mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 02:44:36 +00:00
ggml : add view_src and view_offs to ggml_tensor for views (#2874)
* ggml : add view_src and view_offs * update ggml-alloc to use view_src * update ggml_diag_mask to work correctly with automatic inplace * exclude other ops that set an inplace flag from automatic inplace
This commit is contained in:
parent
c03a243abf
commit
06abf8eeba
53
ggml-alloc.c
53
ggml-alloc.c
@ -321,8 +321,7 @@ bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
|
||||
//////////// compute graph allocator
|
||||
|
||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
|
||||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
|
||||
return t->view_src != NULL;
|
||||
}
|
||||
|
||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||
@ -340,28 +339,6 @@ static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml
|
||||
return true;
|
||||
}
|
||||
|
||||
static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
|
||||
switch (t->op) {
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_VIEW:
|
||||
return t->src[0];
|
||||
case GGML_OP_CPY:
|
||||
return t->src[1];
|
||||
default:
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
|
||||
struct ggml_tensor * parent = t;
|
||||
do {
|
||||
parent = get_view_parent(parent);
|
||||
} while (ggml_is_view(parent));
|
||||
return parent;
|
||||
}
|
||||
|
||||
static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
switch (op) {
|
||||
case GGML_OP_SCALE:
|
||||
@ -369,7 +346,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
@ -379,7 +355,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
case GGML_OP_UNARY:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_CONT:
|
||||
return true;
|
||||
@ -393,24 +368,8 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
||||
struct hash_node * ht = alloc->hash_table;
|
||||
if (node->data == NULL) {
|
||||
if (ggml_is_view(node)) {
|
||||
size_t offset;
|
||||
switch(node->op) {
|
||||
case GGML_OP_VIEW:
|
||||
memcpy(&offset, node->op_params, sizeof(size_t));
|
||||
node->data = (char *) node->src[0]->data + offset;
|
||||
break;
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
node->data = node->src[0]->data;
|
||||
break;
|
||||
case GGML_OP_CPY:
|
||||
node->data = node->src[1]->data;
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(!"unknown view op");
|
||||
break;
|
||||
}
|
||||
assert(node->view_src->data != NULL);
|
||||
node->data = (char *)node->view_src->data + node->view_offs;
|
||||
} else {
|
||||
// see if we can reuse a parent's buffer (inplace)
|
||||
if (ggml_op_can_inplace(node->op)) {
|
||||
@ -430,7 +389,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = get_view_source(parent);
|
||||
struct ggml_tensor * view_src = parent->view_src;
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
||||
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
|
||||
@ -472,7 +431,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
if (ggml_is_view(node)) {
|
||||
struct ggml_tensor * view_src = get_view_source(node);
|
||||
struct ggml_tensor * view_src = node->view_src;
|
||||
hash_get(ht, view_src)->n_views += 1;
|
||||
}
|
||||
|
||||
@ -557,7 +516,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
|
||||
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = get_view_source(parent);
|
||||
struct ggml_tensor * view_src = parent->view_src;
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
view_src_hn->n_views -= 1;
|
||||
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
||||
|
199
ggml.c
199
ggml.c
@ -4104,16 +4104,11 @@ int64_t ggml_nrows(const struct ggml_tensor * tensor) {
|
||||
}
|
||||
|
||||
size_t ggml_nbytes(const struct ggml_tensor * tensor) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
// this should handle cases where the tensor is not contiguous in memory
|
||||
// probaby just:
|
||||
//
|
||||
// return tensor->ne[3]*tensor->nb[3]
|
||||
//
|
||||
// is enough, but just in case, adding the second part
|
||||
|
||||
return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type));
|
||||
size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
|
||||
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
|
||||
}
|
||||
return nbytes;
|
||||
}
|
||||
|
||||
size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
|
||||
@ -4567,20 +4562,33 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||
enum ggml_type type,
|
||||
int n_dims,
|
||||
const int64_t * ne,
|
||||
void * data) {
|
||||
struct ggml_tensor * view_src,
|
||||
size_t view_offs) {
|
||||
|
||||
assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
|
||||
|
||||
size_t data_size = 0;
|
||||
// find the base tensor and absolute offset
|
||||
if (view_src != NULL && view_src->view_src != NULL) {
|
||||
view_offs += view_src->view_offs;
|
||||
view_src = view_src->view_src;
|
||||
}
|
||||
|
||||
if (data == NULL && !ctx->no_alloc) {
|
||||
data_size += ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
|
||||
size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
|
||||
for (int i = 1; i < n_dims; i++) {
|
||||
data_size *= ne[i];
|
||||
}
|
||||
|
||||
GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
|
||||
|
||||
void * data = view_src != NULL ? view_src->data : NULL;
|
||||
if (data != NULL) {
|
||||
data = (char *) data + view_offs;
|
||||
}
|
||||
|
||||
if (ctx->scratch.data != NULL && data == NULL) {
|
||||
size_t obj_alloc_size = 0;
|
||||
|
||||
if (view_src == NULL && ctx->no_alloc == false) {
|
||||
if (ctx->scratch.data != NULL) {
|
||||
// allocate tensor data in the scratch buffer
|
||||
if (ctx->scratch.offs + data_size > ctx->scratch.size) {
|
||||
GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
|
||||
@ -4592,11 +4600,13 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||
data = (char * const) ctx->scratch.data + ctx->scratch.offs;
|
||||
|
||||
ctx->scratch.offs += data_size;
|
||||
|
||||
data_size = 0;
|
||||
} else {
|
||||
// allocate tensor data in the context's memory pool
|
||||
obj_alloc_size = data_size;
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
|
||||
struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
|
||||
|
||||
// TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
|
||||
|
||||
@ -4616,7 +4626,9 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||
/*.perf_runs =*/ 0,
|
||||
/*.perf_cycles =*/ 0,
|
||||
/*.perf_time_us =*/ 0,
|
||||
/*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
|
||||
/*.view_src =*/ view_src,
|
||||
/*.view_offs =*/ view_offs,
|
||||
/*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
|
||||
/*.name =*/ { 0 },
|
||||
/*.extra =*/ NULL,
|
||||
/*.padding =*/ { 0 },
|
||||
@ -4640,28 +4652,12 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||
return result;
|
||||
}
|
||||
|
||||
static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
|
||||
GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
|
||||
assert(params_size <= GGML_MAX_OP_PARAMS);
|
||||
memcpy(tensor->op_params, params, params_size);
|
||||
}
|
||||
|
||||
static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
|
||||
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
|
||||
return ((const int32_t *)(tensor->op_params))[i];
|
||||
}
|
||||
|
||||
static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
|
||||
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
|
||||
((int32_t *)(tensor->op_params))[i] = value;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int n_dims,
|
||||
const int64_t * ne) {
|
||||
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
|
||||
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_1d(
|
||||
@ -4726,7 +4722,23 @@ struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
|
||||
return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
|
||||
return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
|
||||
}
|
||||
|
||||
static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
|
||||
GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
|
||||
assert(params_size <= GGML_MAX_OP_PARAMS);
|
||||
memcpy(tensor->op_params, params, params_size);
|
||||
}
|
||||
|
||||
static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
|
||||
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
|
||||
return ((const int32_t *)(tensor->op_params))[i];
|
||||
}
|
||||
|
||||
static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
|
||||
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
|
||||
((int32_t *)(tensor->op_params))[i] = value;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
|
||||
@ -5012,14 +5024,13 @@ struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char *
|
||||
|
||||
struct ggml_tensor * ggml_view_tensor(
|
||||
struct ggml_context * ctx,
|
||||
const struct ggml_tensor * src) {
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
|
||||
struct ggml_tensor * src) {
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
|
||||
ggml_format_name(result, "%s (view)", src->name);
|
||||
|
||||
result->nb[0] = src->nb[0];
|
||||
result->nb[1] = src->nb[1];
|
||||
result->nb[2] = src->nb[2];
|
||||
result->nb[3] = src->nb[3];
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
result->nb[i] = src->nb[i];
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6201,7 +6212,7 @@ struct ggml_tensor * ggml_reshape(
|
||||
//GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
|
||||
ggml_format_name(result, "%s (reshaped)", a->name);
|
||||
|
||||
result->op = GGML_OP_RESHAPE;
|
||||
@ -6225,7 +6236,7 @@ struct ggml_tensor * ggml_reshape_1d(
|
||||
}
|
||||
|
||||
const int64_t ne[1] = { ne0 };
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
|
||||
ggml_format_name(result, "%s (reshaped)", a->name);
|
||||
|
||||
result->op = GGML_OP_RESHAPE;
|
||||
@ -6250,7 +6261,7 @@ struct ggml_tensor * ggml_reshape_2d(
|
||||
}
|
||||
|
||||
const int64_t ne[2] = { ne0, ne1 };
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
|
||||
ggml_format_name(result, "%s (reshaped)", a->name);
|
||||
|
||||
result->op = GGML_OP_RESHAPE;
|
||||
@ -6276,7 +6287,7 @@ struct ggml_tensor * ggml_reshape_3d(
|
||||
}
|
||||
|
||||
const int64_t ne[3] = { ne0, ne1, ne2 };
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
|
||||
ggml_format_name(result, "%s (reshaped)", a->name);
|
||||
|
||||
result->op = GGML_OP_RESHAPE;
|
||||
@ -6286,7 +6297,6 @@ struct ggml_tensor * ggml_reshape_3d(
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
struct ggml_tensor * ggml_reshape_4d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -6304,7 +6314,7 @@ struct ggml_tensor * ggml_reshape_4d(
|
||||
}
|
||||
|
||||
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
|
||||
ggml_format_name(result, "%s (reshaped)", a->name);
|
||||
|
||||
result->op = GGML_OP_RESHAPE;
|
||||
@ -6314,34 +6324,12 @@ struct ggml_tensor * ggml_reshape_4d(
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_view_1d
|
||||
|
||||
static struct ggml_tensor * ggml_view_tensor_offset(
|
||||
static struct ggml_tensor * ggml_view_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_dims,
|
||||
const int64_t * ne,
|
||||
size_t offset) {
|
||||
// don't calculate an offset from an unallocated tensor
|
||||
void * data = NULL;
|
||||
if (a->data != NULL) {
|
||||
data = (char *) a->data + offset;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
|
||||
|
||||
ggml_format_name(result, "%s (view)", a->name);
|
||||
|
||||
ggml_set_op_params(result, &offset, sizeof(offset));
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_view_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int64_t ne0,
|
||||
size_t offset) {
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
@ -6349,7 +6337,10 @@ struct ggml_tensor * ggml_view_1d(
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
|
||||
ggml_format_name(result, "%s (view)", a->name);
|
||||
|
||||
ggml_set_op_params(result, &offset, sizeof(offset));
|
||||
|
||||
result->op = GGML_OP_VIEW;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
@ -6358,6 +6349,19 @@ struct ggml_tensor * ggml_view_1d(
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_view_1d
|
||||
|
||||
struct ggml_tensor * ggml_view_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int64_t ne0,
|
||||
size_t offset) {
|
||||
|
||||
struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_view_2d
|
||||
|
||||
struct ggml_tensor * ggml_view_2d(
|
||||
@ -6368,24 +6372,14 @@ struct ggml_tensor * ggml_view_2d(
|
||||
size_t nb1,
|
||||
size_t offset) {
|
||||
|
||||
bool is_node = false;
|
||||
const int64_t ne[2] = { ne0, ne1 };
|
||||
|
||||
if (a->grad) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
|
||||
|
||||
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
|
||||
struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
|
||||
|
||||
result->nb[1] = nb1;
|
||||
result->nb[2] = result->nb[1]*ne1;
|
||||
result->nb[3] = result->nb[2];
|
||||
|
||||
result->op = GGML_OP_VIEW;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -6401,24 +6395,14 @@ struct ggml_tensor * ggml_view_3d(
|
||||
size_t nb2,
|
||||
size_t offset) {
|
||||
|
||||
bool is_node = false;
|
||||
const int64_t ne[3] = { ne0, ne1, ne2 };
|
||||
|
||||
if (a->grad) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
|
||||
|
||||
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
|
||||
struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
|
||||
|
||||
result->nb[1] = nb1;
|
||||
result->nb[2] = nb2;
|
||||
result->nb[3] = result->nb[2]*ne2;
|
||||
|
||||
result->op = GGML_OP_VIEW;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -6436,24 +6420,14 @@ struct ggml_tensor * ggml_view_4d(
|
||||
size_t nb3,
|
||||
size_t offset) {
|
||||
|
||||
bool is_node = false;
|
||||
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
|
||||
|
||||
if (a->grad) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
|
||||
|
||||
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
|
||||
struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
|
||||
|
||||
result->nb[1] = nb1;
|
||||
result->nb[2] = nb2;
|
||||
result->nb[3] = nb3;
|
||||
|
||||
result->op = GGML_OP_VIEW;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -6640,7 +6614,7 @@ static struct ggml_tensor * ggml_diag_mask_inf_impl(
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
int32_t params[] = { n_past, inplace ? 1 : 0 };
|
||||
int32_t params[] = { n_past };
|
||||
ggml_set_op_params(result, params, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_DIAG_MASK_INF;
|
||||
@ -6657,7 +6631,6 @@ struct ggml_tensor * ggml_diag_mask_inf(
|
||||
return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
|
||||
}
|
||||
|
||||
|
||||
struct ggml_tensor * ggml_diag_mask_inf_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -6680,7 +6653,7 @@ static struct ggml_tensor * ggml_diag_mask_zero_impl(
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
int32_t params[] = { n_past, inplace ? 1 : 0 };
|
||||
int32_t params[] = { n_past };
|
||||
ggml_set_op_params(result, params, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_DIAG_MASK_ZERO;
|
||||
@ -11936,7 +11909,7 @@ static void ggml_compute_forward_diag_mask_f32(
|
||||
const int nth = params->nth;
|
||||
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const bool inplace = (bool)((int32_t *) dst->op_params)[1];
|
||||
const bool inplace = src0->data == dst->data;
|
||||
|
||||
GGML_ASSERT(n_past >= 0);
|
||||
|
||||
|
5
ggml.h
5
ggml.h
@ -479,6 +479,9 @@ extern "C" {
|
||||
int64_t perf_cycles;
|
||||
int64_t perf_time_us;
|
||||
|
||||
struct ggml_tensor * view_src;
|
||||
size_t view_offs;
|
||||
|
||||
void * data;
|
||||
|
||||
char name[GGML_MAX_NAME];
|
||||
@ -661,7 +664,7 @@ extern "C" {
|
||||
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
||||
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
||||
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user