lcd, --lookup-cache-dynamic FNAME
path to dynamic lookup cache to use for lookup decoding (updated by generation)
-c, --ctx-size N size of the prompt context (default: 0, 0 = loaded from model)
-n, --predict N number of tokens to predict (default: -1, -1 = infinity, -2 = until context filled)
-b, --batch-size N logical maximum batch size (default: 2048)
-ub, --ubatch-size N physical maximum batch size (default: 512)
--keep N number of tokens to keep from the initial prompt (default: 0, -1 = all)
--chunks N max number of chunks to process (default: -1, -1 = all)
-fa, --flash-attn enable Flash Attention (default: disabled)
-p, --prompt PROMPT prompt to start generation with
in conversation mode, this will be used as system prompt
(default: '')
-f, --file FNAME a file containing the prompt (default: none)
--in-file FNAME an input file (repeat to specify multiple files)
-bf, --binary-file FNAME binary file containing the prompt (default: none)
-e, --escape process escapes sequences (\n, \r, \t, \', \", \\) (default: true)
--no-escape do not process escape sequences
-ptc, --print-token-count N print token count every N tokens (default: -1)
--prompt-cache FNAME file to cache prompt state for faster startup (default: none)
--prompt-cache-all if specified, saves user input and generations to cache as well
not supported with --interactive or other interactive options
--prompt-cache-ro if specified, uses the prompt cache but does not update it
-r, --reverse-prompt PROMPT halt generation at PROMPT, return control in interactive mode
can be specified more than once for multiple prompts
-sp, --special special tokens output enabled (default: false)
-cnv, --conversation run in conversation mode, does not print special tokens and suffix/prefix
if suffix/prefix are not specified, default chat template will be used
(default: false)
-i, --interactive run in interactive mode (default: false)
-if, --interactive-first run in interactive mode and wait for input right away (default: false)
-mli, --multiline-input allows you to write or paste multiple lines without ending each in '\'
--in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string
--in-prefix STRING string to prefix user inputs with (default: empty)
--in-suffix STRING string to suffix after user inputs with (default: empty)
--spm-infill use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled)
sampling:
--samplers SAMPLERS samplers that will be used for generation in the order, separated by ';'
(default: top_k;tfs_z;typical_p;top_p;min_p;temperature)
--sampling-seq SEQUENCE simplified sequence for samplers that will be used (default: kfypmt)
--ignore-eos ignore end of stream token and continue generating (implies --logit-bias EOS-inf)
--penalize-nl penalize newline tokens (default: false)
--temp N temperature (default: 0.8)
--top-k N top-k sampling (default: 40, 0 = disabled)
--top-p N top-p sampling (default: 0.9, 1.0 = disabled)
--min-p N min-p sampling (default: 0.1, 0.0 = disabled)
--tfs N tail free sampling, parameter z (default: 1.0, 1.0 = disabled)
--typical N locally typical sampling, parameter p (default: 1.0, 1.0 = disabled)
--repeat-last-n N last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size)
--repeat-penalty N penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled)
--presence-penalty N repeat alpha presence penalty (default: 0.0, 0.0 = disabled)
--frequency-penalty N repeat alpha frequency penalty (default: 0.0, 0.0 = disabled)
--dynatemp-range N dynamic temperature range (default: 0.0, 0.0 = disabled)
--dynatemp-exp N dynamic temperature exponent (default: 1.0)
--mirostat N use Mirostat sampling.
Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)
--mirostat-lr N Mirostat learning rate, parameter eta (default: 0.1)
--mirostat-ent N Mirostat target entropy, parameter tau (default: 5.0)
-l TOKEN_ID(+/-)BIAS modifies the likelihood of token appearing in the completion,
i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',
or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'
--cfg-negative-prompt PROMPT
negative prompt to use for guidance (default: '')
--cfg-negative-prompt-file FNAME
negative prompt file to use for guidance
--cfg-scale N strength of guidance (default: 1.0, 1.0 = disable)
--chat-template JINJA_TEMPLATE
set custom jinja chat template (default: template taken from model's metadata)
if suffix/prefix are specified, template will be disabled
only commonly used templates are accepted:
https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
grammar:
--grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '')
--grammar-file FNAME file to read grammar from
-j, --json-schema SCHEMA JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object
For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead
embedding:
--pooling {none,mean,cls,last}
pooling type for embeddings, use model default if unspecified
--attention {causal,non-causal}
attention type for embeddings, use model default if unspecified
context hacking:
--rope-scaling {none,linear,yarn}
RoPE frequency scaling method, defaults to linear unless specified by the model
--rope-scale N RoPE context scaling factor, expands context by a factor of N
--rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)
--rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N
--yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)
--yarn-ext-factor N YaRN: extrapolation mix factor (default: -1.0, 0.0 = full interpolation)
--yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)
--yarn-beta-slow N YaRN: high correction dim or alpha (default: 1.0)
--yarn-beta-fast N YaRN: low correction dim or beta (default: 32.0)
-gan, --grp-attn-n N group-attention factor (default: 1)
-gaw, --grp-attn-w N group-attention width (default: 512.0)
-dkvc, --dump-kv-cache verbose print of the KV cache
-nkvo, --no-kv-offload disable KV offload
-ctk, --cache-type-k TYPE KV cache data type for K (default: f16)
-ctv, --cache-type-v TYPE KV cache data type for V (default: f16)
perplexity:
--all-logits return logits for all tokens in the batch (default: false)
--hellaswag compute HellaSwag score over random tasks from datafile supplied with -f
--hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: 400)
--winogrande compute Winogrande score over random tasks from datafile supplied with -f
--winogrande-tasks N number of tasks to use when computing the Winogrande score (default: 0)
--multiple-choice compute multiple choice score over random tasks from datafile supplied with -f
--multiple-choice-tasks N
number of tasks to use when computing the multiple choice score (default: 0)
--kl-divergence computes KL-divergence to logits provided via --kl-divergence-base
--ppl-stride N stride for perplexity calculation (default: 0)
--ppl-output-type {0,1} output type for perplexity calculation (default: 0)
parallel:
-dt, --defrag-thold N KV cache defragmentation threshold (default: -1.0, < 0 - disabled)
-np, --parallel N number of parallel sequences to decode (default: 1)
-ns, --sequences N number of sequences to decode (default: 1)
-cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)
multi-modality:
--mmproj FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md
--image FILE path to an image file. use with multimodal models. Specify multiple times for batching
backend:
--rpc SERVERS comma separated list of RPC servers
--mlock force system to keep model in RAM rather than swapping or compressing
--no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)
--numa TYPE attempt optimizations that help on some NUMA systems
- distribute: spread execution evenly over all nodes
- isolate: only spawn threads on CPUs on the node that execution started on
- numactl: use the CPU map provided by numactl
if run without this previously, it is recommended to drop the system page cache before using this
see https://github.com/ggerganov/llama.cpp/issues/1437
model:
--check-tensors check model tensor data for invalid values (default: false)
--override-kv KEY=TYPE:VALUE
advanced option to override model metadata by key. may be specified multiple times.
types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false
--lora FNAME apply LoRA adapter (implies --no-mmap)
--lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)
--lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter
--control-vector FNAME add a control vector
note: this argument can be repeated to add multiple control vectors
--control-vector-scaled FNAME SCALE
add a control vector with user defined scaling SCALE
note: this argument can be repeated to add multiple scaled control vectors
--control-vector-layer-range START END
layer range to apply the control vector(s) to, start and end inclusive
-m, --model FNAME model path (default: models/$filename with filename from --hf-file
or --model-url if set, otherwise models/7B/ggml-model-f16.gguf)
-md, --model-draft FNAME draft model for speculative decoding (default: unused)
-mu, --model-url MODEL_URL model download url (default: unused)
-hfr, --hf-repo REPO Hugging Face model repository (default: unused)
-hff, --hf-file FILE Hugging Face model file (default: unused)
-hft, --hf-token TOKEN Hugging Face access token (default: value from HF_TOKEN environment variable)
server:
--host HOST ip address to listen (default: 127.0.0.1)
--port PORT port to listen (default: 8080)
--path PATH path to serve static files from (default: )
--embedding(s) restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)
--api-key KEY API key to use for authentication (default: none)
--api-key-file FNAME path to file containing API keys (default: none)
--ssl-key-file FNAME path to file a PEM-encoded SSL private key
--ssl-cert-file FNAME path to file a PEM-encoded SSL certificate
--timeout N server read/write timeout in seconds (default: 600)
--threads-http N number of threads used to process HTTP requests (default: -1)
--system-prompt-file FNAME
set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications
--log-format {text,json}
log output format: json or text (default: json)
--metrics enable prometheus compatible metrics endpoint (default: disabled)
--no-slots disables slots monitoring endpoint (default: enabled)
--slot-save-path PATH path to save slot kv cache (default: disabled)
--chat-template JINJA_TEMPLATE
set custom jinja chat template (default: template taken from model's metadata)
only commonly used templates are accepted:
https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
-sps, --slot-prompt-similarity SIMILARITY
how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)
--lora-init-without-apply
load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled)
logging:
--simple-io use basic IO for better compatibility in subprocesses and limited consoles
-ld, --logdir LOGDIR path under which to save YAML logs (no logging if unset)
--log-test Run simple logging test
--log-disable Disable trace logs
--log-enable Enable trace logs
--log-file FNAME Specify a log filename (without extension)
--log-new Create a separate new log file on start. Each log file will have unique name: "<name>.<ID>.log"
--log-append Don't truncate the old log file.
```
Available environment variables (if specified, these variables will override parameters specified in arguments):
- `LLAMA_CACHE` (cache directory, used by `--hf-repo`)
- `HF_TOKEN` (Hugging Face access token, used when accessing a gated model with `--hf-repo`)
- `LLAMA_ARG_MODEL`
- `LLAMA_ARG_THREADS`
- `LLAMA_ARG_CTX_SIZE`
- `LLAMA_ARG_N_PARALLEL`
- `LLAMA_ARG_BATCH`
- `LLAMA_ARG_UBATCH`
- `LLAMA_ARG_N_GPU_LAYERS`
- `LLAMA_ARG_THREADS_HTTP`
- `LLAMA_ARG_CHAT_TEMPLATE`
- `LLAMA_ARG_N_PREDICT`
- `LLAMA_ARG_ENDPOINT_METRICS`
- `LLAMA_ARG_ENDPOINT_SLOTS`
- `LLAMA_ARG_EMBEDDINGS`
- `LLAMA_ARG_FLASH_ATTN`
- `LLAMA_ARG_DEFRAG_THOLD`
## Build
@ -444,8 +334,6 @@ node index.js
`frequency_penalty`: Repeat alpha frequency penalty. Default: `0.0`, which is disabled.
`penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens. Default: `null`, which is to use the original `prompt`.
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0.
`mirostat_tau`: Set the Mirostat target entropy, parameter tau. Default: `5.0`
@ -698,7 +586,6 @@ Example:
"stopping_word": ""
},
"penalize_nl": true,
"penalty_prompt_tokens": [],
"presence_penalty": 0.0,
"prompt": "Say hello to llama.cpp",
"repeat_last_n": 64,
@ -722,8 +609,7 @@ Example:
"tfs_z": 1.0,
"top_k": 40,
"top_p": 0.949999988079071,
"typical_p": 1.0,
"use_penalty_prompt_tokens": false
"typical_p": 1.0
}
]
```

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -9,8 +9,11 @@ Feature: llama.cpp server
And a model alias bert-bge-small
And 42 as server seed
And 2 slots
And 1024 as batch size
And 1024 as ubatch size
# the bert-bge-small model has context size of 512
# since the generated prompts are as big as the batch size, we need to set the batch size to 512
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5/blob/5c38ec7c405ec4b44b94cc5a9bb96e735b38267a/config.json#L20
And 512 as batch size
And 512 as ubatch size
And 2048 KV cache size
And embeddings extraction
Then the server is starting

View File

@ -77,6 +77,35 @@ Feature: Parallel
| disabled | 128 |
| enabled | 64 |
Scenario Outline: Multi users with number of prompts exceeding number of slots
Given a system prompt You are a writer.
And a model tinyllama-2
Given a prompt:
"""
Write a very long book.
"""
And a prompt:
"""
Write another a poem.
"""
And a prompt:
"""
What is LLM?
"""
And a prompt:
"""
The sky is blue and I love it.
"""
And <n_predict> max tokens to predict
And streaming is <streaming>
Given concurrent OAI completions requests
Then the server is busy
Then the server is idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| streaming | n_predict |
| disabled | 128 |
| enabled | 64 |
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
Given a prompt:

View File

@ -15,6 +15,7 @@ Feature: Passkey / Self-extend with context shift
And <n_junk> as number of junk
And <n_predicted> server max tokens to predict
And 42 as seed
And 0.0 temperature
And <n_ctx> KV cache size
And 1 slots
And <n_ga> group attention factor to extend context size through self-extend
@ -22,7 +23,8 @@ Feature: Passkey / Self-extend with context shift
# Can be override with N_GPU_LAYERS
And <ngl> GPU offloaded layers
Then the server is starting
Then the server is healthy
# Higher timeout because the model may need to be downloaded from the internet
Then the server is healthy with timeout 120 seconds
Given available models
Then model 0 is trained on <n_ctx_train> tokens context
Given a prefix prompt:

View File

@ -23,6 +23,8 @@ from prometheus_client import parser
# pyright: reportRedeclaration=false
DEFAULT_TIMEOUT_SECONDS = aiohttp.ClientTimeout(total=600)
@step("a server listening on {server_fqdn}:{server_port}")
def step_server_config(context, server_fqdn: str, server_port: str):
context.server_fqdn = server_fqdn
@ -200,17 +202,15 @@ def step_start_server(context):
time.sleep(0.1)
@step("the server is {expecting_status}")
@async_run_until_complete
async def step_wait_for_the_server_to_be_started(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
async def wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int):
match expecting_status:
case 'healthy':
await wait_for_slots_status(context, context.base_url, 200,
timeout=30)
timeout=timeout)
case 'ready' | 'idle':
await wait_for_slots_status(context, context.base_url, 200,
timeout=30,
timeout=timeout,
params={'fail_on_no_slot': 1},
slots_idle=context.n_slots,
slots_processing=0)
@ -223,6 +223,18 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status: Lite
assert False, "unknown status"
@step("the server is {expecting_status} with timeout {timeout:d} seconds")
@async_run_until_complete
async def step_wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int):
await wait_for_server_status_with_timeout(context, expecting_status, timeout)
@step("the server is {expecting_status}")
@async_run_until_complete
async def step_wait_for_server_status(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
await wait_for_server_status_with_timeout(context, expecting_status, 30)
@step('all slots are {expected_slot_status_string}')
@async_run_until_complete
async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str):
@ -689,7 +701,7 @@ def step_tokenize_set_add_special(context):
@async_run_until_complete
async def step_tokenize(context):
context.tokenized_text = context_text(context)
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
tokenize_args = {
"content": context.tokenized_text,
}
@ -706,7 +718,7 @@ async def step_tokenize(context):
@async_run_until_complete
async def step_detokenize(context):
assert len(context.tokens) > 0
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/detokenize',
json={
"tokens": context.tokens,
@ -735,7 +747,7 @@ def step_strings_for_tokenization(context):
@step('an OPTIONS request is sent from {origin}')
@async_run_until_complete
async def step_options_request(context, origin):
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
async with session.options(f'{context.base_url}/v1/chat/completions',
headers=headers) as response:
@ -751,7 +763,7 @@ def step_check_options_header_value(context, cors_header, cors_header_value):
@step('prometheus metrics are exposed')
@async_run_until_complete
async def step_prometheus_metrics_exported(context):
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with await session.get(f'{context.base_url}/metrics') as metrics_response:
assert metrics_response.status == 200
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
@ -818,13 +830,13 @@ async def concurrent_requests(context, f_completion, *args, **kwargs):
for prompt_no in range(context.n_prompts):
shifted_args = [context.prompts.pop(), seeds[prompt_no], *args]
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
await asyncio.sleep(0.1)
await asyncio.sleep(0.01)
@step('the slot {slot_id:d} is saved with filename "{filename}"')
@async_run_until_complete
async def step_save_slot(context, slot_id, filename):
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/slots/{slot_id}?action=save',
json={"filename": filename},
headers={"Content-Type": "application/json"}) as response:
@ -834,7 +846,7 @@ async def step_save_slot(context, slot_id, filename):
@step('the slot {slot_id:d} is restored with filename "{filename}"')
@async_run_until_complete
async def step_restore_slot(context, slot_id, filename):
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/slots/{slot_id}?action=restore',
json={"filename": filename},
headers={"Content-Type": "application/json"}) as response:
@ -844,7 +856,7 @@ async def step_restore_slot(context, slot_id, filename):
@step('the slot {slot_id:d} is erased')
@async_run_until_complete
async def step_erase_slot(context, slot_id):
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/slots/{slot_id}?action=erase',
headers={"Content-Type": "application/json"}) as response:
context.response = response
@ -853,7 +865,7 @@ async def step_erase_slot(context, slot_id):
@step('switch {on_or_off} lora adapter {lora_id:d}')
@async_run_until_complete
async def toggle_lora_adapter(context, on_or_off: str, lora_id: int):
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/lora-adapters',
json=[{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}],
headers={"Content-Type": "application/json"}) as response:
@ -889,7 +901,7 @@ async def request_completion(prompt,
print(f"Set user_api_key: {user_api_key}")
headers['Authorization'] = f'Bearer {user_api_key}'
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{base_url}/completion',
json={
"input_prefix": prompt_prefix,
@ -902,8 +914,7 @@ async def request_completion(prompt,
"temperature": temperature if temperature is not None else 0.8,
"n_probs": 2,
},
headers=headers,
timeout=3600) as response:
headers=headers) as response:
if expect_api_error is None or not expect_api_error:
assert response.status == 200
assert response.headers['Access-Control-Allow-Origin'] == origin
@ -961,7 +972,7 @@ async def oai_chat_completions(user_prompt,
if async_client:
origin = 'llama.cpp'
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{base_url}{base_path}',
json=payload,
headers=headers) as response:
@ -1048,7 +1059,7 @@ async def oai_chat_completions(user_prompt,
async def request_embedding(content, seed, base_url=None) -> list[list[float]]:
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{base_url}/embedding',
json={
"content": content,
@ -1068,14 +1079,13 @@ async def request_oai_embeddings(input, seed,
headers=[]
if user_api_key is not None:
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{base_url}/v1/embeddings',
json={
"input": input,
"model": model,
},
headers=headers,
timeout=3600) as response:
headers=headers) as response:
assert response.status == 200, f"received status code not expected: {response.status}"
assert response.headers['Access-Control-Allow-Origin'] == origin
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
@ -1194,7 +1204,7 @@ async def wait_for_slots_status(context,
if 'GITHUB_ACTIONS' in os.environ:
timeout *= 2
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
while True:
async with await session.get(f'{base_url}/slots', params=params) as slots_response:
status_code = slots_response.status
@ -1237,7 +1247,7 @@ def assert_embeddings(embeddings):
async def request_slots_status(context, expected_slots):
async with aiohttp.ClientSession() as session:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with await session.get(f'{context.base_url}/slots') as slots_response:
assert slots_response.status == 200
slots = await slots_response.json()

View File

@ -8,9 +8,12 @@ Feature: Wrong usage of llama.cpp server
Scenario: Infinite loop
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And 42 as server seed
And 2048 KV cache size
# Uncomment below to fix the issue
#And 64 server max tokens to predict
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Go to: infinite loop

View File

@ -3,6 +3,14 @@
#include "llama.h"
#include "common.h"
#ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error
#define CPPHTTPLIB_NO_EXCEPTIONS 1
#endif
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
#include "httplib.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
@ -279,6 +287,18 @@ static size_t find_partial_stop_string(const std::string &stop, const std::strin
return std::string::npos;
}
static bool json_is_array_of_numbers(json data) {
if (data.is_array()) {
for (const auto & e : data) {
if (!e.is_number()) {
return false;
}
}
return true;
}
return false;
}
// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
@ -343,6 +363,19 @@ static json probs_vector_to_json(const llama_context * ctx, const std::vector<co
return out;
}
static bool server_sent_event(httplib::DataSink & sink, const char * event, json & data) {
const std::string str =
std::string(event) + ": " +
data.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
return sink.write(str.c_str(), str.size());
}
//
// OAI utils
//

View File

@ -1,3 +1,4 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
@ -6,9 +7,7 @@
#include <string>
#include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void print_usage(int, char ** argv) {
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
LOG_TEE("\n");
@ -20,8 +19,7 @@ int main(int argc, char ** argv) {
params.prompt = "Hello my name is";
params.n_predict = 32;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
return 1;
}
@ -55,6 +53,14 @@ int main(int argc, char ** argv) {
return 1;
}
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
// tokenize the prompt
std::vector<llama_token> tokens_list;
@ -110,20 +116,7 @@ int main(int argc, char ** argv) {
while (n_cur <= n_predict) {
// sample the next token
{
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
// is it an end of generation?
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
@ -160,12 +153,14 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);

View File

@ -1,11 +1,13 @@
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <set>
#include <random>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
@ -21,14 +23,13 @@ struct seq_draft {
std::vector<llama_token> tokens;
std::vector<std::vector<llama_token_data>> dists;
struct llama_sampling_context * ctx_sampling;
struct gpt_sampler * smpl = nullptr;
};
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
return 1;
}
@ -43,10 +44,7 @@ int main(int argc, char ** argv) {
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
const float p_split = params.p_split;
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
std::default_random_engine rng(params.seed);
std::default_random_engine rng(params.sparams.seed);
std::uniform_real_distribution<> u_dist;
#ifndef LOG_DISABLE_LOGS
@ -73,10 +71,11 @@ int main(int argc, char ** argv) {
// load the draft model
params.model = params.model_draft;
params.n_gpu_layers = params.n_gpu_layers_draft;
if (params.n_threads_draft > 0) {
params.n_threads = params.n_threads_draft;
if (params.draft_cpuparams.n_threads > 0) {
params.cpuparams.n_threads = params.draft_cpuparams.n_threads;
}
params.n_threads_batch = params.n_threads_batch_draft;
params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
llama_init_result llama_init_dft = llama_init_from_gpt_params(params);
model_dft = llama_init_dft.model;
ctx_dft = llama_init_dft.context;
@ -178,19 +177,17 @@ int main(int argc, char ** argv) {
// used to determine end of generation
bool has_eos = false;
// target model sampling context
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
// target model sampling context (reuse the llama_context's sampling instance)
struct gpt_sampler * smpl = gpt_sampler_init(model_tgt, params.sparams);
struct llama_sampler * softmax = llama_sampler_init_softmax();
// draft sequence data
std::vector<seq_draft> drafts(n_seq_dft);
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
if (params.sparams.temp == 0) {
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
}
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
// allocate gpt_sampler for each draft sequence
drafts[s].smpl = gpt_sampler_init(model_dft, params.sparams);
}
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
@ -232,12 +229,12 @@ int main(int argc, char ** argv) {
bool accept = false;
if (params.sparams.temp > 0) {
// stochastic verification
gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
llama_token_data_array dist_tgt = llama_sampling_prepare(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft], true, NULL);
llama_sample_softmax(ctx_tgt, &dist_tgt);
float p_tgt = 0, p_dft = 0;
auto & dist_tgt = *gpt_sampler_get_candidates(smpl);
// GGML_ASSERT(dist_tgt.size() == dist_dft.size());
float p_tgt = 0.0f;
float p_dft = 0.0f;
while (active_seqs.size() > 0) {
// randomly select a sequence to verify from active sequences
@ -256,9 +253,13 @@ int main(int argc, char ** argv) {
}
continue;
}
LOG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
float r = u_dist(rng);
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), true };
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };
//GGML_ASSERT(dist_tgt.size <= dist_dft.size);
// acquire the token probabilities assigned by the draft and target models
for (size_t i = 0; i < dist_tgt.size; i++) {
if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
@ -277,7 +278,7 @@ int main(int argc, char ** argv) {
accept = true;
token_id = drafts[s].tokens[i_dft];
token_str = llama_token_to_piece(ctx_tgt, token_id);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
gpt_sampler_accept(smpl, token_id, true);
LOG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
break;
@ -288,7 +289,6 @@ int main(int argc, char ** argv) {
// calculate residual probability
GGML_ASSERT(dist_tgt.sorted);
GGML_ASSERT(dist_dft.sorted);
float sum_probs = 0.0f;
// sort dist by id
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
@ -298,10 +298,18 @@ int main(int argc, char ** argv) {
return a.id < b.id;
});
float sum_probs = 0.0f;
for (size_t i = 0; i < dist_tgt.size; i++) {
if (i < dist_dft.size) {
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
} else {
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p);
}
sum_probs += dist_tgt.data[i].p;
}
for (size_t i = 0; i < dist_tgt.size; i++) {
dist_tgt.data[i].p /= sum_probs;
}
@ -331,21 +339,29 @@ int main(int argc, char ** argv) {
// all drafted tokens were rejected
// sample from the target model
LOG("all drafted tokens were rejected, sampling from residual distribution\n");
token_id = llama_sample_token(ctx_tgt, &dist_tgt);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
token_str = llama_token_to_piece(ctx_tgt, token_id);
std::vector<float> probs(dist_tgt.size);
for (size_t i = 0; i < dist_tgt.size; ++i) {
probs[i] = dist_tgt.data[i].p;
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
const int idx = dist(rng);
token_id = dist_tgt.data[idx].id;
gpt_sampler_accept(smpl, token_id, true);
token_str = llama_token_to_piece(ctx_tgt, token_id);
}
} else {
// greedy verification
// sample from the target model
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
token_id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
token_id = gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
gpt_sampler_accept(smpl, token_id, true);
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, smpl->prev).c_str());
token_str = llama_token_to_piece(ctx_tgt, token_id);
@ -433,7 +449,10 @@ int main(int argc, char ** argv) {
break;
}
llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
if (drafts[0].smpl) {
gpt_sampler_free(drafts[0].smpl);
}
drafts[0].smpl = gpt_sampler_clone(smpl);
int n_seq_cur = 1;
int n_past_cur = n_past_dft;
@ -462,20 +481,20 @@ int main(int argc, char ** argv) {
continue;
}
llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
gpt_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
const auto & cur_p = drafts[s].ctx_sampling->cur;
const auto * cur_p = gpt_sampler_get_candidates(drafts[s].smpl);
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
k, s, i, cur_p->data[k].id, cur_p->data[k].p, llama_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
}
std::vector<int> sa(1, s);
// attempt to split the branch if the probability is high enough
for (int f = 1; f < 8; ++f) {
if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) {
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
@ -502,7 +521,10 @@ int main(int argc, char ** argv) {
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
if (drafts[n_seq_cur].smpl) {
gpt_sampler_free(drafts[n_seq_cur].smpl);
}
drafts[n_seq_cur].smpl = gpt_sampler_clone(drafts[s].smpl);
sa.push_back(n_seq_cur);
@ -514,15 +536,15 @@ int main(int argc, char ** argv) {
// add drafted token for each sequence
for (int is = 0; is < (int) sa.size(); ++is) {
const llama_token id = cur_p[is].id;
const llama_token id = cur_p->data[is].id;
const int s = sa[is];
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
gpt_sampler_accept(drafts[s].smpl, id, true);
drafts[s].tokens.push_back(id);
// save cur_p.data into drafts[s].dists
drafts[s].dists.push_back(cur_p);
drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
// add unique drafted tokens to the target batch
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
@ -592,17 +614,19 @@ int main(int argc, char ** argv) {
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_TEE("\ndraft:\n");
llama_print_timings(ctx_dft);
LOG_TEE("\ndraft:\n\n");
// TODO: print sampling/grammar timings for all drafts
llama_perf_print(ctx_dft, LLAMA_PERF_TYPE_CONTEXT);
LOG_TEE("\ntarget:\n");
llama_print_timings(ctx_tgt);
LOG_TEE("\ntarget:\n\n");
gpt_perf_print(ctx_tgt, smpl);
llama_sampling_free(ctx_sampling);
gpt_sampler_free(smpl);
for (int s = 0; s < n_seq_dft; ++s) {
llama_sampling_free(drafts[s].ctx_sampling);
gpt_sampler_free(drafts[s].smpl);
}
llama_sampler_free(softmax);
llama_batch_free(batch_dft);
llama_free(ctx_tgt);

View File

@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1722555600,
"narHash": "sha256-XOQkdLafnb/p9ij77byFQjDf5m5QYl9b2REiVClC+x4=",
"lastModified": 1725234343,
"narHash": "sha256-+ebgonl3NbiKD2UD0x4BszCZQ6sTfL4xioaM49o5B3Y=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "8471fe90ad337a8074e957b69ca4d0089218391d",
"rev": "567b938d64d4b4112ee253b9274472dc3a346eb6",
"type": "github"
},
"original": {
@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1723637854,
"narHash": "sha256-med8+5DSWa2UnOqtdICndjDAEjxr5D7zaIiK4pn0Q7c=",
"lastModified": 1725634671,
"narHash": "sha256-v3rIhsJBOMLR8e/RNWxr828tB+WywYIoajrZKFM+0Gg=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "c3aa7b8938b17aebd2deecf7be0636000d62a2b9",
"rev": "574d1eac1c200690e27b8eb4e24887f8df7ac27c",
"type": "github"
},
"original": {
@ -36,14 +36,14 @@
},
"nixpkgs-lib": {
"locked": {
"lastModified": 1722555339,
"narHash": "sha256-uFf2QeW7eAHlYXuDktm9c25OxOyCoUOQmh5SZ9amE5Q=",
"lastModified": 1725233747,
"narHash": "sha256-Ss8QWLXdr2JCBPcYChJhz4xJm+h/xjl4G0c0XlP6a74=",
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/a5d394176e64ab29c852d03346c1fc9b0b7d33eb.tar.gz"
"url": "https://github.com/NixOS/nixpkgs/archive/356624c12086a18f2ea2825fed34523d60ccc4e3.tar.gz"
},
"original": {
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/a5d394176e64ab29c852d03346c1fc9b0b7d33eb.tar.gz"
"url": "https://github.com/NixOS/nixpkgs/archive/356624c12086a18f2ea2825fed34523d60ccc4e3.tar.gz"
}
},
"root": {

View File

@ -145,7 +145,9 @@
# the same path you would with an overlay.
legacyPackages = {
llamaPackages = pkgs.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
llamaPackagesWindows = pkgs.pkgsCross.mingwW64.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
llamaPackagesWindows = pkgs.pkgsCross.mingwW64.callPackage .devops/nix/scope.nix {
inherit llamaVersion;
};
llamaPackagesCuda = pkgsCuda.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
llamaPackagesRocm = pkgsRocm.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
};
@ -157,6 +159,7 @@
default = config.legacyPackages.llamaPackages.llama-cpp;
vulkan = config.packages.default.override { useVulkan = true; };
windows = config.legacyPackages.llamaPackagesWindows.llama-cpp;
python-scripts = config.legacyPackages.llamaPackages.python-scripts;
}
// lib.optionalAttrs pkgs.stdenv.isLinux {
cuda = config.legacyPackages.llamaPackagesCuda.llama-cpp;

View File

@ -135,6 +135,7 @@ option(GGML_VULKAN "ggml: use Vulkan"
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)

View File

@ -63,6 +63,7 @@ extern "C" {
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// "offset" refers to the offset of the tensor data for setting/getting data
GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
@ -102,6 +103,7 @@ extern "C" {
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
// Create a backend buffer from an existing pointer

View File

@ -220,7 +220,7 @@
#include <stdio.h>
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
#define GGML_FILE_VERSION 1
#define GGML_FILE_VERSION 2
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
@ -231,6 +231,8 @@
#define GGML_MAX_SRC 10
#ifndef GGML_MAX_NAME
#define GGML_MAX_NAME 64
#define GGML_MAX_N_THREADS 512
#endif
#define GGML_MAX_OP_PARAMS 64
#define GGML_DEFAULT_N_THREADS 4
@ -393,6 +395,8 @@ extern "C" {
GGML_TYPE_Q4_0_4_4 = 31,
GGML_TYPE_Q4_0_4_8 = 32,
GGML_TYPE_Q4_0_8_8 = 33,
GGML_TYPE_TQ1_0 = 34,
GGML_TYPE_TQ2_0 = 35,
GGML_TYPE_COUNT,
};
@ -453,6 +457,8 @@ extern "C" {
GGML_OP_SQR,
GGML_OP_SQRT,
GGML_OP_LOG,
GGML_OP_SIN,
GGML_OP_COS,
GGML_OP_SUM,
GGML_OP_SUM_ROWS,
GGML_OP_MEAN,
@ -490,9 +496,11 @@ extern "C" {
GGML_OP_CLAMP,
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_IM2COL,
GGML_OP_IM2COL_BACK,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
GGML_OP_POOL_2D_BACK,
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD,
GGML_OP_ARANGE,
@ -508,6 +516,7 @@ extern "C" {
GGML_OP_WIN_UNPART,
GGML_OP_GET_REL_POS,
GGML_OP_ADD_REL_POS,
GGML_OP_RWKV_WKV,
GGML_OP_UNARY,
@ -542,6 +551,7 @@ extern "C" {
GGML_UNARY_OP_SILU,
GGML_UNARY_OP_HARDSWISH,
GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_EXP,
GGML_UNARY_OP_COUNT,
};
@ -624,6 +634,29 @@ extern "C" {
// If it returns true, the computation is aborted
typedef bool (*ggml_abort_callback)(void * data);
// Scheduling priorities
enum ggml_sched_priority {
GGML_SCHED_PRIO_NORMAL,
GGML_SCHED_PRIO_MEDIUM,
GGML_SCHED_PRIO_HIGH,
GGML_SCHED_PRIO_REALTIME
};
// Threadpool params
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
struct ggml_threadpool_params {
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
int n_threads; // number of threads
enum ggml_sched_priority prio; // thread priority
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
bool strict_cpu; // strict cpu placement
bool paused; // start in paused state
};
struct ggml_threadpool; // forward declaration, see ggml.c
typedef struct ggml_threadpool * ggml_threadpool_t;
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
struct ggml_cplan {
@ -631,6 +664,7 @@ extern "C" {
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
int n_threads;
struct ggml_threadpool * threadpool;
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
@ -647,8 +681,8 @@ extern "C" {
struct ggml_hash_set {
size_t size;
ggml_bitset_t * used;
struct ggml_tensor ** keys;
ggml_bitset_t * used; // whether or not the keys are in use i.e. set
struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i)
};
// computation graph
@ -969,6 +1003,22 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sin(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sin_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_cos(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_cos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return scalar
GGML_API struct ggml_tensor * ggml_sum(
struct ggml_context * ctx,
@ -1119,6 +1169,14 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_exp(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_exp_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// normalize along rows
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
@ -1214,7 +1272,7 @@ extern "C" {
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
size_t offset); // in bytes
// b -> view(a,offset,nb1,nb2,3), return view(a)
GGML_API struct ggml_tensor * ggml_set_inplace(
@ -1224,19 +1282,19 @@ extern "C" {
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
size_t offset); // in bytes
GGML_API struct ggml_tensor * ggml_set_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset);
size_t offset); // in bytes
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset);
size_t offset); // in bytes
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_API struct ggml_tensor * ggml_set_2d(
@ -1244,7 +1302,7 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset);
size_t offset); // in bytes
// b -> view(a,offset,nb1,nb2,3), return view(a)
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
@ -1252,7 +1310,7 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset);
size_t offset); // in bytes
// a -> b, return view(b)
GGML_API struct ggml_tensor * ggml_cpy(
@ -1566,34 +1624,49 @@ extern "C" {
float min,
float max);
// im2col
// converts data into a format that effectively results in a convolution when combined with matrix multiplication
GGML_API struct ggml_tensor * ggml_im2col(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1, // dilation dimension 1
bool is_2D,
enum ggml_type dst_type);
GGML_API struct ggml_tensor * ggml_im2col_back(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // gradient of im2col output
int64_t * ne, // shape of im2col input
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1, // dilation dimension 1
bool is_2D);
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1);
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride
int p0, // padding
int d0); // dilation
@ -1602,29 +1675,29 @@ extern "C" {
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d);
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s, // stride
int d); // dilation
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0);
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride
int p0, // padding
int d0); // dilation
GGML_API struct ggml_tensor * ggml_conv_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1);
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1); // dilation dimension 1
// kernel size is a->ne[0] x a->ne[1]
@ -1686,6 +1759,18 @@ extern "C" {
float p0,
float p1);
GGML_API struct ggml_tensor * ggml_pool_2d_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * af, // "a"/input used in forward pass
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
float p0,
float p1);
// nearest interpolate
// multiplies ne0 and ne1 by scale factor
// used in stable-diffusion
@ -1840,6 +1925,15 @@ extern "C" {
struct ggml_tensor * pw,
struct ggml_tensor * ph);
GGML_API struct ggml_tensor * ggml_rwkv_wkv(
struct ggml_context * ctx,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * r,
struct ggml_tensor * tf,
struct ggml_tensor * td,
struct ggml_tensor * state);
// custom operators
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
@ -2010,10 +2104,23 @@ extern "C" {
GGML_API size_t ggml_graph_overhead(void);
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params *p, int n_threads);
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params *p0, const struct ggml_threadpool_params *p1);
GGML_API struct ggml_threadpool* ggml_threadpool_new (struct ggml_threadpool_params * params);
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
GGML_API struct ggml_cplan ggml_graph_plan(
const struct ggml_cgraph * cgraph,
int n_threads, /* = GGML_DEFAULT_N_THREADS */
struct ggml_threadpool * threadpool /* = NULL */ );
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);

View File

@ -612,6 +612,10 @@ if (GGML_VULKAN)
add_compile_definitions(GGML_VULKAN_MEMORY_DEBUG)
endif()
if (GGML_VULKAN_SHADER_DEBUG_INFO)
add_compile_definitions(GGML_VULKAN_SHADER_DEBUG_INFO)
endif()
if (GGML_VULKAN_PERF)
add_compile_definitions(GGML_VULKAN_PERF)
endif()
@ -1247,7 +1251,7 @@ endif()
# Data types, macros and functions related to controlling CPU affinity and
# some memory allocation are available on Linux through GNU extensions in libc
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
if (CMAKE_SYSTEM_NAME MATCHES "Linux" OR CMAKE_SYSTEM_NAME MATCHES "Android")
add_compile_definitions(_GNU_SOURCE)
endif()

View File

@ -36,6 +36,84 @@
// from bias offset form to pure sign form (this saves subtract
// operations durin unpacking)
//
#if defined(__AVX__)
#if defined(__F16C__)
// the _mm256_cvt intrinsics require F16C
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
#define GGML_F32Cx8_REPEAT_LOAD(x, loadMask) _mm256_cvtph_ps(_mm_shuffle_epi32(_mm_maskload_epi32((int const*)(x), loadMask), 68))
#define GGML_F32Cx8_REARRANGE_LOAD(x, arrangeMask) _mm256_cvtph_ps(_mm_shuffle_epi8(_mm_loadu_si128((const __m128i *) x), arrangeMask))
#else
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
float tmp[8];
for (int i = 0; i < 8; i++) {
tmp[i] = GGML_FP16_TO_FP32(x[i]);
}
return _mm256_loadu_ps(tmp);
}
static inline __m256 __avx_repeat_f32cx8_load(ggml_fp16_t *x) {
float tmp[8];
for (int i = 0; i < 4; i++) {
tmp[i] = GGML_FP16_TO_FP32(x[i]);
tmp[i + 4] = GGML_FP16_TO_FP32(x[i]);
}
return _mm256_loadu_ps(tmp);
}
static inline __m256 __avx_rearranged_f32cx8_load(ggml_fp16_t *x, __m128i arrangeMask) {
uint16_t tmphalf[8];
float tmp[8];
_mm_storeu_si128((__m128i*)tmphalf, _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *) x), arrangeMask));
for (int i = 0; i < 8; i++) {
tmp[i] = GGML_FP16_TO_FP32(tmphalf[i]);
}
return _mm256_loadu_ps(tmp);
}
#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
#define GGML_F32Cx8_REPEAT_LOAD(x, loadMask) __avx_repeat_f32cx8_load(x)
#define GGML_F32Cx8_REARRANGE_LOAD(x, arrangeMask) __avx_rearranged_f32cx8_load(x, arrangeMask)
#endif
#endif
#if defined(__AVX2__) || defined(__AVX512F__)
static inline __m256i sum_i16_pairs_int(const __m256i x) {
const __m256i ones = _mm256_set1_epi16(1);
return _mm256_madd_epi16(ones, x);
}
static inline __m256i mul_sum_us8_pairs_int(const __m256i ax, const __m256i sy) {
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
const __m256i zero = _mm256_setzero_si256();
return _mm256_dpbusd_epi32(zero, ax, sy);
#else
// Perform multiplication and create 16-bit values
const __m256i dot = _mm256_maddubs_epi16(ax, sy);
return sum_i16_pairs_int(dot);
#endif
}
// Integer variant of the function defined in ggml-quants.c
// multiply int8_t, add results pairwise twice and return as float vector
static inline __m256i mul_sum_i8_pairs_int(const __m256i x, const __m256i y) {
#if __AVXVNNIINT8__
const __m256i zero = _mm256_setzero_si256();
return _mm256_dpbssd_epi32(zero, x, y);
#else
// Get absolute values of x vectors
const __m256i ax = _mm256_sign_epi8(x, x);
// Sign the values of the y vectors
const __m256i sy = _mm256_sign_epi8(y, x);
return mul_sum_us8_pairs_int(ax, sy);
#endif
}
#endif
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave, unsigned int xor_mask) {
block_q4_0x4 out;
@ -255,6 +333,103 @@ void quantize_q8_0_4x8(const float * restrict x, void * restrict vy, int64_t k)
y[i].qs[32 * j + 31] = vgetq_lane_s32(vi, 3);
}
}
#elif defined(__AVX2__) || defined(__AVX__)
float id[4];
__m256 srcv[4][4];
__m256 idvec[4];
for (int i = 0; i < nb; i++) {
for (int row_iter = 0; row_iter < 4; row_iter++) {
// Load elements into 4 AVX vectors
__m256 v0 = _mm256_loadu_ps( x + row_iter * k + i * 32 );
__m256 v1 = _mm256_loadu_ps( x + row_iter * k + i * 32 + 8 );
__m256 v2 = _mm256_loadu_ps( x + row_iter * k + i * 32 + 16 );
__m256 v3 = _mm256_loadu_ps( x + row_iter * k + i * 32 + 24 );
// Compute max(abs(e)) for the block
const __m256 signBit = _mm256_set1_ps( -0.0f );
__m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
const float maxScalar = _mm_cvtss_f32( max4 );
// Divided by 127.f to mirror results in quantize_row_q8_0
const float d = maxScalar / 127.f;
id[row_iter] = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; //d ? 1.0f / d : 0.0f;
// Store the scale for the individual block
y[i].d[row_iter] = GGML_FP32_TO_FP16(d);
// Store the values in blocks of eight values - Aim is to use these later for block interleaving
srcv[row_iter][0] = v0;
srcv[row_iter][1] = v1;
srcv[row_iter][2] = v2;
srcv[row_iter][3] = v3;
idvec[row_iter] = _mm256_set1_ps(id[row_iter]);
}
// The loop iterates four times - The aim is to get 4 corresponding chunks of eight bytes from the original weight blocks that are interleaved
for (int j = 0; j < 4; j++) {
// Apply the multiplier
__m256 v0 = _mm256_mul_ps(srcv[0][j], idvec[0]);
__m256 v1 = _mm256_mul_ps(srcv[1][j], idvec[1]);
__m256 v2 = _mm256_mul_ps(srcv[2][j], idvec[2]);
__m256 v3 = _mm256_mul_ps(srcv[3][j], idvec[3]);
// Round to nearest integer
v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
// Convert floats to integers
__m256i i0 = _mm256_cvtps_epi32( v0 );
__m256i i1 = _mm256_cvtps_epi32( v1 );
__m256i i2 = _mm256_cvtps_epi32( v2 );
__m256i i3 = _mm256_cvtps_epi32( v3 );
#if defined(__AVX2__)
// Convert int32 to int16
i0 = _mm256_packs_epi32( i0, i1 );
i2 = _mm256_packs_epi32( i2, i3 );
// Convert int16 to int8
i0 = _mm256_packs_epi16( i0, i2 );
// Permute and store the quantized weights in the required order after the pack instruction
const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
i0 = _mm256_permutevar8x32_epi32( i0, perm );
_mm256_storeu_si256((__m256i *)(y[i].qs + 32 * j), i0);
#else
// Since we don't have in AVX some necessary functions,
// we split the registers in half and call AVX2 analogs from SSE
__m128i ni0 = _mm256_castsi256_si128( i0 );
__m128i ni1 = _mm256_extractf128_si256( i0, 1);
__m128i ni2 = _mm256_castsi256_si128( i1 );
__m128i ni3 = _mm256_extractf128_si256( i1, 1);
__m128i ni4 = _mm256_castsi256_si128( i2 );
__m128i ni5 = _mm256_extractf128_si256( i2, 1);
__m128i ni6 = _mm256_castsi256_si128( i3 );
__m128i ni7 = _mm256_extractf128_si256( i3, 1);
// Convert int32 to int16
ni0 = _mm_packs_epi32( ni0, ni1 );
ni2 = _mm_packs_epi32( ni2, ni3 );
ni4 = _mm_packs_epi32( ni4, ni5 );
ni6 = _mm_packs_epi32( ni6, ni7 );
// Convert int16 to int8
ni0 = _mm_packs_epi16( ni0, ni2 );
ni4 = _mm_packs_epi16( ni4, ni6 );
_mm_storeu_si128((__m128i *)(y[i].qs + 32 * j), ni0);
_mm_storeu_si128((__m128i *)(y[i].qs + 32 * j + 16), ni4);
#endif
}
}
#else
// scalar
const int blck_size_interleave = 8;
@ -337,34 +512,19 @@ static size_t quantize_q4_0_nr_bl(const float * restrict src, void * restrict ds
}
size_t quantize_q4_0_4x4(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) {
UNUSED(quant_weights);
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 4);
}
else {
assert(false);
return 0;
}
}
size_t quantize_q4_0_4x8(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) {
UNUSED(quant_weights);
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 8);
}
else {
assert(false);
return 0;
}
}
size_t quantize_q4_0_8x8(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) {
UNUSED(quant_weights);
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 8, 8);
}
else {
assert(false);
return 0;
}
}
void ggml_gemv_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) {
const int qk = QK8_0;
@ -699,6 +859,96 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
GGML_ASSERT((ggml_cpu_has_sve() || ggml_cpu_has_matmul_int8()) &&
"__ARM_FEATURE_SVE and __ARM_FEATURE_MATMUL_INT8 not defined, use the Q4_0_4_4 quantization format for optimal "
"performance");
#elif defined(__AVX2__)
// Lookup table to convert signed nibbles to signed bytes
__m256i signextendlut = _mm256_castsi128_si256(_mm_set_epi8(-1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0));
signextendlut = _mm256_permute2f128_si256(signextendlut, signextendlut, 0);
__m128i changemask = _mm_set_epi8(15, 14, 7, 6, 13, 12, 5, 4, 11, 10, 3, 2, 9, 8, 1, 0);
__m256i finalpermutemask = _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0);
// Permute mask used for easier vector processing at later stages
const __m256i m4b = _mm256_set1_epi8(0x0F);
int64_t b_nb = n / QK4_0;
const block_q4_0x8 * b_ptr_start = (const block_q4_0x8 *)vx;
const block_q8_0 * a_ptr_start = (const block_q8_0 *)vy;
// Process Q8_0 blocks one by one
for (int64_t y = 0; y < nr; y++) {
// Pointers to LHS blocks of block_q8_0 format
const block_q8_0 * a_ptr = a_ptr_start + (y * nb);
// Take group of eight block_q4_0x8 structures at each pass of the loop and perform dot product operation
for (int64_t x = 0; x < nc / 8; x++) {
// Pointers to RHS blocks
const block_q4_0x8 * b_ptr = b_ptr_start + (x * b_nb);
// Master FP accumulator
__m256 acc_row = _mm256_setzero_ps();
for (int64_t b = 0; b < nb; b++) {
// Load 8 blocks of Q4_0 interleaved as 8 bytes (B0 - B7)
const __m256i rhs_raw_vec_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs));
const __m256i rhs_raw_vec_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs) + 1);
const __m256i rhs_raw_vec_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs) + 2);
const __m256i rhs_raw_vec_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs) + 3);
// 4-bit -> 8-bit - Sign is maintained
const __m256i rhs_vec_0123_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_vec_0123_0, m4b)); // B0(0-7) B1(0-7) B2(0-7) B3(0-7)
const __m256i rhs_vec_4567_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_vec_4567_0, m4b)); // B4(0-7) B5(0-7) B6(0-7) B7(0-7)
const __m256i rhs_vec_0123_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_vec_0123_1, m4b)); // B0(8-15) B1(8-15) B2(8-15) B3(8-15)
const __m256i rhs_vec_4567_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_vec_4567_1, m4b)); // B0(8-15) B1(8-15) B2(8-15) B3(8-15)
const __m256i rhs_vec_0123_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_vec_0123_0, 4), m4b)); // B0(16-23) B1(16-23) B2(16-23) B3(16-23)
const __m256i rhs_vec_4567_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_vec_4567_0, 4), m4b)); // B4(16-23) B5(16-23) B6(16-23) B7(16-23)
const __m256i rhs_vec_0123_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_vec_0123_1, 4), m4b)); // B0(24-31) B1(24-31) B2(24-31) B3(24-31)
const __m256i rhs_vec_4567_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_vec_4567_1, 4), m4b)); // B4(24-31) B5(24-31) B6(24-31) B7(24-31)
// Load the scale values for the 8 blocks interleaved in block_q4_0x8
const __m256 col_scale_f32 = GGML_F32Cx8_REARRANGE_LOAD(b_ptr[b].d, changemask);
// Load and convert to FP32 scale from block_q8_0
const __m256 row_scale_f32 = _mm256_set1_ps(GGML_FP16_TO_FP32(a_ptr[b].d));
// Load the block values in block_q8_0 in batches of 16 bytes and replicate the same across 256 bit vector
__m256i lhs_vec_0 = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)a_ptr[b].qs));
__m256i lhs_vec_1 = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(a_ptr[b].qs + 16)));
lhs_vec_0 = _mm256_permute2f128_si256(lhs_vec_0, lhs_vec_0, 0); // A0 (0-15) A0(0-15)
lhs_vec_1 = _mm256_permute2f128_si256(lhs_vec_1, lhs_vec_1, 0); // A0 (16-31) A0(16-31))
__m256i iacc = _mm256_setzero_si256();
// Dot product done within 32 bit lanes and accumulated in the same vector
// B0(0-3) B4(0-3) B1(0-3) B5(0-3) B2(0-3) B6(0-3) B3(0-3) B7(0-3) with A0(0-3)
// B0(4-7) B4(4-7) B1(4-7) B5(4-7) B2(4-7) B6(4-7) B3(4-7) B7(4-7) with A0(4-7)
// ...........................................................................
// B0(28-31) B4(28-31) B1(28-31) B5(28-31) B2(28-31) B6(28-31) B3(28-31) B7(28-31) with A0(28-31)
iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(rhs_vec_0123_0 ,_mm256_shuffle_epi32(rhs_vec_4567_0, 177), 170), _mm256_shuffle_epi32(lhs_vec_0, 0)));
iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_0, 177) ,rhs_vec_4567_0, 170), _mm256_shuffle_epi32(lhs_vec_0, 85)));
iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(rhs_vec_0123_1 ,_mm256_shuffle_epi32(rhs_vec_4567_1, 177), 170), _mm256_shuffle_epi32(lhs_vec_0, 170)));
iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_1, 177) ,rhs_vec_4567_1, 170), _mm256_shuffle_epi32(lhs_vec_0, 255)));
iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(rhs_vec_0123_2 ,_mm256_shuffle_epi32(rhs_vec_4567_2, 177), 170), _mm256_shuffle_epi32(lhs_vec_1, 0)));
iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_2, 177) ,rhs_vec_4567_2, 170), _mm256_shuffle_epi32(lhs_vec_1, 85)));
iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(rhs_vec_0123_3 ,_mm256_shuffle_epi32(rhs_vec_4567_3, 177), 170), _mm256_shuffle_epi32(lhs_vec_1, 170)));
iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_3, 177) ,rhs_vec_4567_3, 170), _mm256_shuffle_epi32(lhs_vec_1, 255)));
// Accumulated values multipled with appropriate scales
acc_row = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc), _mm256_mul_ps(col_scale_f32, row_scale_f32), acc_row);
}
// Accumulated output values permuted so as to be stored in appropriate order post accumulation
acc_row = _mm256_permutevar8x32_ps(acc_row, finalpermutemask);
_mm256_storeu_ps(s + (y * nr + x * 8), acc_row);
}
}
#else
float sumf[8];
int sumi;
@ -2158,6 +2408,353 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
GGML_ASSERT((ggml_cpu_has_sve() || ggml_cpu_has_matmul_int8()) &&
"__ARM_FEATURE_SVE and __ARM_FEATURE_MATMUL_INT8 not defined, use the Q4_0_4_4 quantization format for optimal "
"performance");
#elif defined(__AVX2__) || defined(__AVX512F__)
const block_q4_0x8 * b_ptr_start = (const block_q4_0x8 *)vx;
const block_q8_0x4 * a_ptr_start = (const block_q8_0x4 *)vy;
int64_t b_nb = n / QK4_0;
int64_t y = 0;
// Mask to mask out nibbles from packed bytes
const __m256i m4b = _mm256_set1_epi8(0x0F);
const __m128i loadMask = _mm_blend_epi32(_mm_setzero_si128(), _mm_set1_epi32(0xFFFFFFFF), 3);
// Lookup table to convert signed nibbles to signed bytes
__m256i signextendlut = _mm256_castsi128_si256(_mm_set_epi8(-1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0));
signextendlut = _mm256_permute2f128_si256(signextendlut, signextendlut, 0);
// Permute mask used for easier vector processing at later stages
__m256i requiredOrder = _mm256_set_epi32(3 ,2 ,1 ,0, 7 ,6, 5, 4);
// Take group of four block_q8_0x4 structures at each pass of the loop and perform dot product operation
int anr = nr - nr %16; // Used to align nr with boundary of 16
for (; y < anr / 4; y += 4) {
const block_q8_0x4 * a_ptrs[4];
a_ptrs[0] = a_ptr_start + (y * nb);
for (int i = 0; i < 3; ++i) {
a_ptrs[i + 1] = a_ptrs[i] + nb;
}
// Take group of eight block_q4_0x8 structures at each pass of the loop and perform dot product operation
for (int64_t x = 0; x < nc / 8; x++) {
const block_q4_0x8 * b_ptr = b_ptr_start + (x * b_nb);
// Master FP accumulators
__m256 acc_rows[16];
for (int i = 0; i < 16; i++) {
acc_rows[i] = _mm256_setzero_ps();
}
for (int64_t b = 0; b < nb; b++) {
// Load the eight block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....B6,B7
const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs));
const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 32));
const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 64));
const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 96));
// Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of values
const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240);
const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240);
const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240);
const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240);
// 4-bit -> 8-bit - Sign is maintained
const __m256i rhs_mat_0145_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_0, m4b)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7)
const __m256i rhs_mat_2367_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_0, m4b)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7)
const __m256i rhs_mat_0145_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_1, m4b)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15)
const __m256i rhs_mat_2367_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_1, m4b)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15)
const __m256i rhs_mat_0145_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_0, 4), m4b)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23)
const __m256i rhs_mat_2367_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_0, 4), m4b)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23)
const __m256i rhs_mat_0145_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_1, 4), m4b)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31)
const __m256i rhs_mat_2367_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_1, 4), m4b)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31)
// Shuffle pattern one - right side input
const __m256i rhs_mat_0145_0_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3)
const __m256i rhs_mat_2367_0_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3)
const __m256i rhs_mat_0145_1_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11)
const __m256i rhs_mat_2367_1_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11)
const __m256i rhs_mat_0145_2_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19)
const __m256i rhs_mat_2367_2_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19)
const __m256i rhs_mat_0145_3_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27)
const __m256i rhs_mat_2367_3_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27)
// Shuffle pattern two - right side input
const __m256i rhs_mat_0145_0_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7)
const __m256i rhs_mat_2367_0_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7)
const __m256i rhs_mat_0145_1_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15)
const __m256i rhs_mat_2367_1_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15)
const __m256i rhs_mat_0145_2_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23)
const __m256i rhs_mat_2367_2_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23)
const __m256i rhs_mat_0145_3_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31)
const __m256i rhs_mat_2367_3_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31)
// Scale values - Load the wight scale values of block_q4_0x8
const __m256 col_scale_f32 = GGML_F32Cx8_LOAD(b_ptr[b].d);
// Process LHS in groups of four
for (int rp = 0; rp < 4; rp++) {
// Load the four block_q4_0 quantized values interleaved with each other in chunks of eight - A0,A1,A2,A3
// Loaded as set of 128 bit vectors and repeated into a 256 bit vector
__m256i lhs_mat_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs)));
__m256i lhs_mat_01_0 = _mm256_permute2f128_si256(lhs_mat_0123_0, lhs_mat_0123_0, 0);
__m256i lhs_mat_23_0 = _mm256_permute2f128_si256(lhs_mat_0123_0, lhs_mat_0123_0, 17);
__m256i lhs_mat_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 32)));
__m256i lhs_mat_01_1 = _mm256_permute2f128_si256(lhs_mat_0123_1, lhs_mat_0123_1, 0);
__m256i lhs_mat_23_1 = _mm256_permute2f128_si256(lhs_mat_0123_1, lhs_mat_0123_1, 17);
__m256i lhs_mat_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 64)));
__m256i lhs_mat_01_2 = _mm256_permute2f128_si256(lhs_mat_0123_2, lhs_mat_0123_2, 0);
__m256i lhs_mat_23_2 = _mm256_permute2f128_si256(lhs_mat_0123_2, lhs_mat_0123_2, 17);
__m256i lhs_mat_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 96)));
__m256i lhs_mat_01_3 = _mm256_permute2f128_si256(lhs_mat_0123_3, lhs_mat_0123_3, 0);
__m256i lhs_mat_23_3 = _mm256_permute2f128_si256(lhs_mat_0123_3, lhs_mat_0123_3, 17);
// Shuffle pattern one - left side input
const __m256i lhs_mat_01_0_sp1 = _mm256_shuffle_epi32(lhs_mat_01_0, 160); //A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3)
const __m256i lhs_mat_23_0_sp1 = _mm256_shuffle_epi32(lhs_mat_23_0, 160); //A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3)
const __m256i lhs_mat_01_1_sp1 = _mm256_shuffle_epi32(lhs_mat_01_1, 160); //A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11)
const __m256i lhs_mat_23_1_sp1 = _mm256_shuffle_epi32(lhs_mat_23_1, 160); //A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11)
const __m256i lhs_mat_01_2_sp1 = _mm256_shuffle_epi32(lhs_mat_01_2, 160); //A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19)
const __m256i lhs_mat_23_2_sp1 = _mm256_shuffle_epi32(lhs_mat_23_2, 160); //A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19)
const __m256i lhs_mat_01_3_sp1 = _mm256_shuffle_epi32(lhs_mat_01_3, 160); //A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27)
const __m256i lhs_mat_23_3_sp1 = _mm256_shuffle_epi32(lhs_mat_23_3, 160); //A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27)
// Shuffle pattern two - left side input
const __m256i lhs_mat_01_0_sp2 = _mm256_shuffle_epi32(lhs_mat_01_0, 245); //A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7)
const __m256i lhs_mat_23_0_sp2 = _mm256_shuffle_epi32(lhs_mat_23_0, 245); //A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7)
const __m256i lhs_mat_01_1_sp2 = _mm256_shuffle_epi32(lhs_mat_01_1, 245); //A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15)
const __m256i lhs_mat_23_1_sp2 = _mm256_shuffle_epi32(lhs_mat_23_1, 245); //A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15)
const __m256i lhs_mat_01_2_sp2 = _mm256_shuffle_epi32(lhs_mat_01_2, 245); //A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23)
const __m256i lhs_mat_23_2_sp2 = _mm256_shuffle_epi32(lhs_mat_23_2, 245); //A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23)
const __m256i lhs_mat_01_3_sp2 = _mm256_shuffle_epi32(lhs_mat_01_3, 245); //A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31)
const __m256i lhs_mat_23_3_sp2 = _mm256_shuffle_epi32(lhs_mat_23_3, 245); //A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31)
// The values arranged in shuffle patterns are operated with dot product operation within 32 bit lane i.e corresponding bytes and multiplied and added into 32 bit integers within 32 bit lane
// Resembles MMLAs into 2x2 matrices in ARM Version
__m256i iacc_mat_00_sp1 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int(lhs_mat_01_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp1, rhs_mat_0145_0_sp1));
__m256i iacc_mat_01_sp1 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int(lhs_mat_01_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp1, rhs_mat_2367_0_sp1));
__m256i iacc_mat_10_sp1 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int(lhs_mat_23_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp1, rhs_mat_0145_0_sp1));
__m256i iacc_mat_11_sp1 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int(lhs_mat_23_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp1, rhs_mat_2367_0_sp1));
__m256i iacc_mat_00_sp2 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int(lhs_mat_01_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp2, rhs_mat_0145_0_sp2));
__m256i iacc_mat_01_sp2 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int(lhs_mat_01_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp2, rhs_mat_2367_0_sp2));
__m256i iacc_mat_10_sp2 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int(lhs_mat_23_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp2, rhs_mat_0145_0_sp2));
__m256i iacc_mat_11_sp2 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int(lhs_mat_23_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp2, rhs_mat_2367_0_sp2));
// Output of both shuffle patterns are added in order to sum dot product outputs of all 32 values in block
__m256i iacc_mat_00 = _mm256_add_epi32(iacc_mat_00_sp1, iacc_mat_00_sp2);
__m256i iacc_mat_01 = _mm256_add_epi32(iacc_mat_01_sp1, iacc_mat_01_sp2);
__m256i iacc_mat_10 = _mm256_add_epi32(iacc_mat_10_sp1, iacc_mat_10_sp2);
__m256i iacc_mat_11 = _mm256_add_epi32(iacc_mat_11_sp1, iacc_mat_11_sp2);
// Straighten out to make 4 row vectors
__m256i iacc_row_0 = _mm256_blend_epi32(iacc_mat_00, _mm256_shuffle_epi32(iacc_mat_01, 78), 204);
__m256i iacc_row_1 = _mm256_blend_epi32(_mm256_shuffle_epi32(iacc_mat_00, 78), iacc_mat_01, 204);
__m256i iacc_row_2 = _mm256_blend_epi32(iacc_mat_10, _mm256_shuffle_epi32(iacc_mat_11, 78), 204);
__m256i iacc_row_3 = _mm256_blend_epi32(_mm256_shuffle_epi32(iacc_mat_10, 78), iacc_mat_11, 204);
// Load the scale(d) values for all the 4 Q8_0 blocks and repeat it across lanes
const __m256 row_scale_f32 = GGML_F32Cx8_REPEAT_LOAD(a_ptrs[rp][b].d, loadMask);
// Multiply with appropiate scales and accumulate
acc_rows[rp * 4] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_0), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[rp * 4]);
acc_rows[rp * 4 + 1] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_1), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[rp * 4 + 1]);
acc_rows[rp * 4 + 2] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_2), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[rp * 4 + 2]);
acc_rows[rp * 4 + 3] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_3), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[rp * 4 + 3]);
}
}
// Store the accumulated values
for (int i = 0; i < 16; i++) {
_mm256_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]);
}
}
}
// Take a block_q8_0x4 structures at each pass of the loop and perform dot product operation
for (; y < nr / 4; y ++) {
const block_q8_0x4 * a_ptr = a_ptr_start + (y * nb);
// Load the eight block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....B6,B7
for (int64_t x = 0; x < nc / 8; x++) {
const block_q4_0x8 * b_ptr = b_ptr_start + (x * b_nb);
// Master FP accumulators
__m256 acc_rows[4];
for (int i = 0; i < 4; i++) {
acc_rows[i] = _mm256_setzero_ps();
}
for (int64_t b = 0; b < nb; b++) {
// Load the eight block_q8_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....B6,B7
const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs));
const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 32));
const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 64));
const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 96));
// Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of valuess
const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240);
const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240);
const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240);
const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240);
// 4-bit -> 8-bit - Sign is maintained
const __m256i rhs_mat_0145_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_0, m4b)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7)
const __m256i rhs_mat_2367_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_0, m4b)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7)
const __m256i rhs_mat_0145_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_1, m4b)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15)
const __m256i rhs_mat_2367_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_1, m4b)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15)
const __m256i rhs_mat_0145_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_0, 4), m4b)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23)
const __m256i rhs_mat_2367_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_0, 4), m4b)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23)
const __m256i rhs_mat_0145_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_1, 4), m4b)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31)
const __m256i rhs_mat_2367_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_1, 4), m4b)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31)
// Shuffle pattern one - right side input
const __m256i rhs_mat_0145_0_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3)
const __m256i rhs_mat_2367_0_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3)
const __m256i rhs_mat_0145_1_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11)
const __m256i rhs_mat_2367_1_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11)
const __m256i rhs_mat_0145_2_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19)
const __m256i rhs_mat_2367_2_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19)
const __m256i rhs_mat_0145_3_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27)
const __m256i rhs_mat_2367_3_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27)
// Shuffle pattern two - right side input
const __m256i rhs_mat_0145_0_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7)
const __m256i rhs_mat_2367_0_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7)
const __m256i rhs_mat_0145_1_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15)
const __m256i rhs_mat_2367_1_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15)
const __m256i rhs_mat_0145_2_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23)
const __m256i rhs_mat_2367_2_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23)
const __m256i rhs_mat_0145_3_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31)
const __m256i rhs_mat_2367_3_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31)
// Scale values - Load the wight scale values of block_q4_0x8
const __m256 col_scale_f32 = GGML_F32Cx8_LOAD(b_ptr[b].d);
// Load the four block_q4_0 quantized values interleaved with each other in chunks of eight - A0,A1,A2,A3
// Loaded as set of 128 bit vectors and repeated into a 256 bit vector
__m256i lhs_mat_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs)));
__m256i lhs_mat_01_0 = _mm256_permute2f128_si256(lhs_mat_0123_0, lhs_mat_0123_0, 0);
__m256i lhs_mat_23_0 = _mm256_permute2f128_si256(lhs_mat_0123_0, lhs_mat_0123_0, 17);
__m256i lhs_mat_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 32)));
__m256i lhs_mat_01_1 = _mm256_permute2f128_si256(lhs_mat_0123_1, lhs_mat_0123_1, 0);
__m256i lhs_mat_23_1 = _mm256_permute2f128_si256(lhs_mat_0123_1, lhs_mat_0123_1, 17);
__m256i lhs_mat_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 64)));
__m256i lhs_mat_01_2 = _mm256_permute2f128_si256(lhs_mat_0123_2, lhs_mat_0123_2, 0);
__m256i lhs_mat_23_2 = _mm256_permute2f128_si256(lhs_mat_0123_2, lhs_mat_0123_2, 17);
__m256i lhs_mat_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 96)));
__m256i lhs_mat_01_3 = _mm256_permute2f128_si256(lhs_mat_0123_3, lhs_mat_0123_3, 0);
__m256i lhs_mat_23_3 = _mm256_permute2f128_si256(lhs_mat_0123_3, lhs_mat_0123_3, 17);
// Shuffle pattern one - left side input
const __m256i lhs_mat_01_0_sp1 = _mm256_shuffle_epi32(lhs_mat_01_0, 160); //A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3)
const __m256i lhs_mat_23_0_sp1 = _mm256_shuffle_epi32(lhs_mat_23_0, 160); //A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3)
const __m256i lhs_mat_01_1_sp1 = _mm256_shuffle_epi32(lhs_mat_01_1, 160); //A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11)
const __m256i lhs_mat_23_1_sp1 = _mm256_shuffle_epi32(lhs_mat_23_1, 160); //A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11)
const __m256i lhs_mat_01_2_sp1 = _mm256_shuffle_epi32(lhs_mat_01_2, 160); //A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19)
const __m256i lhs_mat_23_2_sp1 = _mm256_shuffle_epi32(lhs_mat_23_2, 160); //A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19)
const __m256i lhs_mat_01_3_sp1 = _mm256_shuffle_epi32(lhs_mat_01_3, 160); //A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27)
const __m256i lhs_mat_23_3_sp1 = _mm256_shuffle_epi32(lhs_mat_23_3, 160); //A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27)
// Shuffle pattern two - left side input
const __m256i lhs_mat_01_0_sp2 = _mm256_shuffle_epi32(lhs_mat_01_0, 245); //A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7)
const __m256i lhs_mat_23_0_sp2 = _mm256_shuffle_epi32(lhs_mat_23_0, 245); //A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7)
const __m256i lhs_mat_01_1_sp2 = _mm256_shuffle_epi32(lhs_mat_01_1, 245); //A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15)
const __m256i lhs_mat_23_1_sp2 = _mm256_shuffle_epi32(lhs_mat_23_1, 245); //A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15)
const __m256i lhs_mat_01_2_sp2 = _mm256_shuffle_epi32(lhs_mat_01_2, 245); //A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23)
const __m256i lhs_mat_23_2_sp2 = _mm256_shuffle_epi32(lhs_mat_23_2, 245); //A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23)
const __m256i lhs_mat_01_3_sp2 = _mm256_shuffle_epi32(lhs_mat_01_3, 245); //A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31)
const __m256i lhs_mat_23_3_sp2 = _mm256_shuffle_epi32(lhs_mat_23_3, 245); //A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31)
// The values arranged in shuffle patterns are operated with dot product operation within 32 bit lane i.e corresponding bytes and multiplied and added into 32 bit integers within 32 bit lane
// Resembles MMLAs into 2x2 matrices in ARM Version
__m256i iacc_mat_00_sp1 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int(lhs_mat_01_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp1, rhs_mat_0145_0_sp1));
__m256i iacc_mat_01_sp1 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int(lhs_mat_01_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp1, rhs_mat_2367_0_sp1));
__m256i iacc_mat_10_sp1 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int(lhs_mat_23_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp1, rhs_mat_0145_0_sp1));
__m256i iacc_mat_11_sp1 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int(lhs_mat_23_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp1, rhs_mat_2367_0_sp1));
__m256i iacc_mat_00_sp2 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int(lhs_mat_01_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp2, rhs_mat_0145_0_sp2));
__m256i iacc_mat_01_sp2 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int(lhs_mat_01_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp2, rhs_mat_2367_0_sp2));
__m256i iacc_mat_10_sp2 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int(lhs_mat_23_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp2, rhs_mat_0145_0_sp2));
__m256i iacc_mat_11_sp2 =
_mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int(lhs_mat_23_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp2, rhs_mat_2367_0_sp2));
// Output of both shuffle patterns are added in order to sum dot product outputs of all 32 values in block
__m256i iacc_mat_00 = _mm256_add_epi32(iacc_mat_00_sp1, iacc_mat_00_sp2);
__m256i iacc_mat_01 = _mm256_add_epi32(iacc_mat_01_sp1, iacc_mat_01_sp2);
__m256i iacc_mat_10 = _mm256_add_epi32(iacc_mat_10_sp1, iacc_mat_10_sp2);
__m256i iacc_mat_11 = _mm256_add_epi32(iacc_mat_11_sp1, iacc_mat_11_sp2);
// Straighten out to make 4 row vectors
__m256i iacc_row_0 = _mm256_blend_epi32(iacc_mat_00, _mm256_shuffle_epi32(iacc_mat_01, 78), 204);
__m256i iacc_row_1 = _mm256_blend_epi32(_mm256_shuffle_epi32(iacc_mat_00, 78), iacc_mat_01, 204);
__m256i iacc_row_2 = _mm256_blend_epi32(iacc_mat_10, _mm256_shuffle_epi32(iacc_mat_11, 78), 204);
__m256i iacc_row_3 = _mm256_blend_epi32(_mm256_shuffle_epi32(iacc_mat_10, 78), iacc_mat_11, 204);
// Load the scale(d) values for all the 4 Q8_0 blocks and repeat it across lanes
const __m256 row_scale_f32 = GGML_F32Cx8_REPEAT_LOAD(a_ptr[b].d, loadMask);
// Multiply with appropiate scales and accumulate
acc_rows[0] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_0), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[0]);
acc_rows[1] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_1), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[1]);
acc_rows[2] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_2), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[2]);
acc_rows[3] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_3), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[3]);
}
// Store the accumulated values
for (int i = 0; i < 4; i++) {
_mm256_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]);
}
}
}
#else
float sumf[4][8];
int sumi;

View File

@ -723,6 +723,8 @@ ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
struct ggml_backend_cpu_context {
int n_threads;
ggml_threadpool_t threadpool;
void * work_data;
size_t work_size;
@ -759,7 +761,7 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
if (cpu_plan->cplan.work_size > 0) {
@ -796,7 +798,7 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backe
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
if (cpu_ctx->work_size < cplan.work_size) {
free(cpu_ctx->work_data);
@ -825,6 +827,10 @@ GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
case GGML_OP_MUL_MAT:
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
case GGML_OP_ROPE_BACK:
return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
case GGML_OP_IM2COL_BACK:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
default:
return true;
}
@ -873,6 +879,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
}
ctx->n_threads = GGML_DEFAULT_N_THREADS;
ctx->threadpool = NULL;
ctx->work_data = NULL;
ctx->work_size = 0;
ctx->abort_callback = NULL;
@ -903,6 +910,18 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
ctx->n_threads = n_threads;
}
void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
if (ctx->threadpool && ctx->threadpool != threadpool) {
// already had a different threadpool, pause/suspend it before switching
ggml_threadpool_pause(ctx->threadpool);
}
ctx->threadpool = threadpool;
}
void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
@ -1150,6 +1169,11 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
}
}
if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
// since the tensor is pre-allocated, it cannot be moved to another backend
GGML_ABORT("pre-allocated tensor in a backend that cannot run the operation");
}
// graph input
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
@ -1629,7 +1653,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->prev_leaf_backend_ids = tmp;
}
int graph_size = graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
int graph_size = MAX(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
if (sched->graph.size < graph_size) {
sched->graph.size = graph_size;
sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
@ -1681,6 +1705,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
assert(graph_copy->size > graph_copy->n_leafs);
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
@ -1694,6 +1719,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
assert(graph_copy->size > graph_copy->n_leafs);
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
@ -1704,6 +1730,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
assert(graph_copy->size > graph_copy->n_leafs);
graph_copy->leafs[graph_copy->n_leafs++] = leaf;
}
}

View File

@ -32,7 +32,7 @@ DOXYFILE_ENCODING = UTF-8
# title of most generated pages and in a few other places.
# The default value is: My Project.
PROJECT_NAME = "llama.cpp"
PROJECT_NAME = "ggml"
# The PROJECT_NUMBER tag can be used to enter a project or revision number. This
# could be handy for archiving the generated documentation or if some version
@ -44,7 +44,7 @@ PROJECT_NUMBER =
# for a project that appears at the top of each page and should give viewer a
# quick idea about the purpose of the project. Keep the description short.
PROJECT_BRIEF = "llama inference engine"
PROJECT_BRIEF = "Tensor library for machine learning"
# With the PROJECT_LOGO tag one can specify a logo or an icon that is included
# in the documentation. The maximum height of the logo should not exceed 55

View File

@ -227,6 +227,25 @@ typedef struct {
} block_q8_0x8;
static_assert(sizeof(block_q8_0x8) == 8 * sizeof(ggml_half) + QK8_0 * 8, "wrong q8_0x8 block size/padding");
//
// Ternary quantization
//
// 1.6875 bpw
typedef struct {
uint8_t qs[(QK_K - 4 * QK_K / 64) / 5]; // 5 elements per byte (3^5 = 243 < 256)
uint8_t qh[QK_K/64]; // 4 elements per byte
ggml_half d;
} block_tq1_0;
static_assert(sizeof(block_tq1_0) == sizeof(ggml_half) + QK_K / 64 + (QK_K - 4 * QK_K / 64) / 5, "wrong tq1_0 block size/padding");
// 2.0625 bpw
typedef struct {
uint8_t qs[QK_K/4]; // 2 bits per element
ggml_half d;
} block_tq2_0;
static_assert(sizeof(block_tq2_0) == sizeof(ggml_half) + QK_K / 4, "wrong tq2_0 block size/padding");
//
// Super-block quantization structures
//
@ -361,6 +380,7 @@ typedef struct {
} block_iq3_s;
static_assert(sizeof(block_iq3_s) == sizeof(ggml_half) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding");
// 1.5625 bpw
typedef struct {
ggml_half d;
uint8_t qs[QK_K/8];

View File

@ -9,8 +9,10 @@
#include "ggml-cuda/binbcast.cuh"
#include "ggml-cuda/clamp.cuh"
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/convert.cuh"
#include "ggml-cuda/cpy.cuh"
#include "ggml-cuda/cross-entropy-loss.cuh"
#include "ggml-cuda/diagmask.cuh"
#include "ggml-cuda/dmmv.cuh"
#include "ggml-cuda/fattn.cuh"
@ -25,11 +27,11 @@
#include "ggml-cuda/rope.cuh"
#include "ggml-cuda/scale.cuh"
#include "ggml-cuda/softmax.cuh"
#include "ggml-cuda/sum.cuh"
#include "ggml-cuda/sumrows.cuh"
#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include <algorithm>
#include <array>
@ -2179,8 +2181,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
ggml_cuda_dup(ctx, dst);
break;
case GGML_OP_ADD:
case GGML_OP_ADD1: // TODO: more efficient implementation
ggml_cuda_op_add(ctx, dst);
break;
case GGML_OP_SUB:
ggml_cuda_op_sub(ctx, dst);
break;
case GGML_OP_ACC:
ggml_cuda_op_acc(ctx, dst);
break;
@ -2192,6 +2198,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_NEG:
ggml_cuda_op_neg(ctx, dst);
break;
case GGML_UNARY_OP_GELU:
ggml_cuda_op_gelu(ctx, dst);
break;
@ -2267,6 +2276,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_SQRT:
ggml_cuda_op_sqrt(ctx, dst);
break;
case GGML_OP_SIN:
ggml_cuda_op_sin(ctx, dst);
break;
case GGML_OP_COS:
ggml_cuda_op_cos(ctx, dst);
break;
case GGML_OP_CLAMP:
ggml_cuda_op_clamp(ctx, dst);
break;
@ -2294,6 +2309,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_POOL_2D:
ggml_cuda_op_pool2d(ctx, dst);
break;
case GGML_OP_SUM:
ggml_cuda_op_sum(ctx, dst);
break;
case GGML_OP_SUM_ROWS:
ggml_cuda_op_sum_rows(ctx, dst);
break;
@ -2303,6 +2321,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_FLASH_ATTN_EXT:
ggml_cuda_flash_attn_ext(ctx, dst);
break;
case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst);
break;
default:
return false;
}
@ -2531,7 +2552,11 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
if (node->src[0] && node->src[0]->buffer && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to split buffer\n", __func__);
@ -2559,10 +2584,17 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
// store a pointer to each copy op CUDA kernel to identify it later
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
if (!ptr) {
use_cuda_graph = false;
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
} else {
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
}
}
}
if (!use_cuda_graph) {
break;
@ -2610,6 +2642,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) {
assert(node->src[j]->buffer);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
}
}
@ -2727,6 +2760,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
@ -2828,6 +2862,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return true;
}
if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) {
return true;
}
return false;
} break;
case GGML_OP_DUP:
@ -2853,21 +2890,29 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_TRANSPOSE:
case GGML_OP_NORM:
case GGML_OP_ADD:
case GGML_OP_ADD1:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_RMS_NORM:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
return true;
case GGML_OP_CONT:
return op->src[0]->type != GGML_TYPE_BF16;
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
return true;
case GGML_OP_ROPE:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_IM2COL:
return op->src[0]->type == GGML_TYPE_F16;
case GGML_OP_POOL_2D:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
@ -2890,6 +2935,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
}
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
case GGML_OP_CROSS_ENTROPY_LOSS:
return true;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
default:
return false;

View File

@ -9,6 +9,10 @@ static __device__ __forceinline__ float op_add(const float a, const float b) {
return a + b;
}
static __device__ __forceinline__ float op_sub(const float a, const float b) {
return a - b;
}
static __device__ __forceinline__ float op_mul(const float a, const float b) {
return a * b;
}
@ -271,6 +275,10 @@ void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_sub>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}

View File

@ -2,5 +2,6 @@
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -428,7 +428,10 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
char * src0_ddc = (char *) src0->data;
char * src1_ddc = (char *) src1->data;
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
@ -449,9 +452,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}
@ -461,7 +463,9 @@ void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
}
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
return nullptr;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f32_f32>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
@ -482,8 +486,7 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
} else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}

Some files were not shown because too many files have changed in this diff Show More