diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp index b35b2b930..be91b2891 100644 --- a/examples/simple/simple.cpp +++ b/examples/simple/simple.cpp @@ -1,37 +1,84 @@ #include "llama.h" #include +#include #include #include static void print_usage(int, char ** argv) { printf("\nexample usage:\n"); - printf("\n %s [prompt]\n", argv[0]); + printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]); printf("\n"); } int main(int argc, char ** argv) { + // path to the model gguf file std::string model_path; + // prompt to generate text from std::string prompt = "Hello my name is"; + // number of layers to offload to the GPU + int ngl = 99; + // number of tokens to predict int n_predict = 32; - if (argc < 2) { - print_usage(argc, argv); - return 1; - } - model_path = argv[1]; + // parse command line arguments - if (argc > 2) { - prompt = argv[2]; - for (int i = 3; i < argc; i++) { - prompt += " "; - prompt += argv[i]; + { + int i = 1; + for (; i < argc; i++) { + if (strcmp(argv[i], "-m") == 0) { + if (i + 1 < argc) { + model_path = argv[++i]; + } else { + print_usage(argc, argv); + return 1; + } + } else if (strcmp(argv[i], "-n") == 0) { + if (i + 1 < argc) { + try { + n_predict = std::stoi(argv[++i]); + } catch (...) { + print_usage(argc, argv); + return 1; + } + } else { + print_usage(argc, argv); + return 1; + } + } else if (strcmp(argv[i], "-ngl") == 0) { + if (i + 1 < argc) { + try { + ngl = std::stoi(argv[++i]); + } catch (...) { + print_usage(argc, argv); + return 1; + } + } else { + print_usage(argc, argv); + return 1; + } + } else { + // prompt starts here + break; + } + } + if (model_path.empty()) { + print_usage(argc, argv); + return 1; + } + if (i < argc) { + prompt = argv[i++]; + for (; i < argc; i++) { + prompt += " "; + prompt += argv[i]; + } } } // initialize the model llama_model_params model_params = llama_model_default_params(); - model_params.n_gpu_layers = 99; // offload all layers to GPU + model_params.n_gpu_layers = ngl; + llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params); if (model == NULL) { @@ -39,11 +86,28 @@ int main(int argc, char ** argv) { return 1; } + // tokenize the prompt + + // find the number of tokens in the prompt + const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true); + + // allocate space for the tokens and tokenize the prompt + std::vector prompt_tokens(n_prompt); + if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) { + fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__); + return 1; + } + // initialize the context llama_context_params ctx_params = llama_context_default_params(); - ctx_params.n_ctx = 512; // maximum context size + // n_ctx is the context size + ctx_params.n_ctx = n_prompt + n_predict - 1; + // n_batch is the maximum number of tokens that can be processed in a single call to llama_decode + ctx_params.n_batch = n_prompt; + // enable performance counters ctx_params.no_perf = false; + llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { @@ -51,40 +115,17 @@ int main(int argc, char ** argv) { return 1; } + // initialize the sampler + auto sparams = llama_sampler_chain_default_params(); sparams.no_perf = false; llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); - // tokenize the prompt - - std::vector tokens_list; - int n_tokens = llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true); - tokens_list.resize(-n_tokens); - if (llama_tokenize(model, prompt.c_str(), prompt.size(), tokens_list.data(), tokens_list.size(), true, true) < 0) { - fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__); - return 1; - } - - const int n_ctx = llama_n_ctx(ctx); - const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size()); - - fprintf(stderr, "%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req); - - - // make sure the KV cache is big enough to hold all the prompt and generated tokens - if (n_kv_req > n_ctx) { - fprintf(stderr, "%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); - fprintf(stderr, "%s: either reduce n_predict or increase n_ctx\n", __func__); - return 1; - } - // print the prompt token-by-token - fprintf(stderr, "\n"); - - for (auto id : tokens_list) { + for (auto id : prompt_tokens) { char buf[128]; int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true); if (n < 0) { @@ -95,34 +136,31 @@ int main(int argc, char ** argv) { printf("%s", s.c_str()); } - // create a llama_batch with size 512 - // we use this object to submit token data for decoding + // prepare a batch for the prompt - llama_batch batch = llama_batch_get_one(tokens_list.data(), tokens_list.size(), 0, 0); - - // evaluate the initial prompt - - if (llama_decode(ctx, batch) != 0) { - fprintf(stderr, "%s: llama_decode() failed\n", __func__); - return 1; - } + llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size(), 0, 0); // main loop - int n_cur = batch.n_tokens; - int n_decode = 0; - const auto t_main_start = ggml_time_us(); + int n_decode = 0; + llama_token new_token_id; + + for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) { + // evaluate the current batch with the transformer model + if (llama_decode(ctx, batch)) { + fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); + return 1; + } + + n_pos += batch.n_tokens; - while (n_cur <= n_predict) { // sample the next token - llama_token new_token_id = llama_sampler_sample(smpl, ctx, -1); { + new_token_id = llama_sampler_sample(smpl, ctx, -1); // is it an end of generation? - if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) { - fprintf(stderr, "\n"); - + if (llama_token_is_eog(model, new_token_id)) { break; } @@ -136,22 +174,14 @@ int main(int argc, char ** argv) { printf("%s", s.c_str()); fflush(stdout); - // prepare the next batch - batch = llama_batch_get_one(&new_token_id, 1, n_cur, 0); + // prepare the next batch with the sampled token + batch = llama_batch_get_one(&new_token_id, 1, n_pos, 0); n_decode += 1; } - - n_cur += 1; - - // evaluate the current batch with the transformer model - if (llama_decode(ctx, batch)) { - fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); - return 1; - } } - fprintf(stderr, "\n"); + printf("\n"); const auto t_main_end = ggml_time_us();