mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
quantize: add imatrix and dataset metadata in GGUF (#6658)
* imatrix: save the dataset file used in the output file * llama: support kv overrides type string string * common: factorize KV Overrides parsing between common and server * quantize: add imatrix n entries and dataset KV metadata quantize: factorize KV Overrides parsing between common #6656 * llama: remove kv override str_value initialization as it does not compile on some toolchain * quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count` * quantize: add imatrix filename in KV * llama: add llama_model_kv_override_free * common: add llama_model_kv_override_free common: free kv override if used after model loading * llama: finally move the string KV override value to the stack * llama : minor * no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators. Co-authored-by: slaren <slarengh@gmail.com> * kv override: ensure string termination --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
017e6999b5
commit
0c4d489e29
2
Makefile
2
Makefile
@ -768,7 +768,7 @@ batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
quantize: examples/quantize/quantize.cpp build-info.o ggml.o llama.o $(OBJS)
|
||||
quantize: examples/quantize/quantize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
|
@ -234,6 +234,52 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
return result;
|
||||
}
|
||||
|
||||
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
|
||||
const char * sep = strchr(data, '=');
|
||||
if (sep == nullptr || sep - data >= 128) {
|
||||
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, data, sep - data);
|
||||
kvo.key[sep - data] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.val_i64 = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.val_f64 = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.val_bool = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.val_bool = false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
} else if (strncmp(sep, "str:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
|
||||
if (strlen(sep) > 127) {
|
||||
fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
strncpy(kvo.val_str, sep, 127);
|
||||
kvo.val_str[127] = '\0';
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
overrides.emplace_back(std::move(kvo));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
|
||||
llama_sampling_params & sparams = params.sparams;
|
||||
|
||||
@ -1244,47 +1290,11 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
char* sep = strchr(argv[i], '=');
|
||||
if (sep == nullptr || sep - argv[i] >= 128) {
|
||||
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
struct llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, argv[i], sep - argv[i]);
|
||||
kvo.key[sep - argv[i]] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
}
|
||||
else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
}
|
||||
else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
}
|
||||
else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
}
|
||||
else {
|
||||
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (!parse_kv_override(argv[i], params.kv_overrides)) {
|
||||
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.kv_overrides.push_back(kvo);
|
||||
return true;
|
||||
}
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
@ -1555,7 +1565,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -ptc N, --print-token-count N\n");
|
||||
printf(" print token count every N tokens (default: %d)\n", params.n_print);
|
||||
printf(" --check-tensors check model tensor data for invalid values\n");
|
||||
|
@ -171,6 +171,8 @@ struct gpt_params {
|
||||
std::string image = ""; // path to an image file
|
||||
};
|
||||
|
||||
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
|
||||
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
|
@ -23,6 +23,7 @@ struct Stats {
|
||||
};
|
||||
|
||||
struct StatParams {
|
||||
std::string dataset;
|
||||
std::string ofile = "imatrix.dat";
|
||||
int n_output_frequency = 10;
|
||||
int verbosity = 1;
|
||||
@ -46,7 +47,7 @@ private:
|
||||
std::vector<float> m_src1_data;
|
||||
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
|
||||
//
|
||||
void save_imatrix(const char * file_name) const;
|
||||
void save_imatrix(const char * file_name, const char * dataset) const;
|
||||
void keep_imatrix(int ncall) const;
|
||||
};
|
||||
|
||||
@ -199,7 +200,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
}
|
||||
|
||||
void IMatrixCollector::save_imatrix() const {
|
||||
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str());
|
||||
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(), m_params.dataset.c_str());
|
||||
}
|
||||
|
||||
void IMatrixCollector::keep_imatrix(int ncall) const {
|
||||
@ -207,14 +208,14 @@ void IMatrixCollector::keep_imatrix(int ncall) const {
|
||||
if (file_name.empty()) file_name = "imatrix.dat";
|
||||
file_name += ".at_";
|
||||
file_name += std::to_string(ncall);
|
||||
save_imatrix(file_name.c_str());
|
||||
save_imatrix(file_name.c_str(), m_params.dataset.c_str());
|
||||
}
|
||||
|
||||
void IMatrixCollector::save_imatrix(const char * fname) const {
|
||||
void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) const {
|
||||
std::ofstream out(fname, std::ios::binary);
|
||||
int n_entries = m_stats.size();
|
||||
out.write((const char *) &n_entries, sizeof(n_entries));
|
||||
for (auto& p : m_stats) {
|
||||
for (const auto & p : m_stats) {
|
||||
int len = p.first.size();
|
||||
out.write((const char *) &len, sizeof(len));
|
||||
out.write(p.first.c_str(), len);
|
||||
@ -223,6 +224,15 @@ void IMatrixCollector::save_imatrix(const char * fname) const {
|
||||
out.write((const char *) &nval, sizeof(nval));
|
||||
if (nval > 0) out.write((const char *) p.second.values.data(), nval * sizeof(float));
|
||||
}
|
||||
|
||||
// Write the number of call the matrix was computed with
|
||||
out.write((const char *) &m_last_call, sizeof(m_last_call));
|
||||
|
||||
// Write the dataset name at the end of the file to later on specify it in quantize
|
||||
int n_dataset = strlen(dataset);
|
||||
out.write((const char *) &n_dataset, sizeof(n_dataset));
|
||||
out.write(dataset, n_dataset);
|
||||
|
||||
if (m_params.verbosity > 0) {
|
||||
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname);
|
||||
}
|
||||
@ -547,6 +557,29 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
gpt_params params;
|
||||
params.n_batch = 512;
|
||||
if (!gpt_params_parse(args.size(), args.data(), params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.logits_all = true;
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
print_build_info();
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
sparams.dataset = params.prompt_file;
|
||||
g_collector.set_parameters(std::move(sparams));
|
||||
|
||||
if (!combine_files.empty()) {
|
||||
@ -585,28 +618,6 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
gpt_params params;
|
||||
params.n_batch = 512;
|
||||
if (!gpt_params_parse(args.size(), args.data(), params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.logits_all = true;
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
print_build_info();
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
set(TARGET quantize)
|
||||
add_executable(${TARGET} quantize.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_include_directories(${TARGET} PRIVATE ../../common)
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
@ -8,7 +8,6 @@
|
||||
#include <unordered_map>
|
||||
#include <fstream>
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
|
||||
struct quant_option {
|
||||
std::string name;
|
||||
@ -53,6 +52,10 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
};
|
||||
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset";
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
|
||||
|
||||
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
|
||||
std::string ftype_str;
|
||||
@ -113,7 +116,7 @@ static void usage(const char * executable) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
static void load_imatrix(const std::string & imatrix_file, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
||||
static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
||||
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
|
||||
if (!in) {
|
||||
printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
|
||||
@ -160,18 +163,33 @@ static void load_imatrix(const std::string & imatrix_file, std::unordered_map<st
|
||||
printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
|
||||
}
|
||||
}
|
||||
printf("%s: loaded %d importance matrix entries from %s\n", __func__, int(imatrix_data.size()), imatrix_file.c_str());
|
||||
|
||||
// latest imatrix version contains the dataset filename at the end of the file
|
||||
int m_last_call = 0;
|
||||
if (in.peek() != EOF) {
|
||||
in.read((char *)&m_last_call, sizeof(m_last_call));
|
||||
int dataset_len;
|
||||
in.read((char *)&dataset_len, sizeof(dataset_len));
|
||||
std::vector<char> dataset_as_vec(dataset_len);
|
||||
in.read(dataset_as_vec.data(), dataset_len);
|
||||
imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
|
||||
printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
|
||||
}
|
||||
printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
|
||||
return m_last_call;
|
||||
}
|
||||
|
||||
static void prepare_imatrix(const std::string & imatrix_file,
|
||||
static int prepare_imatrix(const std::string & imatrix_file,
|
||||
std::string & imatrix_dataset,
|
||||
const std::vector<std::string> & included_weights,
|
||||
const std::vector<std::string> & excluded_weights,
|
||||
std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
||||
int m_last_call = -1;
|
||||
if (!imatrix_file.empty()) {
|
||||
load_imatrix(imatrix_file, imatrix_data);
|
||||
m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
|
||||
}
|
||||
if (imatrix_data.empty()) {
|
||||
return;
|
||||
return m_last_call;
|
||||
}
|
||||
if (!excluded_weights.empty()) {
|
||||
for (auto& name : excluded_weights) {
|
||||
@ -197,6 +215,7 @@ static void prepare_imatrix(const std::string & imatrix_file,
|
||||
if (!imatrix_data.empty()) {
|
||||
printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
|
||||
}
|
||||
return m_last_call;
|
||||
}
|
||||
|
||||
static ggml_type parse_ggml_type(const char * arg) {
|
||||
@ -211,43 +230,6 @@ static ggml_type parse_ggml_type(const char * arg) {
|
||||
return result;
|
||||
}
|
||||
|
||||
static bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
|
||||
const char* sep = strchr(data, '=');
|
||||
if (sep == nullptr || sep - data >= 128) {
|
||||
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, data, sep - data);
|
||||
kvo.key[sep - data] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
overrides.emplace_back(std::move(kvo));
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
usage(argv[0]);
|
||||
@ -316,10 +298,43 @@ int main(int argc, char ** argv) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
|
||||
std::string imatrix_dataset;
|
||||
std::unordered_map<std::string, std::vector<float>> imatrix_data;
|
||||
prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data);
|
||||
int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
|
||||
if (!imatrix_data.empty()) {
|
||||
params.imatrix = &imatrix_data;
|
||||
{
|
||||
llama_model_kv_override kvo;
|
||||
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
|
||||
strncpy(kvo.val_str, imatrix_file.c_str(), 127);
|
||||
kvo.val_str[127] = '\0';
|
||||
kv_overrides.emplace_back(std::move(kvo));
|
||||
}
|
||||
if (!imatrix_dataset.empty()) {
|
||||
llama_model_kv_override kvo;
|
||||
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
|
||||
strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
|
||||
kvo.val_str[127] = '\0';
|
||||
kv_overrides.emplace_back(std::move(kvo));
|
||||
}
|
||||
|
||||
{
|
||||
llama_model_kv_override kvo;
|
||||
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.val_i64 = imatrix_data.size();
|
||||
kv_overrides.emplace_back(std::move(kvo));
|
||||
}
|
||||
|
||||
if (m_last_call > 0) {
|
||||
llama_model_kv_override kvo;
|
||||
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.val_i64 = m_last_call;
|
||||
kv_overrides.emplace_back(std::move(kvo));
|
||||
}
|
||||
}
|
||||
if (!kv_overrides.empty()) {
|
||||
kv_overrides.emplace_back();
|
||||
|
@ -2392,7 +2392,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
||||
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
|
||||
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
|
||||
printf(" --chat-template JINJA_TEMPLATE\n");
|
||||
@ -2823,43 +2823,11 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
char * sep = strchr(argv[i], '=');
|
||||
if (sep == nullptr || sep - argv[i] >= 128) {
|
||||
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
|
||||
struct llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, argv[i], sep - argv[i]);
|
||||
kvo.key[sep - argv[i]] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
} else {
|
||||
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
if (!parse_kv_override(argv[i], params.kv_overrides)) {
|
||||
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.kv_overrides.push_back(kvo);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
server_print_usage(argv[0], default_params, default_sparams);
|
||||
|
35
llama.cpp
35
llama.cpp
@ -2883,6 +2883,7 @@ namespace GGUFMeta {
|
||||
case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
|
||||
case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
|
||||
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
|
||||
case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
|
||||
}
|
||||
return "unknown";
|
||||
}
|
||||
@ -2894,13 +2895,16 @@ namespace GGUFMeta {
|
||||
__func__, override_type_to_str(ovrd->tag), ovrd->key);
|
||||
switch (ovrd->tag) {
|
||||
case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
|
||||
LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
|
||||
LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
|
||||
} break;
|
||||
case LLAMA_KV_OVERRIDE_TYPE_INT: {
|
||||
LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
|
||||
LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
|
||||
} break;
|
||||
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
|
||||
LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
|
||||
LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
|
||||
} break;
|
||||
case LLAMA_KV_OVERRIDE_TYPE_STR: {
|
||||
LLAMA_LOG_INFO("%s\n", ovrd->val_str);
|
||||
} break;
|
||||
default:
|
||||
// Shouldn't be possible to end up here, but just in case...
|
||||
@ -2919,7 +2923,7 @@ namespace GGUFMeta {
|
||||
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
|
||||
try_override(OT & target, const struct llama_model_kv_override * ovrd) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
|
||||
target = ovrd->bool_value;
|
||||
target = ovrd->val_bool;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -2929,7 +2933,7 @@ namespace GGUFMeta {
|
||||
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
|
||||
try_override(OT & target, const struct llama_model_kv_override * ovrd) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
|
||||
target = ovrd->int_value;
|
||||
target = ovrd->val_i64;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -2939,7 +2943,7 @@ namespace GGUFMeta {
|
||||
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
|
||||
try_override(T & target, const struct llama_model_kv_override * ovrd) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
|
||||
target = ovrd->float_value;
|
||||
target = ovrd->val_f64;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -2948,12 +2952,11 @@ namespace GGUFMeta {
|
||||
template<typename OT>
|
||||
static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
|
||||
try_override(T & target, const struct llama_model_kv_override * ovrd) {
|
||||
(void)target;
|
||||
(void)ovrd;
|
||||
if (!ovrd) { return false; }
|
||||
// Currently, we should never end up here so it would be a bug if we do.
|
||||
throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
|
||||
ovrd ? ovrd->key : "NULL"));
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
|
||||
target = ovrd->val_str;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
|
||||
@ -14548,11 +14551,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
for (auto & o : overrides) {
|
||||
if (o.key[0] == 0) break;
|
||||
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
|
||||
gguf_set_val_f32(ctx_out, o.key, o.float_value);
|
||||
gguf_set_val_f32(ctx_out, o.key, o.val_f64);
|
||||
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
|
||||
gguf_set_val_i32(ctx_out, o.key, o.int_value);
|
||||
gguf_set_val_i32(ctx_out, o.key, o.val_i64);
|
||||
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
|
||||
gguf_set_val_bool(ctx_out, o.key, o.bool_value);
|
||||
gguf_set_val_bool(ctx_out, o.key, o.val_bool);
|
||||
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
|
||||
gguf_set_val_str(ctx_out, o.key, o.val_str);
|
||||
} else {
|
||||
LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
|
||||
}
|
||||
|
12
llama.h
12
llama.h
@ -195,15 +195,19 @@ extern "C" {
|
||||
LLAMA_KV_OVERRIDE_TYPE_INT,
|
||||
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
|
||||
LLAMA_KV_OVERRIDE_TYPE_BOOL,
|
||||
LLAMA_KV_OVERRIDE_TYPE_STR,
|
||||
};
|
||||
|
||||
struct llama_model_kv_override {
|
||||
char key[128];
|
||||
enum llama_model_kv_override_type tag;
|
||||
|
||||
char key[128];
|
||||
|
||||
union {
|
||||
int64_t int_value;
|
||||
double float_value;
|
||||
bool bool_value;
|
||||
int64_t val_i64;
|
||||
double val_f64;
|
||||
bool val_bool;
|
||||
char val_str[128];
|
||||
};
|
||||
};
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user