server : fill usage info in embeddings and rerank responses (#10852)

* server : fill usage info in embeddings response

* server : fill usage info in reranking response
This commit is contained in:
krystiancha 2024-12-17 16:00:24 +00:00 committed by GitHub
parent 382bc7f2e8
commit 05c3a444b8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 77 additions and 10 deletions

View File

@ -719,14 +719,17 @@ struct server_task_result_embd : server_task_result {
int index = 0;
std::vector<float> embedding;
int32_t n_tokens;
virtual int get_index() override {
return index;
}
virtual json to_json() override {
return json {
{"index", index},
{"embedding", embedding},
{"index", index},
{"embedding", embedding},
{"tokens_evaluated", n_tokens},
};
}
};
@ -735,14 +738,17 @@ struct server_task_result_rerank : server_task_result {
int index = 0;
float score = -1e6;
int32_t n_tokens;
virtual int get_index() override {
return index;
}
virtual json to_json() override {
return json {
{"index", index},
{"score", score},
{"index", index},
{"score", score},
{"tokens_evaluated", n_tokens},
};
}
};
@ -1995,6 +2001,7 @@ struct server_context {
auto res = std::make_unique<server_task_result_embd>();
res->id = slot.id_task;
res->index = slot.index;
res->n_tokens = slot.n_prompt_tokens;
const int n_embd = llama_n_embd(model);
@ -2030,6 +2037,7 @@ struct server_context {
auto res = std::make_unique<server_task_result_rerank>();
res->id = slot.id_task;
res->index = slot.index;
res->n_tokens = slot.n_prompt_tokens;
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {

View File

@ -97,3 +97,33 @@ def test_same_prompt_give_same_result():
vi = res.body['data'][i]['embedding']
for x, y in zip(v0, vi):
assert abs(x - y) < EPSILON
@pytest.mark.parametrize(
"content,n_tokens",
[
("I believe the meaning of life is", 7),
("This is a test", 4),
]
)
def test_embedding_usage_single(content, n_tokens):
global server
server.start()
res = server.make_request("POST", "/embeddings", data={"input": content})
assert res.status_code == 200
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
assert res.body['usage']['prompt_tokens'] == n_tokens
def test_embedding_usage_multiple():
global server
server.start()
res = server.make_request("POST", "/embeddings", data={
"input": [
"I believe the meaning of life is",
"I believe the meaning of life is",
],
})
assert res.status_code == 200
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
assert res.body['usage']['prompt_tokens'] == 2 * 7

View File

@ -53,3 +53,26 @@ def test_invalid_rerank_req(documents):
})
assert res.status_code == 400
assert "error" in res.body
@pytest.mark.parametrize(
"query,doc1,doc2,n_tokens",
[
("Machine learning is", "A machine", "Learning is", 19),
("Which city?", "Machine learning is ", "Paris, capitale de la", 26),
]
)
def test_rerank_usage(query, doc1, doc2, n_tokens):
global server
server.start()
res = server.make_request("POST", "/rerank", data={
"query": query,
"documents": [
doc1,
doc2,
]
})
assert res.status_code == 200
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
assert res.body['usage']['prompt_tokens'] == n_tokens

View File

@ -560,6 +560,7 @@ static json oaicompat_completion_params_parse(
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
json data = json::array();
int32_t n_tokens = 0;
int i = 0;
for (const auto & elem : embeddings) {
data.push_back(json{
@ -567,14 +568,16 @@ static json format_embeddings_response_oaicompat(const json & request, const jso
{"index", i++},
{"object", "embedding"}
});
n_tokens += json_value(elem, "tokens_evaluated", 0);
}
json res = json {
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json { // TODO: fill
{"prompt_tokens", 0},
{"total_tokens", 0}
{"usage", json {
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"data", data}
};
@ -584,20 +587,23 @@ static json format_embeddings_response_oaicompat(const json & request, const jso
static json format_response_rerank(const json & request, const json & ranks) {
json data = json::array();
int32_t n_tokens = 0;
int i = 0;
for (const auto & rank : ranks) {
data.push_back(json{
{"index", i++},
{"relevance_score", json_value(rank, "score", 0.0)},
});
n_tokens += json_value(rank, "tokens_evaluated", 0);
}
json res = json {
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json { // TODO: fill
{"prompt_tokens", 0},
{"total_tokens", 0}
{"usage", json {
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"results", data}
};