mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 02:14:35 +00:00
Add cvector-generator
example (#7514)
* add control-vector-generator * calc diff * add comments * proof-of-concept stdlib implementation Implements PCA and file writing using mostly standard libraries. The output is recognized as a functional control vector, but outputs gibberish. * param parsing, refactor, comments Added basic command-line parameters for outfile and one each positive/negative prompt. Refactored some messy code in PCA computation and GGUF exporting. Left a bunch of comments regarding further work needed. * example template completions Implements an example template set built from the positive/negative prompts like the control vector Python implementation. * add multi prompts, multi-thread for PCA * fix mem error * add debugs * fix matrix transpose multiplication you have got to be kidding me * preliminary template/multiprompt support model is running out of context and that ought to be fixed (segfaulting) but other than that it looks goodish * fix zero output & param parsing, functional templating fixed a bug where the output file had no tensor data/was all zero fixed a bug where single hyphen flags were not being correctly parsed implements creation of templated prompts from input (still need to adapt based on model) * fix square_diff matmul index range and CRLF->LF line endings fixed a logic error where square_diff would not multiply all rows fixed a formatting error where the provided completions.txt had CRLF line endings * add command-line args for num threads, num completions file lines, always reload model refactored a few things and did what the commit message says on the tin * code aestheticization * fix compiler warnings * in-series multithreading for prompt embedding? added commented-out code to attempt to start implementing mutlithreading for embedding in main * remove unnecessary multithreading * interim fix memory leak * translated everything but PCA (I think) * tentatively translate the rest * fix ggml errors and make new ones at least it compiles and runs * fix cb_eval * temporary commit while I move dev environments it finally outputs a functioning control vector - "functioning" in the sense that it can be loaded and it clearly has the right idea, but makes the model incoherent * update debug statements * pre-tokenize so we can allocate correct memory to ctx_diffs_wrapped * update comments * (wip) refactor * clean up PCA ggml implementation * fix shape of v_diff_original * add n_batch for pca * working version * remember to copy back the last_eigenvector * fix n_completions * bring back n_completions * default n_pca_batch to 20 * fix macos build * add to makefile all targets * use ggml_format_name * add readme * fix .editorconfig * use ggml_backend_tensor_copy * attemp to fix compile problem on mac * fix compile warn * reuse allocr * move param parser to common * better error handling * clean up a bit * add print_usage * shorten help msg * beautify help msg * escape prompt by default * change compile target to llama-cvector-generator * typo * disable GPU for PCA * code style --------- Co-authored-by: Christian Zhou-Zheng <christianzhouzheng@gmail.com>
This commit is contained in:
parent
7b2f4a7d19
commit
0c7b3595b9
@ -26,3 +26,6 @@ indent_size = 2
|
||||
|
||||
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
|
||||
indent_style = tab
|
||||
|
||||
[examples/cvector-generator/*.txt]
|
||||
insert_final_newline = unset
|
||||
|
5
Makefile
5
Makefile
@ -38,6 +38,7 @@ BUILD_TARGETS = \
|
||||
llama-tokenize \
|
||||
llama-train-text-from-scratch \
|
||||
llama-vdot \
|
||||
llama-cvector-generator \
|
||||
tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
@ -922,6 +923,10 @@ llama-eval-callback: examples/eval-callback/eval-callback.cpp ggml.o llama.o $(C
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
@ -1576,6 +1576,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
return true;
|
||||
}
|
||||
params.out_file = argv[i];
|
||||
params.cvector_outfile = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-ofreq" || arg == "--output-frequency") {
|
||||
@ -1610,6 +1611,55 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
params.i_chunk = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
// cvector params
|
||||
if (arg == "--completions-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.cvector_completions_file = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--positive-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.cvector_positive_file = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--negative-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.cvector_negative_file = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--completions") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.n_completions = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--pca-batch") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.n_pca_batch = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--pca-iter") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.n_pca_iterations = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
// Parse args for logging parameters
|
||||
if (log_param_single_parse(argv[i])) {
|
||||
@ -1931,6 +1981,16 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
options.push_back({ "logging", " --log-append", "Don't truncate the old log file." });
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
options.push_back({ "cvector" });
|
||||
options.push_back({ "cvector", "-o, --output FNAME", "output file (default: '%s')", params.cvector_outfile.c_str() });
|
||||
options.push_back({ "cvector", " --positive-file FNAME", "positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str() });
|
||||
options.push_back({ "cvector", " --negative-file FNAME", "negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str() });
|
||||
options.push_back({ "cvector", " --completions-file FNAME",
|
||||
"completions file (default: '%s')", params.cvector_completions_file.c_str() });
|
||||
options.push_back({ "cvector", " --completions N", "number of lines of completions file to use (default: %d)", params.n_completions });
|
||||
options.push_back({ "cvector", " --batch-pca N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch });
|
||||
options.push_back({ "cvector", " --iter-pca N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations });
|
||||
|
||||
printf("usage: %s [options]\n", argv[0]);
|
||||
|
||||
for (const auto & o : options) {
|
||||
|
@ -232,6 +232,15 @@ struct gpt_params {
|
||||
|
||||
bool process_output = false; // collect data for the output tensor
|
||||
bool compute_ppl = true; // whether to compute perplexity
|
||||
|
||||
// cvector-generator params
|
||||
int n_completions = 64;
|
||||
int n_pca_batch = 20;
|
||||
int n_pca_iterations = 1000;
|
||||
std::string cvector_outfile = "control_vector.gguf";
|
||||
std::string cvector_completions_file = "examples/cvector-generator/completions.txt";
|
||||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
};
|
||||
|
||||
void gpt_params_handle_model_default(gpt_params & params);
|
||||
|
@ -12,6 +12,7 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(cvector-generator)
|
||||
add_subdirectory(baby-llama)
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(batched)
|
||||
|
5
examples/cvector-generator/CMakeLists.txt
Normal file
5
examples/cvector-generator/CMakeLists.txt
Normal file
@ -0,0 +1,5 @@
|
||||
set(TARGET llama-cvector-generator)
|
||||
add_executable(${TARGET} cvector-generator.cpp pca.hpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
34
examples/cvector-generator/README.md
Normal file
34
examples/cvector-generator/README.md
Normal file
@ -0,0 +1,34 @@
|
||||
# cvector-generator
|
||||
|
||||
This example demonstrates how to generate a control vector using gguf models.
|
||||
|
||||
Related PRs:
|
||||
- [Add support for control vectors](https://github.com/ggerganov/llama.cpp/pull/5970)
|
||||
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggerganov/llama.cpp/issues/6880)
|
||||
- [Add cvector-generator example](https://github.com/ggerganov/llama.cpp/pull/7514)
|
||||
|
||||
## Examples
|
||||
|
||||
```sh
|
||||
# CPU only
|
||||
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf
|
||||
|
||||
# With GPU
|
||||
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99
|
||||
|
||||
# With advanced options
|
||||
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --batch-pca 100
|
||||
|
||||
# To see help message
|
||||
./cvector-generator -h
|
||||
# Then, have a look at "cvector" section
|
||||
```
|
||||
|
||||
## Tips and tricks
|
||||
|
||||
If you have multiple lines per prompt, you can escape the newline character (change it to `\n`). For example:
|
||||
|
||||
```
|
||||
<|im_start|>system\nAct like a person who is extremely happy.<|im_end|>
|
||||
<|im_start|>system\nYou are in a very good mood today<|im_end|>
|
||||
```
|
582
examples/cvector-generator/completions.txt
Normal file
582
examples/cvector-generator/completions.txt
Normal file
@ -0,0 +1,582 @@
|
||||
|
||||
That game
|
||||
I can see
|
||||
Hmm, this
|
||||
I can relate to
|
||||
Who is
|
||||
I understand the
|
||||
Ugh,
|
||||
What the hell was
|
||||
Hey, did anyone
|
||||
Although
|
||||
Thank you for choosing
|
||||
What are you
|
||||
Oh w
|
||||
How dare you open
|
||||
It was my pleasure
|
||||
I'm hon
|
||||
I appreciate that you
|
||||
Are you k
|
||||
Whoever left this
|
||||
It's always
|
||||
Ew,
|
||||
Hey, I l
|
||||
Hello? Is someone
|
||||
I understand that
|
||||
That poem
|
||||
Aww, poor
|
||||
Hey, it
|
||||
Alright, who
|
||||
I didn't
|
||||
Well, life
|
||||
The document
|
||||
Oh no, this
|
||||
I'm concerned
|
||||
Hello, this is
|
||||
This art
|
||||
Hmm, this drink
|
||||
Hi there!
|
||||
It seems
|
||||
Is
|
||||
Good
|
||||
I can't
|
||||
Ex
|
||||
Who are
|
||||
I can see that
|
||||
Wow,
|
||||
Today is a
|
||||
Hey friend
|
||||
Sometimes friends
|
||||
Oh, this old
|
||||
The weather outside
|
||||
This place is sur
|
||||
I appreciate your input
|
||||
Thank you for the
|
||||
Look at
|
||||
I'm disappoint
|
||||
To my
|
||||
How dare you
|
||||
That's an
|
||||
This piece of art
|
||||
Eww
|
||||
This park is
|
||||
This is incredible
|
||||
Oh no, someone
|
||||
Exc
|
||||
Well, it'
|
||||
I warned
|
||||
Hey, I understand
|
||||
Hey, I saw
|
||||
How dare you go
|
||||
What the he
|
||||
Hey
|
||||
It's
|
||||
Hello? Hello?
|
||||
It
|
||||
Oh no!
|
||||
This is the perfect
|
||||
Good morning,
|
||||
Oh no, there
|
||||
It's so
|
||||
Yeah
|
||||
Uh,
|
||||
Hello everyone
|
||||
Who turned off
|
||||
The weather
|
||||
Who'
|
||||
Hey, this
|
||||
Wait,
|
||||
Eww, gross
|
||||
Excuse
|
||||
It seems like you
|
||||
Thank you so
|
||||
What happened?
|
||||
Oh my g
|
||||
I am deeply sad
|
||||
I war
|
||||
Okay, let'
|
||||
Hey, that
|
||||
That was a beautiful
|
||||
Oh no! That
|
||||
What happened
|
||||
Hey there
|
||||
The artist'
|
||||
What?!
|
||||
Hey, it'
|
||||
I am disappoint
|
||||
It seems like
|
||||
Oh no! The
|
||||
This park is a
|
||||
If you
|
||||
Yes! I did
|
||||
It sounds
|
||||
What
|
||||
Who is it
|
||||
Hmm, that
|
||||
That's strange
|
||||
Yeah, that was
|
||||
That's interesting
|
||||
This park
|
||||
What the hell
|
||||
Who is that
|
||||
I feel like my
|
||||
Oh well
|
||||
What the hell is
|
||||
Hello? Hello
|
||||
To my dearest
|
||||
Bless you!\"
|
||||
Thank you for
|
||||
Oh, looks like
|
||||
Can you please
|
||||
This place is
|
||||
Eww, what
|
||||
Bless you
|
||||
Is everything
|
||||
Hey, I just
|
||||
Whoever left these
|
||||
Well, that'
|
||||
I feel
|
||||
Hey, do you
|
||||
It's sad
|
||||
Oh no, it
|
||||
Hey, that'
|
||||
Oh my god,
|
||||
Thank you,
|
||||
Hello little one,
|
||||
I apolog
|
||||
Hey team, I
|
||||
How dare you read
|
||||
Who is this and
|
||||
Whoever left
|
||||
Hi there! W
|
||||
A
|
||||
If you have
|
||||
I was
|
||||
U
|
||||
Bless
|
||||
Well, this
|
||||
Oh, I'
|
||||
It's a
|
||||
Eww,
|
||||
Is everything okay?
|
||||
Oh, I
|
||||
Hello, can you
|
||||
Al
|
||||
That was a great
|
||||
What are
|
||||
I understand that not
|
||||
Oh no, not
|
||||
Who is it?\"
|
||||
Hey, can we
|
||||
Whoever is taking
|
||||
I would love to
|
||||
Hey, I noticed
|
||||
Hey, could
|
||||
I understand that there
|
||||
Hello?
|
||||
D
|
||||
Oh man, I
|
||||
Thank you so much
|
||||
Oh no, my
|
||||
Dear [Name
|
||||
Uh
|
||||
I remember
|
||||
Hey, who
|
||||
Well, it
|
||||
Are you
|
||||
I understand that it
|
||||
Hey, is
|
||||
I would
|
||||
Who is this
|
||||
Excuse me
|
||||
Alright
|
||||
I am thrilled
|
||||
Sometimes friends have
|
||||
Who the
|
||||
It's interesting
|
||||
I would love
|
||||
E
|
||||
Hello? Is anyone
|
||||
Well, this is
|
||||
This place
|
||||
Well,
|
||||
I warned you
|
||||
Hey, watch where
|
||||
Oh my
|
||||
That'
|
||||
Sometimes friends have different
|
||||
I understand that everyone
|
||||
What?
|
||||
What do these notes
|
||||
I can relate
|
||||
I'm not
|
||||
I understand
|
||||
To my dear
|
||||
Guys
|
||||
Well
|
||||
Hey, I appreciate
|
||||
Wow, what
|
||||
Dear
|
||||
That melody
|
||||
Who the hell
|
||||
Today is
|
||||
Hello little
|
||||
Wow, look
|
||||
That's great
|
||||
Love is never wrong
|
||||
I'm having
|
||||
Whoa, did
|
||||
Ugh
|
||||
Can you please provide
|
||||
I miss you,
|
||||
I feel uncom
|
||||
I know
|
||||
Ugh, this
|
||||
Hey, watch
|
||||
Oh great, a
|
||||
I didn
|
||||
Okay
|
||||
That game of char
|
||||
Oh
|
||||
I appreciate
|
||||
Who's there
|
||||
I am so
|
||||
Oh great, someone
|
||||
Hey, could you
|
||||
I remember wondering
|
||||
Wait, what?
|
||||
What do
|
||||
Hello? Can
|
||||
Hey there,
|
||||
That game of
|
||||
This is incred
|
||||
Oh my gosh
|
||||
Oh great, f
|
||||
I appreciate your
|
||||
It sounds like
|
||||
What the heck
|
||||
Okay, I understand
|
||||
Ew
|
||||
I understand that this
|
||||
Uh, hi
|
||||
Hi everyone!
|
||||
What the hell?
|
||||
Thank you for your
|
||||
Oh no, the
|
||||
Wow, I
|
||||
Who turned
|
||||
Dear [
|
||||
Whoever
|
||||
This is a
|
||||
Whoa, he
|
||||
What in the world
|
||||
Although the physical
|
||||
Hello, who is
|
||||
That's amaz
|
||||
Hey, I know
|
||||
Okay, that
|
||||
Hi everyone
|
||||
Hey, is everything
|
||||
I understand your fr
|
||||
Oh no, poor
|
||||
Oh, look
|
||||
Good morning
|
||||
Ew, gross
|
||||
Oh no, did
|
||||
Look at the family
|
||||
Hey team
|
||||
Yes!
|
||||
Hey, can I
|
||||
Okay, that'
|
||||
It's great
|
||||
Love is
|
||||
Hey, what
|
||||
Good morning, world
|
||||
Who is it?
|
||||
That poem really reson
|
||||
I
|
||||
That's
|
||||
I understand the task
|
||||
Gu
|
||||
Hello? Who'
|
||||
This postcard is
|
||||
Whoa,
|
||||
Oh, that
|
||||
I understand that I
|
||||
Whoever is
|
||||
Hello? Who is
|
||||
I'm really
|
||||
Wow, this
|
||||
Can
|
||||
This artwork really
|
||||
This is a shame
|
||||
I miss you too
|
||||
Who are you?
|
||||
Today is a difficult
|
||||
Hey, just
|
||||
Are you okay
|
||||
I am
|
||||
Hi,
|
||||
Wow, that
|
||||
Hey there! Can
|
||||
Okay, stay
|
||||
Oh great, just
|
||||
Yeah,
|
||||
Hello? Can you
|
||||
Oh, looks
|
||||
Thank you for sharing
|
||||
I'm glad
|
||||
Hey, is that
|
||||
Hmm
|
||||
It was my
|
||||
It sounds like you
|
||||
Wow, your
|
||||
I was promised certain
|
||||
That was such a
|
||||
Thank
|
||||
Excuse you
|
||||
That was
|
||||
Hey team,
|
||||
I feel un
|
||||
It was
|
||||
What'
|
||||
Hey friend, I
|
||||
How
|
||||
Saying goodbye
|
||||
That
|
||||
It's heart
|
||||
How dare
|
||||
Oh,
|
||||
Hello, may
|
||||
What's this
|
||||
Thank you for recogn
|
||||
Aww, that
|
||||
Oh, I remember
|
||||
Hmm, that'
|
||||
I miss
|
||||
I know this
|
||||
Wait
|
||||
Is everything okay
|
||||
Who is that person
|
||||
Wow, you
|
||||
Oh great
|
||||
I'm sad
|
||||
Wow, the
|
||||
I am very disappoint
|
||||
Who turned off the
|
||||
I understand that things
|
||||
I'm very
|
||||
Hi
|
||||
That's very
|
||||
Okay, I
|
||||
Oh no,
|
||||
Wow, there
|
||||
What's wrong
|
||||
I apologize for
|
||||
Hey, I
|
||||
Can I help you
|
||||
Oh, I didn
|
||||
Alright,
|
||||
Oh wow,
|
||||
Oh my goodness
|
||||
I know this event
|
||||
What in the
|
||||
Saying
|
||||
Yeah, that
|
||||
Guys, I
|
||||
Hey, this v
|
||||
This post
|
||||
Are
|
||||
Hey, can
|
||||
Hello? Is
|
||||
I can only imagine
|
||||
Oh, that sounds
|
||||
Hey, is anyone
|
||||
I am disappointed
|
||||
Hello,
|
||||
Hey everyone, I
|
||||
That was such
|
||||
It's okay
|
||||
The artist
|
||||
Whoa
|
||||
I understand that mistakes
|
||||
Can I help
|
||||
Who
|
||||
Hi everyone! I
|
||||
Hey, can you
|
||||
Wow, how
|
||||
Today
|
||||
Oh no, I
|
||||
Oh well, I
|
||||
Well, that
|
||||
This is the
|
||||
Yes! I finally
|
||||
Hey there little
|
||||
Hello everyone!
|
||||
Love is never
|
||||
Look at the
|
||||
This postcard
|
||||
Oh great,
|
||||
Can I
|
||||
Hmm, this is
|
||||
I understand your
|
||||
Oh, look at
|
||||
B
|
||||
I'm so
|
||||
Whoa, this
|
||||
W
|
||||
Oh, this
|
||||
Sometimes
|
||||
This piece of
|
||||
What the
|
||||
That was a
|
||||
Hey, do
|
||||
Oh no
|
||||
Whoa, what
|
||||
I feel like I
|
||||
The documentary
|
||||
Hello
|
||||
Hello little one
|
||||
I understand that my
|
||||
Eww, that
|
||||
Wow, an
|
||||
Yes! Finally,
|
||||
Although the physical location
|
||||
Whoever is watching
|
||||
That movie
|
||||
I remember wondering about
|
||||
Hey there, little
|
||||
Who's
|
||||
Hello, who
|
||||
Hello everyone! Thank
|
||||
Hello, can
|
||||
That's too
|
||||
Hey, just wanted
|
||||
Hey there, I
|
||||
Saying good
|
||||
Hey there!
|
||||
Who is there?
|
||||
Oh my good
|
||||
I am very
|
||||
Oh no, what
|
||||
Wow, thank
|
||||
I was promised
|
||||
Hi, is
|
||||
Hey, I'
|
||||
Guys, the
|
||||
Oh no, that
|
||||
Who is there
|
||||
Hello, this
|
||||
That movie really touched
|
||||
If you have something
|
||||
The documentary was
|
||||
I'm starting
|
||||
Are you kidd
|
||||
That movie really
|
||||
Hey everyone,
|
||||
Thank you for considering
|
||||
I didn'
|
||||
Yes! I
|
||||
Can you
|
||||
Oh my god
|
||||
Hey, whoever
|
||||
That melody really
|
||||
Thank you, little
|
||||
Hello, may I
|
||||
Look
|
||||
Wow, we
|
||||
It looks
|
||||
What do these
|
||||
Oh wow
|
||||
I apologize
|
||||
What are you all
|
||||
It's such
|
||||
It's clear
|
||||
Hey, I was
|
||||
Hey friend,
|
||||
I can only
|
||||
The weather outside is
|
||||
Eww, this
|
||||
I miss you
|
||||
Wow
|
||||
Aww,
|
||||
Hi, is there
|
||||
This artwork
|
||||
Okay,
|
||||
Oh well,
|
||||
This
|
||||
I'
|
||||
Say
|
||||
Hey there little gu
|
||||
Hmm,
|
||||
Whoa, who
|
||||
I am thr
|
||||
Oh man
|
||||
Okay, stay calm
|
||||
I'm happy
|
||||
Oh, this cur
|
||||
Oh man,
|
||||
I'm sorry
|
||||
Hello? Who
|
||||
What?! That
|
||||
This piece
|
||||
Hey everyone
|
||||
That's so
|
||||
Are you okay?
|
||||
What happened? Where
|
||||
Hi there
|
||||
The
|
||||
Who the hell entered
|
||||
I can
|
||||
Guys,
|
||||
What's
|
||||
What in
|
||||
It's important
|
||||
I'm
|
||||
I'm coming
|
||||
It'
|
||||
Yes! Finally
|
||||
Wait, what
|
||||
Wow, reading
|
||||
I'm surprised
|
||||
Hey, did
|
||||
Hey,
|
||||
Okay, let
|
||||
I understand that you
|
||||
Who the hell threw
|
||||
Eww, who
|
||||
Thank you for thinking
|
||||
Who is this?\"
|
||||
I am deeply
|
||||
Thank you for including
|
||||
Oh no, an
|
||||
It looks like you
|
||||
Aww
|
||||
I'm confused
|
||||
Wow, it
|
||||
That poem really
|
||||
Yes
|
||||
Hey there, is
|
||||
Hey, what'
|
||||
Thank you for remember
|
||||
To
|
||||
This is
|
||||
Thank you for making
|
||||
I can'
|
||||
That mel
|
||||
Wow, they
|
||||
I feel like
|
||||
Although the
|
||||
Who are you
|
||||
Love
|
||||
If
|
||||
What the hell are
|
||||
I am so sad
|
||||
Oh, I found
|
||||
Thank you
|
||||
It looks like
|
||||
Well, life is
|
||||
I appreciate that
|
||||
The artist's
|
||||
Whoa, that
|
||||
It's never
|
499
examples/cvector-generator/cvector-generator.cpp
Normal file
499
examples/cvector-generator/cvector-generator.cpp
Normal file
@ -0,0 +1,499 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
#include "pca.hpp"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <climits>
|
||||
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// utils
|
||||
|
||||
template <class Iter>
|
||||
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
||||
std::string ret;
|
||||
for (; begin != end; ++begin) {
|
||||
ret += llama_token_to_piece(ctx, *begin);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
printf("\nexample usage:\n");
|
||||
printf("\n CPU only: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf\n", argv[0]);
|
||||
printf("\n with GPU: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99\n", argv[0]);
|
||||
printf("\n advanced: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --batch-pca 100\n", argv[0]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
|
||||
// cb_eval is reused for each pair of positive - negative prompt
|
||||
struct callback_data {
|
||||
ggml_context * ctx_ggml = nullptr; // holds v_pos, v_neg, v_diff_filtered
|
||||
|
||||
int n_layers = 0;
|
||||
int n_tokens = 0;
|
||||
bool is_eval_pos = true;
|
||||
|
||||
// each element of the vector correspond to one layer
|
||||
std::vector<struct ggml_tensor *> v_pos; // vector of matrices of size [n_embd, n_tokens]
|
||||
std::vector<struct ggml_tensor *> v_neg; // vector of matrices of size [n_embd, n_tokens]
|
||||
std::vector<struct ggml_tensor *> v_diff_filtered; // vector of matrices of size [n_embd, n_nonzero_rows]. NOTE: n_nonzero_rows maybe different for each layer
|
||||
|
||||
// save a tensor into either v_pos or v_neg (decided by is_eval_pos)
|
||||
void save_tensor_for_layer(struct ggml_tensor * t) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_F32);
|
||||
|
||||
if (ctx_ggml == nullptr) {
|
||||
// alloc a new ctx_ggml if needed
|
||||
struct ggml_init_params params_ggml = {
|
||||
/*.mem_size =*/ ggml_tensor_overhead() * n_layers * 3u,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ctx_ggml = ggml_init(params_ggml);
|
||||
}
|
||||
|
||||
// copy tensor data
|
||||
auto n_bytes = ggml_nbytes(t);
|
||||
struct ggml_tensor * t_layer = ggml_new_tensor_2d(ctx_ggml, t->type, t->ne[0], t->ne[1]);
|
||||
t_layer->data = malloc(n_bytes); // TODO @ngxson : get rid of this malloc somehow
|
||||
ggml_backend_tensor_get(t, t_layer->data, 0, n_bytes);
|
||||
ggml_set_name(t_layer, ggml_get_name(t));
|
||||
//print_debug_tensor(t_layer);
|
||||
|
||||
if (is_eval_pos) {
|
||||
v_pos.push_back(t_layer);
|
||||
} else {
|
||||
v_neg.push_back(t_layer);
|
||||
}
|
||||
}
|
||||
|
||||
// calculate diff (v_pos - v_neg) and place the result back to v_pos
|
||||
// all zero rows in the diff tensor will also be removed
|
||||
// NOTE: final layer is ignored. we only have (n_layers - 1) to process
|
||||
std::vector<struct ggml_tensor *> calc_diff() {
|
||||
for (float il = 0; il < v_pos.size(); il++) {
|
||||
float * a = (float *) v_pos[il]->data;
|
||||
float * b = (float *) v_neg[il]->data;
|
||||
size_t n_elem = ggml_nelements(v_pos[il]);
|
||||
for (size_t j = 0; j < n_elem; j++) {
|
||||
a[j] -= b[j];
|
||||
}
|
||||
//print_debug_tensor(v_pos[i]);
|
||||
auto diff_filtered = filter_nonzero_rows(v_pos[il]);
|
||||
v_diff_filtered.push_back(diff_filtered);
|
||||
}
|
||||
return v_diff_filtered; // for convinient, we return the result std::vector
|
||||
}
|
||||
|
||||
// delete zero rows from a given 2D tensor
|
||||
struct ggml_tensor * filter_nonzero_rows(struct ggml_tensor * a) {
|
||||
//printf("filter_nonzero_rows\n");
|
||||
auto is_row_all_zeros = [](struct ggml_tensor * t, int row, float eps) -> bool {
|
||||
// check if given row containing all zero elements
|
||||
int n_cols = t->ne[0]; // hint: should be equal to n_embd
|
||||
for (int col = 0; col < n_cols; ++col) {
|
||||
if (ggml_get_f32_nd(t, col, row, 0, 0) > eps) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
};
|
||||
std::vector<int> rows_to_copy; // the idx of non-zero cols (to be copied to row of diff_filtered)
|
||||
for (int i_row = 0; i_row < a->ne[1]; i_row++) {
|
||||
if (!is_row_all_zeros(a, i_row, 1e-6)) {
|
||||
rows_to_copy.push_back(i_row);
|
||||
}
|
||||
}
|
||||
|
||||
// get "n_nonzero_rows" for the output "diff_filtered"
|
||||
int n_nonzero_rows = rows_to_copy.size();
|
||||
//printf("n_nonzero_rows: %d\n", n_nonzero_rows);
|
||||
int n_embd = a->ne[0];
|
||||
GGML_ASSERT(n_nonzero_rows > 0);
|
||||
|
||||
// diff_filtered: [n_embd, n_nonzero_rows]
|
||||
struct ggml_tensor * diff_filtered = ggml_new_tensor_2d(
|
||||
ctx_ggml, GGML_TYPE_F32, n_embd, n_nonzero_rows);
|
||||
ggml_format_name(diff_filtered, "diff_filtered_%s", a->name);
|
||||
diff_filtered->data = malloc(ggml_nbytes(diff_filtered));
|
||||
|
||||
// copy non-zero rows
|
||||
for (int dest_row = 0; dest_row < n_nonzero_rows; dest_row++) {
|
||||
int src_row = rows_to_copy[dest_row];
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
float src_elem = ggml_get_f32_nd(a, i, src_row, 0, 0);
|
||||
ggml_set_f32_nd(diff_filtered, i, dest_row, 0, 0, src_elem);
|
||||
}
|
||||
}
|
||||
|
||||
//print_debug_tensor(diff_filtered);
|
||||
|
||||
return diff_filtered;
|
||||
}
|
||||
|
||||
// we don't implement destructor, because we want to reuse callback_data. we just want to free the tensors
|
||||
void reset() {
|
||||
for (auto ptr : v_pos) free(ptr->data);
|
||||
for (auto ptr : v_neg) free(ptr->data);
|
||||
for (auto ptr : v_diff_filtered) free(ptr->data);
|
||||
v_pos.clear();
|
||||
v_neg.clear();
|
||||
v_diff_filtered.clear();
|
||||
if (ctx_ggml) {
|
||||
ggml_free(ctx_ggml);
|
||||
}
|
||||
ctx_ggml = nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* process_ctx is used to store the ggml context for pre-post processing the diff vectors
|
||||
* in short, input => v_diff and output => v_final
|
||||
*/
|
||||
struct train_context {
|
||||
ggml_context * ctx_ggml;
|
||||
int n_embd;
|
||||
int n_layers;
|
||||
|
||||
/* pair of prompts to be used for generating final vector */
|
||||
std::vector<std::string> positive_entries;
|
||||
std::vector<std::string> negative_entries;
|
||||
|
||||
// each element of the vector correspond to one layer
|
||||
// NOTE: the last layer is discard. therefore, we will have (n_layers - 1) elements here
|
||||
// NOTE (2): v_diff is transposed from v_diff_tmp
|
||||
std::vector<struct ggml_tensor *> v_diff; // vector of matrices of size [m, n_embd] where m ~ n_tokens * n_completions (v_diff contains no zero-rows)
|
||||
std::vector<struct ggml_tensor *> v_final; // vector of vectors of size [n_embd] to be written to file
|
||||
|
||||
// to easily re-alloc when concat v_diff, we temporary store v_diff in a vector instead of a tensor
|
||||
// v_diff_tmp will get converted unto v_diff later on
|
||||
std::vector<std::vector<uint8_t>> v_diff_tmp;
|
||||
|
||||
train_context(int n_embd_, int n_layers_) {
|
||||
n_embd = n_embd_;
|
||||
n_layers = n_layers_;
|
||||
struct ggml_init_params params_ggml = {
|
||||
/*.mem_size =*/ ggml_tensor_overhead() * (n_layers - 1) * 2u,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ctx_ggml = ggml_init(params_ggml);
|
||||
for (int il = 0; il < n_layers - 1; il++) {
|
||||
std::vector<uint8_t> empty;
|
||||
v_diff_tmp.push_back(empty);
|
||||
auto t = ggml_new_tensor_1d(ctx_ggml, GGML_TYPE_F32, n_embd);
|
||||
t->data = malloc(ggml_nbytes(t)); // TODO: get rid of malloc if possible
|
||||
v_final.push_back(t);
|
||||
}
|
||||
}
|
||||
|
||||
// add new rows into existing tensor in v_diff_tmp
|
||||
void concat_diff_tmp(const std::vector<struct ggml_tensor *> & diff_filtered) {
|
||||
GGML_ASSERT((int) diff_filtered.size() == n_layers - 1);
|
||||
for (int il = 0; il < n_layers - 1; il++) {
|
||||
auto t = diff_filtered[il];
|
||||
auto & diff_tmp = v_diff_tmp[il];
|
||||
size_t curr_size = diff_tmp.size();
|
||||
diff_tmp.resize(curr_size + ggml_nbytes(t));
|
||||
memcpy(diff_tmp.data() + curr_size, t->data, ggml_nbytes(t));
|
||||
}
|
||||
}
|
||||
|
||||
// build the v_diff tensors from v_diff_tmp (v_diff need to be transposed)
|
||||
// TODO @ngxson : maybe add option NOT to transpose v_diff; will be useful for "mean" method
|
||||
void build_v_diff() {
|
||||
printf("build_v_diff\n");
|
||||
for (int il = 0; il < n_layers - 1; il++) {
|
||||
auto & diff_tmp = v_diff_tmp[il];
|
||||
int n_elem = diff_tmp.size() / sizeof(float);
|
||||
GGML_ASSERT(n_elem % n_embd == 0);
|
||||
int n_rows = n_elem / n_embd;
|
||||
struct ggml_tensor * diff = ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_rows, n_embd);
|
||||
ggml_set_name(diff, (std::string("diff_") + std::to_string(il)).c_str());
|
||||
// copy data & transpose
|
||||
diff->data = malloc(ggml_nbytes(diff)); // TODO: get rid of this malloc if possible
|
||||
float * arr = (float *) diff_tmp.data();
|
||||
for (int ir = 0; ir < n_rows; ++ir) {
|
||||
for (int ic = 0; ic < n_embd; ++ic) {
|
||||
float f = arr[ir*n_embd + ic];
|
||||
ggml_set_f32_nd(diff, ir, ic, 0, 0, f);
|
||||
}
|
||||
}
|
||||
v_diff.push_back(diff);
|
||||
print_debug_tensor(diff);
|
||||
// free memory of diff_tmp
|
||||
diff_tmp.resize(0);
|
||||
}
|
||||
}
|
||||
|
||||
~train_context() {
|
||||
for (auto ptr : v_final) free(ptr->data);
|
||||
for (auto ptr : v_diff) free(ptr->data);
|
||||
// no need to free v_diff_tmp, since we didn't use malloc
|
||||
ggml_free(ctx_ggml);
|
||||
}
|
||||
};
|
||||
|
||||
struct tokenized_prompt {
|
||||
std::vector<llama_token> tokens_pos;
|
||||
std::vector<llama_token> tokens_neg;
|
||||
size_t max_seq_len;
|
||||
|
||||
tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
tokens_pos = ::llama_tokenize(ctx, pos, add_bos);
|
||||
tokens_neg = ::llama_tokenize(ctx, neg, add_bos);
|
||||
max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
|
||||
padding_seq(ctx, tokens_pos, max_seq_len);
|
||||
padding_seq(ctx, tokens_neg, max_seq_len);
|
||||
}
|
||||
|
||||
void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens, size_t len) {
|
||||
// TODO: customize padding token
|
||||
std::vector<llama_token> pad_tokens = ::llama_tokenize(ctx, " ", false);
|
||||
llama_token pad_tok = pad_tokens.back();
|
||||
while (tokens.size() < len) {
|
||||
tokens.push_back(pad_tok);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
static std::string to_string(const T & val) {
|
||||
std::stringstream ss;
|
||||
ss << val;
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
static std::vector<std::string> ctrlvec_load_prompt_file(std::string path, bool skip_empty_lines) {
|
||||
std::vector<std::string> output;
|
||||
std::ifstream file(path);
|
||||
if (!file.is_open()) {
|
||||
fprintf(stderr, "error: unable to open file: %s\n", path.c_str());
|
||||
exit(1);
|
||||
}
|
||||
std::string line;
|
||||
while (std::getline(file, line)) {
|
||||
bool is_skip = skip_empty_lines && line.empty();
|
||||
if (!is_skip) {
|
||||
string_process_escapes(line);
|
||||
output.push_back(line);
|
||||
}
|
||||
}
|
||||
file.close();
|
||||
return output;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
auto * cb_data = (callback_data *) user_data;
|
||||
static const char * l_out_name = "l_out";
|
||||
const bool is_l_out = strncmp(t->name, l_out_name, strlen(l_out_name)) == 0;
|
||||
|
||||
if (ask) {
|
||||
return is_l_out;
|
||||
}
|
||||
|
||||
if (!is_l_out || t->ne[1] != cb_data->n_tokens) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// save the tensor to current context
|
||||
cb_data->save_tensor_for_layer(t);
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const std::string fname, const std::string model_hint) {
|
||||
struct gguf_context * ctx = gguf_init_empty();
|
||||
|
||||
const std::string arch = "controlvector";
|
||||
gguf_set_val_str(ctx, "general.architecture", arch.c_str());
|
||||
gguf_set_val_str(ctx, (arch + ".model_hint").c_str(), model_hint.c_str());
|
||||
gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), v_ctrl.size());
|
||||
|
||||
for (size_t i = 0; i < v_ctrl.size(); ++i) {
|
||||
gguf_add_tensor(ctx, v_ctrl[i]);
|
||||
print_debug_tensor(v_ctrl[i]);
|
||||
printf("Added tensor: %s\n", v_ctrl[i]->name);
|
||||
}
|
||||
|
||||
printf("%s: writing file...\n", __func__);
|
||||
gguf_write_to_file(ctx, fname.c_str(), false);
|
||||
printf("%s: wrote file '%s'\n", __func__, fname.c_str());
|
||||
gguf_free(ctx);
|
||||
}
|
||||
|
||||
/**
|
||||
* Load prompt files and completion file.
|
||||
* Then format each pair of prompt + completion to make an entry.
|
||||
*/
|
||||
static int prepare_entries(gpt_params & params, train_context & ctx_train) {
|
||||
// load prompts
|
||||
std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
|
||||
std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
|
||||
if (positive_prompts.size() != negative_prompts.size()) {
|
||||
fprintf(stderr, "number of positive and negative prompts must be equal\n");
|
||||
return 1;
|
||||
}
|
||||
if (positive_prompts.empty()) {
|
||||
fprintf(stderr, "must provide at least one prompt pair\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// create templated prompts
|
||||
std::vector<std::string> completions = ctrlvec_load_prompt_file(params.cvector_completions_file, false);
|
||||
auto format_template = [](std::string persona, std::string suffix) {
|
||||
// entry in positive/negative.txt must already be formatted i.e. "[INST] Act as if you're extremely happy. [/INST]"
|
||||
return persona + " " + suffix;
|
||||
};
|
||||
for (size_t i = 0; i < positive_prompts.size(); ++i) {
|
||||
for (int j = 0; j < std::min((int) completions.size(), params.n_completions); ++j) {
|
||||
// TODO replicate the truncations done by the python implementation
|
||||
ctx_train.positive_entries.push_back(format_template(positive_prompts[i], completions[j]));
|
||||
ctx_train.negative_entries.push_back(format_template(negative_prompts[i], completions[j]));
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.n_pca_iterations % params.n_pca_batch != 0) {
|
||||
fprintf(stderr, "PCA iterations must by multiply of PCA batch size\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
callback_data cb_data;
|
||||
|
||||
// pass the callback to the backend scheduler
|
||||
// it will be executed for each node during the graph computation
|
||||
params.cb_eval = cb_eval;
|
||||
params.cb_eval_user_data = &cb_data;
|
||||
params.warmup = false;
|
||||
|
||||
print_build_info();
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model to get hparams
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
|
||||
// int n_ctx = llama_n_ctx(ctx);
|
||||
int n_layers = llama_n_layer(model);
|
||||
int n_embd = llama_n_embd(model);
|
||||
// get model hint param (a.k.a model arch name)
|
||||
char model_hint[128];
|
||||
llama_model_meta_val_str(model, "general.architecture", model_hint, 128);
|
||||
|
||||
// init train_context
|
||||
train_context ctx_train(n_embd, n_layers);
|
||||
|
||||
// load and prepare entries for training
|
||||
prepare_entries(params, ctx_train);
|
||||
|
||||
// we have to pretokenize everything because otherwise we don't know how much overhead to allocate ctx_diffs_wrapped
|
||||
std::vector<tokenized_prompt> tokenized_prompts;
|
||||
size_t n_total_tokens = 0;
|
||||
for (size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
|
||||
tokenized_prompt t(ctx, ctx_train.positive_entries[i], ctx_train.negative_entries[i]);
|
||||
n_total_tokens += 2 * t.max_seq_len;
|
||||
tokenized_prompts.push_back(std::move(t));
|
||||
}
|
||||
|
||||
std::cout << "n_total_tokens: " << n_total_tokens << std::endl;
|
||||
|
||||
for(size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
|
||||
bool success = false;
|
||||
tokenized_prompt t = tokenized_prompts[i];
|
||||
cb_data.n_layers = n_layers;
|
||||
cb_data.n_tokens = t.max_seq_len;
|
||||
|
||||
printf("Evaluating prompt[%d/%d]: \"%s\" - \"%s\" (%d tokens)\n",
|
||||
(int) i+1, (int) ctx_train.positive_entries.size(),
|
||||
tokens_to_str(ctx, t.tokens_pos.cbegin(), t.tokens_pos.cend()).c_str(),
|
||||
tokens_to_str(ctx, t.tokens_neg.cbegin(), t.tokens_neg.cend()).c_str(),
|
||||
(int) t.max_seq_len);
|
||||
|
||||
cb_data.is_eval_pos = true;
|
||||
success = get_hidden_layers(ctx, t.tokens_pos);
|
||||
if (!success) break;
|
||||
|
||||
cb_data.is_eval_pos = false;
|
||||
success = get_hidden_layers(ctx, t.tokens_neg);
|
||||
if (!success) break;
|
||||
|
||||
// calculate diff and remove all zero rows
|
||||
auto v_diff_filtered = cb_data.calc_diff();
|
||||
|
||||
// save & concat the filtered v_diff to ctx_train
|
||||
ctx_train.concat_diff_tmp(v_diff_filtered);
|
||||
|
||||
// reset for next iteration
|
||||
cb_data.reset();
|
||||
}
|
||||
|
||||
// done with the model, we can now free it to make gain some memory
|
||||
printf("Done evaluate prompts, unload model...\n");
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
// prepare ctx_train for PCA
|
||||
ctx_train.build_v_diff();
|
||||
|
||||
// run PCA
|
||||
PCA::pca_params pca_params;
|
||||
pca_params.n_threads = params.n_threads;
|
||||
pca_params.n_batch = params.n_pca_batch;
|
||||
pca_params.n_iterations = params.n_pca_iterations;
|
||||
PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);
|
||||
|
||||
// write output vectors to gguf
|
||||
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
1
examples/cvector-generator/negative.txt
Normal file
1
examples/cvector-generator/negative.txt
Normal file
@ -0,0 +1 @@
|
||||
[INST] Act like a person who is extremely sad. [/INST]
|
322
examples/cvector-generator/pca.hpp
Normal file
322
examples/cvector-generator/pca.hpp
Normal file
@ -0,0 +1,322 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#include <cstdio>
|
||||
#include <ctime>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
|
||||
#define DEBUG_POS 5
|
||||
|
||||
static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
|
||||
printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
|
||||
if (!with_data) return;
|
||||
printf("%s: %s[0] = [", __func__, t->name);
|
||||
for (size_t i = 0; i <= DEBUG_POS; i++) {
|
||||
printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
|
||||
}
|
||||
printf(" ... ]\n");
|
||||
}
|
||||
|
||||
namespace PCA {
|
||||
|
||||
// input params for PCA computations
|
||||
struct pca_params {
|
||||
int n_threads = 1;
|
||||
int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
|
||||
int n_iterations = 1000;
|
||||
float tolerance = 1e-7;
|
||||
|
||||
// for debugging
|
||||
int i_layer = 0;
|
||||
int n_layers = 0;
|
||||
};
|
||||
|
||||
// result from each iteration
|
||||
struct pca_result {
|
||||
struct ggml_tensor * calculated_square = NULL;
|
||||
std::vector<struct ggml_tensor *> eigenvectors;
|
||||
std::vector<float> distances;
|
||||
};
|
||||
|
||||
struct pca_model {
|
||||
ggml_backend_t backend = NULL;
|
||||
ggml_backend_buffer_t buffer;
|
||||
struct ggml_context * ctx; // context to compute graph on target device
|
||||
struct ggml_context * ctx_host; // host context to store results
|
||||
|
||||
// tensors on target device
|
||||
struct ggml_tensor * dev_input;
|
||||
struct ggml_tensor * dev_square;
|
||||
struct ggml_tensor * dev_eigenvector;
|
||||
|
||||
pca_model(struct ggml_tensor * t_input) {
|
||||
// TODO: enable GPU support when support for GGML_OP_SQRT is added
|
||||
// #ifdef GGML_USE_CUDA
|
||||
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||
// backend = ggml_backend_cuda_init(0); // init device 0
|
||||
// if (!backend) {
|
||||
// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||
// }
|
||||
// #endif
|
||||
|
||||
// #ifdef GGML_USE_METAL
|
||||
// fprintf(stderr, "%s: using Metal backend\n", __func__);
|
||||
// backend = ggml_backend_metal_init();
|
||||
// if (!backend) {
|
||||
// fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
|
||||
// }
|
||||
// #endif
|
||||
|
||||
// if there aren't GPU Backends fallback to CPU backend
|
||||
if (!backend) {
|
||||
backend = ggml_backend_cpu_init();
|
||||
}
|
||||
|
||||
const int num_tensors = 4;
|
||||
struct ggml_init_params params {
|
||||
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ctx = ggml_init(params);
|
||||
|
||||
auto n_samples = t_input->ne[0];
|
||||
auto n_embd = t_input->ne[1];
|
||||
|
||||
dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd);
|
||||
dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
ggml_set_name(dev_input, "dev_input");
|
||||
ggml_set_name(dev_square, "dev_square");
|
||||
ggml_set_name(dev_eigenvector, "dev_eigenvector");
|
||||
buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
||||
ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input));
|
||||
|
||||
// initialize eigenvector to random normalized vector
|
||||
{
|
||||
std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0);
|
||||
std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
|
||||
std::uniform_real_distribution<float> distribution(0.0, 1.0);
|
||||
float sum_sqr = 0.0; // for normalizing random_vec
|
||||
for (size_t i = 0; i < random_vec.size(); ++i) {
|
||||
float f = distribution(generator);
|
||||
sum_sqr += f * f;
|
||||
random_vec[i] = f;
|
||||
}
|
||||
// normalize it
|
||||
float random_vec_norm = std::sqrt(sum_sqr);
|
||||
for (size_t i = 0; i < random_vec.size(); ++i) {
|
||||
random_vec[i] /= random_vec_norm;
|
||||
}
|
||||
ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector));
|
||||
}
|
||||
}
|
||||
|
||||
~pca_model() {
|
||||
ggml_free(ctx);
|
||||
ggml_backend_buffer_free(buffer);
|
||||
ggml_backend_free(backend);
|
||||
}
|
||||
};
|
||||
|
||||
static struct ggml_cgraph * build_graph_piter(
|
||||
const struct pca_params & params,
|
||||
const pca_model & model,
|
||||
bool calc_square = false) {
|
||||
GGML_ASSERT(params.n_batch > 0);
|
||||
// TODO: buf_size must be able to scale with params.n_batch
|
||||
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
|
||||
static std::vector<uint8_t> buf(buf_size);
|
||||
|
||||
struct ggml_init_params params0 = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf.data(),
|
||||
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
|
||||
};
|
||||
// create a temporally context to build the graph
|
||||
struct ggml_context * ctx0 = ggml_init(params0);
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
// turn v_diff_original into square matrix if needed
|
||||
struct ggml_tensor * tmp_square;
|
||||
if (calc_square) {
|
||||
tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input);
|
||||
ggml_set_name(tmp_square, "tmp_square");
|
||||
}
|
||||
|
||||
struct ggml_tensor * b_tensor;
|
||||
struct ggml_tensor * distance;
|
||||
struct ggml_tensor * old_eigen = model.dev_eigenvector;
|
||||
struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square;
|
||||
|
||||
for (int i = 0; i < params.n_batch; ++i) {
|
||||
// b_tensor = square * eigenvector^T
|
||||
b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen);
|
||||
ggml_set_name(b_tensor, "b_tensor");
|
||||
|
||||
// normalize
|
||||
b_tensor = ggml_div_inplace(ctx0,
|
||||
b_tensor,
|
||||
ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor)))
|
||||
);
|
||||
ggml_format_name(b_tensor, "b_tensor_norm_%d", i);
|
||||
|
||||
// calculate distance(new eigenvector - old eigenvector)
|
||||
// we don't use ggml_sub because it may not be implemented on GPU backend
|
||||
struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1));
|
||||
distance = ggml_sqrt_inplace(ctx0,
|
||||
ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old)));
|
||||
ggml_format_name(distance, "distance_%d", i);
|
||||
|
||||
old_eigen = b_tensor;
|
||||
|
||||
// build operations nodes
|
||||
ggml_build_forward_expand(gf, distance);
|
||||
}
|
||||
|
||||
// delete the temporally context used to build the graph
|
||||
ggml_free(ctx0);
|
||||
return gf;
|
||||
}
|
||||
|
||||
static ggml_status compute_piter(
|
||||
const struct pca_params & params,
|
||||
const pca_model & model,
|
||||
struct ggml_cgraph * gf,
|
||||
ggml_gallocr_t allocr,
|
||||
struct pca_result & result) {
|
||||
// allocate tensors
|
||||
ggml_gallocr_alloc_graph(allocr, gf);
|
||||
|
||||
if (ggml_backend_is_cpu(model.backend)) {
|
||||
ggml_backend_cpu_set_n_threads(model.backend, params.n_threads);
|
||||
}
|
||||
|
||||
// TODO: enable GPU support when support for GGML_OP_SQRT is added
|
||||
//#ifdef GGML_USE_METAL
|
||||
// if (ggml_backend_is_metal(model.backend)) {
|
||||
// ggml_backend_metal_set_n_cb(model.backend, params.n_threads);
|
||||
// }
|
||||
//#endif
|
||||
|
||||
ggml_status res = ggml_backend_graph_compute(model.backend, gf);
|
||||
if (res == GGML_STATUS_SUCCESS) {
|
||||
auto extract_i = [](std::string prefix, std::string str) -> int {
|
||||
int i = -1;
|
||||
if (str.rfind(prefix, 0) == 0) {
|
||||
sscanf(str.c_str(), (prefix + "%d").c_str(), &i);
|
||||
}
|
||||
return i;
|
||||
};
|
||||
result.calculated_square = NULL;
|
||||
result.eigenvectors.clear();
|
||||
result.distances.clear();
|
||||
result.eigenvectors.resize(params.n_batch);
|
||||
result.distances.resize(params.n_batch);
|
||||
// get output nodes
|
||||
for (int i = 0; i < gf->n_nodes; ++i) {
|
||||
auto node = gf->nodes[i];
|
||||
int iter = -1;
|
||||
// find b_tensor (without copying data from device)
|
||||
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
|
||||
result.eigenvectors[iter] = node;
|
||||
}
|
||||
// find distances, then copy data from device
|
||||
if ((iter = extract_i("distance_", node->name)) > -1) {
|
||||
float d;
|
||||
ggml_backend_tensor_get(node, &d, 0, sizeof(float));
|
||||
result.distances[iter] = d;
|
||||
// std::cout << node->name << " = " << d << "\n";
|
||||
}
|
||||
// find tmp_square if it exists (without copying data from device)
|
||||
if (std::string(node->name) == "tmp_square") {
|
||||
result.calculated_square = node;
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
static void power_iteration(
|
||||
const struct pca_params & params,
|
||||
struct ggml_tensor * input, // shape of input: [n_samples, n_embd]
|
||||
struct ggml_tensor * output) {
|
||||
//printf("in power iteration\n");
|
||||
struct pca_model model(input);
|
||||
|
||||
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
||||
struct pca_result result;
|
||||
struct ggml_tensor * last_eigenvector = NULL;
|
||||
|
||||
int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations
|
||||
for (int iter = 0; iter < n_iters; ++iter) {
|
||||
bool calc_square = (iter == 0); // only need to calculate square for first iteration
|
||||
struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square);
|
||||
// ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot");
|
||||
compute_piter(params, model, gf, allocr, result);
|
||||
|
||||
for (size_t k = 0; k < result.distances.size(); ++k) {
|
||||
last_eigenvector = result.eigenvectors[k];
|
||||
if (result.distances[k] < params.tolerance) {
|
||||
break; // done
|
||||
}
|
||||
}
|
||||
|
||||
if (calc_square) {
|
||||
// copy and store the square matrix if needed
|
||||
GGML_ASSERT(result.calculated_square != NULL);
|
||||
ggml_backend_tensor_copy(result.calculated_square, model.dev_square);
|
||||
}
|
||||
|
||||
{
|
||||
// copy last eigen vector and store as input for next iteration
|
||||
GGML_ASSERT(last_eigenvector != NULL);
|
||||
ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector);
|
||||
}
|
||||
|
||||
printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n",
|
||||
__func__, params.i_layer+1, params.n_layers, iter, n_iters, params.n_batch);
|
||||
}
|
||||
|
||||
// get output tensor
|
||||
GGML_ASSERT(last_eigenvector);
|
||||
ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector));
|
||||
//print_debug_tensor(output);
|
||||
ggml_gallocr_free(allocr);
|
||||
}
|
||||
|
||||
static void run_pca(
|
||||
struct pca_params & params,
|
||||
const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
|
||||
const std::vector<struct ggml_tensor *> & v_output) {
|
||||
printf("%s: Running PCA...\n", __func__);
|
||||
for (size_t il = 0; il < v_input.size(); ++il) {
|
||||
|
||||
// prepare output vector
|
||||
struct ggml_tensor * ctrl_out = v_output[il];
|
||||
ggml_format_name(ctrl_out, "direction.%ld", il+1);
|
||||
|
||||
// run power_iteration
|
||||
params.i_layer = il;
|
||||
params.n_layers = v_input.size();
|
||||
power_iteration(params, v_input[il], ctrl_out);
|
||||
printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
|
||||
}
|
||||
}
|
||||
|
||||
}
|
1
examples/cvector-generator/positive.txt
Normal file
1
examples/cvector-generator/positive.txt
Normal file
@ -0,0 +1 @@
|
||||
[INST] Act like a person who is extremely happy. [/INST]
|
Loading…
Reference in New Issue
Block a user