diff --git a/.gitignore b/.gitignore index f5023e304..d231f3ff8 100644 --- a/.gitignore +++ b/.gitignore @@ -16,6 +16,7 @@ build-debug/ build-release/ build-static/ build-cublas/ +build-opencl/ build-no-accel/ build-sanitize-addr/ build-sanitize-thread/ diff --git a/llama.cpp b/llama.cpp index f52671b67..e564de7c8 100644 --- a/llama.cpp +++ b/llama.cpp @@ -50,49 +50,49 @@ static const size_t MB = 1024*1024; static const std::map & MEM_REQ_SCRATCH0() { - static std::map _MEM_REQ_SCRATCH0 = { + static std::map k_sizes = { { MODEL_7B, 512ull * MB }, { MODEL_13B, 512ull * MB }, { MODEL_30B, 512ull * MB }, { MODEL_65B, 1024ull * MB }, }; - return _MEM_REQ_SCRATCH0; + return k_sizes; } static const std::map & MEM_REQ_SCRATCH1() { - static std::map _MEM_REQ_SCRATCH1 = { + static std::map k_sizes = { { MODEL_7B, 512ull * MB }, { MODEL_13B, 512ull * MB }, { MODEL_30B, 512ull * MB }, { MODEL_65B, 1024ull * MB }, }; - return _MEM_REQ_SCRATCH1; + return k_sizes; } // 2*n_embd*n_ctx*n_layer*sizeof(float16) static const std::map & MEM_REQ_KV_SELF() { - static std::map _MEM_REQ_KV_SELF = { + static std::map k_sizes = { { MODEL_7B, 1026ull * MB }, { MODEL_13B, 1608ull * MB }, { MODEL_30B, 3124ull * MB }, { MODEL_65B, 5120ull * MB }, }; - return _MEM_REQ_KV_SELF; + return k_sizes; } // this is mostly needed for temporary mul_mat buffers to dequantize the data // not actually needed if BLAS is disabled static const std::map & MEM_REQ_EVAL() { - static std::map _MEM_REQ_EVAL = { + static std::map k_sizes = { { MODEL_7B, 768ull * MB }, { MODEL_13B, 1024ull * MB }, { MODEL_30B, 1280ull * MB }, { MODEL_65B, 1536ull * MB }, }; - return _MEM_REQ_EVAL; + return k_sizes; } // default hparams (LLaMA 7B) @@ -586,12 +586,12 @@ struct llama_model_loader { std::unique_ptr mapping; llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) { - auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map); + auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map); file_loaders.emplace_back(first_file); uint32_t n_parts = vocab_only ? 1 : guess_n_parts(); for (uint32_t i = 1; i < n_parts; i++) { std::string fname = fname_base + "." + std::to_string(i); - auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map); + auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map); file_loaders.emplace_back(ith_file); if (ith_file->hparams != first_file->hparams) { throw format("llama.cpp: hparams inconsistent between files"); @@ -638,7 +638,7 @@ struct llama_model_loader { } } - struct ggml_tensor * get_tensor(const std::string & name, std::vector ne) { + struct ggml_tensor * get_tensor(const std::string & name, const std::vector & ne) { auto it = tensors_map.name_to_idx.find(name); if (it == tensors_map.name_to_idx.end()) { throw format("llama.cpp: tensor '%s' is missing from model", name.c_str()); @@ -667,7 +667,7 @@ struct llama_model_loader { return tensor; } - void done_getting_tensors() { + void done_getting_tensors() const { if (num_ggml_tensors_created != tensors_map.tensors.size()) { throw std::string("llama.cpp: file contained more tensors than expected"); } @@ -934,7 +934,8 @@ static void llama_model_load_internal( auto & ctx = model.ctx; - size_t ctx_size, mmapped_size; + size_t ctx_size; + size_t mmapped_size; ml->calc_sizes(&ctx_size, &mmapped_size); fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0); @@ -1074,7 +1075,7 @@ static bool llama_eval_internal( const auto & model = lctx.model; const auto & hparams = model.hparams; - auto & kv_self = model.kv_self; + const auto & kv_self = model.kv_self; LLAMA_ASSERT(!!kv_self.ctx); @@ -1318,7 +1319,7 @@ static bool llama_eval_internal( } // extract embeddings - if (lctx.embedding.size()) { + if (!lctx.embedding.empty()) { auto & embedding_out = lctx.embedding; embedding_out.resize(n_embd); @@ -1369,6 +1370,8 @@ struct llama_sp_symbol { size_t n; }; +static_assert(std::is_trivially_copyable::value, "llama_sp_symbol is not trivially copyable"); + struct llama_sp_bigram { struct comparator { bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) { @@ -1401,7 +1404,7 @@ struct llama_tokenizer { sym.prev = index - 1; sym.next = offs == text.size() ? -1 : index + 1; index++; - symbols_.emplace_back(std::move(sym)); + symbols_.emplace_back(sym); } // seed the work queue with all possible 2-character tokens. @@ -1492,7 +1495,7 @@ static std::vector llama_tokenize(const llama_vocab & vocab, co llama_tokenizer tokenizer(vocab); std::vector output; - if (text.size() == 0) { + if (text.empty()) { return output; } @@ -1728,7 +1731,7 @@ void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_dat const int64_t t_start_sample_us = ggml_time_us(); for (size_t i = 0; i < candidates->size; ++i) { - auto token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id); + const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id); if (token_iter == last_tokens + last_tokens_size) { continue; } @@ -1872,7 +1875,7 @@ llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_da const int64_t t_start_sample_us = ggml_time_us(); // Find max element - auto max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit < b.logit; }); @@ -1925,7 +1928,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s nthread = std::thread::hardware_concurrency(); } - std::unique_ptr model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false, + std::unique_ptr model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false, /*vocab_only*/ false)); llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype); @@ -1979,7 +1982,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } else if (tensor.type == GGML_TYPE_F16) { f32_conv_buf.resize(nelements * sizeof(float)); f32_data = (float *) f32_conv_buf.addr; - auto f16_data = (const ggml_fp16_t *) tensor.data; + const auto * f16_data = (const ggml_fp16_t *) tensor.data; for (size_t i = 0; i < nelements; i++) { f32_data[i] = ggml_fp16_to_fp32(f16_data[i]); } @@ -2010,21 +2013,31 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s size_t first = counter; counter += chunk_size; if (first >= nelements) { if (!local_hist.empty()) { - for (int j=0; j %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); @@ -2222,7 +2235,8 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model); model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false)); - size_t ctx_size, mmapped_size; + size_t ctx_size; + size_t mmapped_size; model_loader->calc_sizes(&ctx_size, &mmapped_size); base_buf.resize(ctx_size); @@ -2261,8 +2275,12 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); } - std::string name(length, 0); - fin.read(&name[0], length); + std::string name; + { + char buf[1024]; + fin.read(buf, length); + name = std::string(buf, length); + } // check for lora suffix and get the type of tensor const std::string lora_suffix = ".lora"; @@ -2277,7 +2295,7 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * base_name.erase(pos); // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str()); - if (model_tensors.find(base_name.data()) == model_tensors.end()) { + if (model_tensors.find(base_name) == model_tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); return 1; } @@ -2379,8 +2397,9 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * lora_tensors.clear(); n_tensors++; - if (n_tensors % 4 == 0) + if (n_tensors % 4 == 0) { fprintf(stderr, "."); + } } } @@ -2409,7 +2428,7 @@ int llama_get_kv_cache_token_count(const struct llama_context * ctx) { return ctx->model.kv_self.n; } -#define LLAMA_MAX_RNG_STATE 64*1024 +#define LLAMA_MAX_RNG_STATE (64*1024) void llama_set_rng_seed(struct llama_context * ctx, int seed) { if (seed < 0) { @@ -2668,7 +2687,7 @@ bool llama_load_session_file(struct llama_context * ctx, const char * path_sessi const uint32_t magic = file.read_u32(); const uint32_t version = file.read_u32(); - if (!(magic == LLAMA_SESSION_MAGIC && version == LLAMA_SESSION_VERSION)) { + if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); return false; }