From 0548a4187f2e53b8fc6d9ff0f4c71988f708ff42 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 28 May 2024 11:04:19 +0300 Subject: [PATCH] ggml : generalize GGML_OP_CONCAT (#7563) * ggml : generalize GGML_OP_CONCAT (WIP) ggml-ci * tests : add dim != 2 tests * metal : generalize concat kernel * tests : naming * cuda : generalize concat kernel ggml-ci * sycl : add warning and assert * ggml : fix op params handling * metal : bugfix kernel ggml-ci * ggml : reimplement CPU and Metal * cuda : add asserts ggml-ci * ggml : fix ptrs ggml-ci --- ggml-cuda/concat.cu | 93 +++++++++++++++++++++++++++++++++++--- ggml-metal.m | 3 ++ ggml-metal.metal | 29 ++++++------ ggml-sycl.cpp | 4 ++ ggml.c | 61 ++++++++++++++++--------- ggml.h | 5 +- tests/test-backend-ops.cpp | 28 +++++++----- 7 files changed, 167 insertions(+), 56 deletions(-) diff --git a/ggml-cuda/concat.cu b/ggml-cuda/concat.cu index 2941d2f17..fb9dee8f8 100644 --- a/ggml-cuda/concat.cu +++ b/ggml-cuda/concat.cu @@ -1,15 +1,68 @@ #include "concat.cuh" -static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) { +static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) { int nidx = threadIdx.x + blockIdx.x * blockDim.x; if (nidx >= ne0) { return; } - // operation + int offset_dst = nidx + blockIdx.y * ne0 + blockIdx.z * ne0 * gridDim.y; + + if (nidx < ne00) { // src0 + int offset_src = + nidx + + blockIdx.y * ne00 + + blockIdx.z * ne00 * gridDim.y; + dst[offset_dst] = x[offset_src]; + } else { + int offset_src = + (nidx - ne00) + + blockIdx.y * (ne0 - ne00) + + blockIdx.z * (ne0 - ne00) * gridDim.y; + dst[offset_dst] = y[offset_src]; + } +} + +static __global__ void concat_f32_dim1(const float * x, const float * y, float * dst, const int ne0, const int ne01) { + int nidx = threadIdx.x + blockIdx.x * blockDim.x; + if (nidx >= ne0) { + return; + } + + int offset_dst = + nidx + + blockIdx.y * ne0 + + blockIdx.z * ne0 * gridDim.y; + + if (blockIdx.y < ne01) { // src0 + int offset_src = + nidx + + blockIdx.y * ne0 + + blockIdx.z * ne0 * ne01; + dst[offset_dst] = x[offset_src]; + } else { + int offset_src = + nidx + + (blockIdx.y - ne01) * ne0 + + blockIdx.z * ne0 * (gridDim.y - ne01); + dst[offset_dst] = y[offset_src]; + } +} + +static __global__ void concat_f32_dim2(const float * x, const float * y, float * dst, const int ne0, const int ne02) { + int nidx = threadIdx.x + blockIdx.x * blockDim.x; + if (nidx >= ne0) { + return; + } + + int offset_dst = + nidx + + blockIdx.y * ne0 + + blockIdx.z * ne0 * gridDim.y; + if (blockIdx.z < ne02) { // src0 int offset_src = nidx + @@ -25,25 +78,53 @@ static __global__ void concat_f32(const float * x,const float * y, float * dst, } } -static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) { +static void concat_f32_cuda(const float * x, const float * y, float * dst, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2, int dim, cudaStream_t stream) { int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE; dim3 gridDim(num_blocks, ne1, ne2); - concat_f32<<>>(x, y, dst, ne0, ne02); + if (dim == 0) { + concat_f32_dim0<<>>(x, y, dst, ne0, ne00); + return; + } + if (dim == 1) { + concat_f32_dim1<<>>(x, y, dst, ne0, ne01); + return; + } + concat_f32_dim2<<>>(x, y, dst, ne0, ne02); } void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; + const float * src0_d = (const float *)src0->data; const float * src1_d = (const float *)src1->data; + float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); + const int32_t dim = ((int32_t *) dst->op_params)[0]; + + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); - for (int i3 = 0; i3 < dst->ne[3]; i3++) { - concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream); + if (dim != 3) { + for (int i3 = 0; i3 < dst->ne[3]; i3++) { + concat_f32_cuda( + src0_d + i3 * (src0->nb[3] / 4), + src1_d + i3 * (src1->nb[3] / 4), + dst_d + i3 * ( dst->nb[3] / 4), + src0->ne[0], src0->ne[1], src0->ne[2], + dst->ne[0], dst->ne[1], dst->ne[2], dim, stream); + } + } else { + const size_t size0 = ggml_nbytes(src0); + const size_t size1 = ggml_nbytes(src1); + + CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream)); + CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream)); } } diff --git a/ggml-metal.m b/ggml-metal.m index ff9ae55aa..4ba498e87 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -990,6 +990,8 @@ static enum ggml_status ggml_metal_graph_compute( { id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline; + const int32_t dim = ((int32_t *) dst->op_params)[0]; + [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; @@ -1018,6 +1020,7 @@ static enum ggml_status ggml_metal_graph_compute( [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; + [encoder setBytes:&dim length:sizeof(dim) atIndex:27]; const int nth = MIN(1024, ne0); diff --git a/ggml-metal.metal b/ggml-metal.metal index 174086b5b..b16f2b7e0 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -3366,31 +3366,30 @@ kernel void kernel_concat( constant uint64_t & nb1, constant uint64_t & nb2, constant uint64_t & nb3, + constant int32_t & dim, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { - const int64_t i03 = tgpig.z; - const int64_t i02 = tgpig.y; - const int64_t i01 = tgpig.x; + const int64_t i3 = tgpig.z; + const int64_t i2 = tgpig.y; + const int64_t i1 = tgpig.x; - const int64_t i13 = i03 % ne13; - const int64_t i12 = i02 % ne12; - const int64_t i11 = i01 % ne11; + int64_t o[4] = {0, 0, 0, 0}; + o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03)); - device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00; - device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10; - device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0; + device const float * x; for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { - if (i02 < ne02) { - ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0]; - src0_ptr += ntg.x*nb00; + if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { + x = (device const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00); } else { - ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0]; - src1_ptr += ntg.x*nb10; + x = (device const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10); } - dst_ptr += ntg.x*nb0; + + device float * y = (device float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + *y = *x; } } diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index 8839f775d..d5384b2e0 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -13512,6 +13512,10 @@ inline void ggml_sycl_op_concat(const ggml_tensor *src0, const float *src0_dd, const float *src1_dd, float *dst_dd, const dpct::queue_ptr &main_stream) { +#pragma message("TODO: generalize concat kernel for dim != 2") +#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7563") + int dim = dst->op_params[0]; + GGML_ASSERT(dim != 2); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); diff --git a/ggml.c b/ggml.c index 5145ceec9..023077ca6 100644 --- a/ggml.c +++ b/ggml.c @@ -4882,10 +4882,21 @@ struct ggml_tensor * ggml_repeat_back( // ggml_concat struct ggml_tensor * ggml_concat( - struct ggml_context* ctx, - struct ggml_tensor* a, - struct ggml_tensor* b) { - GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]); + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int dim) { + GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS); + + int64_t ne[GGML_MAX_DIMS]; + for (int d = 0; d < GGML_MAX_DIMS; ++d) { + if (d == dim) { + ne[d] = a->ne[d] + b->ne[d]; + continue; + } + GGML_ASSERT(a->ne[d] == b->ne[d]); + ne[d] = a->ne[d]; + } bool is_node = false; @@ -4893,7 +4904,9 @@ struct ggml_tensor * ggml_concat( is_node = true; } - struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]); + struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne); + + ggml_set_op_params_i32(result, 0, dim); result->op = GGML_OP_CONCAT; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -5013,6 +5026,7 @@ struct ggml_tensor * ggml_leaky_relu( } struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + ggml_set_op_params(result, &negative_slope, sizeof(negative_slope)); result->op = GGML_OP_LEAKY_RELU; @@ -10967,26 +10981,29 @@ static void ggml_compute_forward_concat_f32( GGML_ASSERT(nb00 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float)); + const int32_t dim = ggml_get_op_params_i32(dst, 0); + + GGML_ASSERT(dim >= 0 && dim < 4); + + int64_t o[4] = {0, 0, 0, 0}; + o[dim] = src0->ne[dim]; + + const float * x; + + // TODO: smarter multi-theading for (int i3 = 0; i3 < ne3; i3++) { for (int i2 = ith; i2 < ne2; i2 += nth) { - if (i2 < ne02) { // src0 - for (int i1 = 0; i1 < ne1; i1++) { - for (int i0 = 0; i0 < ne0; i0++) { - const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03); - - float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3); - *y = *x; + for (int i1 = 0; i1 < ne1; i1++) { + for (int i0 = 0; i0 < ne0; i0++) { + if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { + x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03); + } else { + x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13); } - } - } // src1 - else { - for (int i1 = 0; i1 < ne1; i1++) { - for (int i0 = 0; i0 < ne0; i0++) { - const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13); - float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3); - *y = *x; - } + float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); + + *y = *x; } } } @@ -10994,7 +11011,7 @@ static void ggml_compute_forward_concat_f32( } static void ggml_compute_forward_concat( - const struct ggml_compute_params* params, + const struct ggml_compute_params * params, struct ggml_tensor* dst) { const struct ggml_tensor * src0 = dst->src[0]; diff --git a/ggml.h b/ggml.h index f803ba724..4e6bcb30f 100644 --- a/ggml.h +++ b/ggml.h @@ -1007,12 +1007,13 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); - // concat a and b on dim 2 + // concat a and b along dim // used in stable-diffusion GGML_API struct ggml_tensor * ggml_concat( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b); + struct ggml_tensor * b, + int dim); GGML_API struct ggml_tensor * ggml_abs( struct ggml_context * ctx, diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index de74585da..b200ccccd 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1259,22 +1259,26 @@ struct test_im2col : public test_case { // GGML_OP_CONCAT struct test_concat : public test_case { const ggml_type type; - const std::array ne; - const int64_t b_ne2; + const std::array ne_a; + const int64_t ne_b_d; + const int dim; std::string vars() override { - return VARS_TO_STR3(type, ne, b_ne2); + return VARS_TO_STR4(type, ne_a, ne_b_d, dim); } test_concat(ggml_type type = GGML_TYPE_F32, - std::array ne = {10, 10, 10, 10}, - int64_t b_ne2 = 10) - : type(type), ne(ne), b_ne2(b_ne2) {} + std::array ne_a = {10, 10, 10, 10}, + int64_t ne_b_d = 10, + int dim = 2) + : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim) {} ggml_tensor * build_graph(ggml_context * ctx) override { - ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); - ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]); - ggml_tensor * out = ggml_concat(ctx, a, b); + auto ne_b = ne_a; + ne_b[dim] = ne_b_d; + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); + ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data()); + ggml_tensor * out = ggml_concat(ctx, a, b, dim); return out; } }; @@ -2211,8 +2215,10 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op } } - test_cases.emplace_back(new test_concat(GGML_TYPE_F32)); - test_cases.emplace_back(new test_concat(GGML_TYPE_I32)); + for (int dim : { 0, 1, 2, 3, }) { + test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim)); + test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim)); + } for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) { test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));