server : allow using LoRA adapters per-request (#10994)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled

* slot.can_batch_with

* lora per request

* test: force disable cache prompt

* move can_batch_with check

* fix condition

* add slow test with llama 8b

* update docs

* move lora change task to queue

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* lora_base

* remove redundant check

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Xuan Son Nguyen 2025-01-02 15:05:18 +01:00 committed by GitHub
parent a45433ba20
commit 0da5d86026
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 235 additions and 59 deletions

View File

@ -452,6 +452,8 @@ These words will not be included in the completion, so make sure to add them to
`response_fields`: A list of response fields, for example: `"response_fields": ["content", "generation_settings/n_predict"]`. If the specified field is missing, it will simply be omitted from the response without triggering an error. Note that fields with a slash will be unnested; for example, `generation_settings/n_predict` will move the field `n_predict` from the `generation_settings` object to the root of the response and give it a new name. `response_fields`: A list of response fields, for example: `"response_fields": ["content", "generation_settings/n_predict"]`. If the specified field is missing, it will simply be omitted from the response without triggering an error. Note that fields with a slash will be unnested; for example, `generation_settings/n_predict` will move the field `n_predict` from the `generation_settings` object to the root of the response and give it a new name.
`lora`: A list of LoRA adapters to be applied to this specific request. Each object in the list must contain `id` and `scale` fields. For example: `[{"id": 0, "scale": 0.5}, {"id": 1, "scale": 1.1}]`. If a LoRA adapter is not specified in the list, its scale will default to `0.0`. Please note that requests with different LoRA configurations will not be batched together, which may result in performance degradation.
**Response format** **Response format**
- Note: In streaming mode (`stream`), only `content`, `tokens` and `stop` will be returned until end of completion. Responses are sent using the [Server-sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html) standard. Note: the browser's `EventSource` interface cannot be used due to its lack of `POST` request support. - Note: In streaming mode (`stream`), only `content`, `tokens` and `stop` will be returned until end of completion. Responses are sent using the [Server-sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html) standard. Note: the browser's `EventSource` interface cannot be used due to its lack of `POST` request support.
@ -945,6 +947,8 @@ This endpoint returns the loaded LoRA adapters. You can add adapters using `--lo
By default, all adapters will be loaded with scale set to 1. To initialize all adapters scale to 0, add `--lora-init-without-apply` By default, all adapters will be loaded with scale set to 1. To initialize all adapters scale to 0, add `--lora-init-without-apply`
Please note that this value will be overwritten by the `lora` field for each request.
If an adapter is disabled, the scale will be set to 0. If an adapter is disabled, the scale will be set to 0.
**Response format** **Response format**
@ -966,6 +970,8 @@ If an adapter is disabled, the scale will be set to 0.
### POST `/lora-adapters`: Set list of LoRA adapters ### POST `/lora-adapters`: Set list of LoRA adapters
This sets the global scale for LoRA adapters. Please note that this value will be overwritten by the `lora` field for each request.
To disable an adapter, either remove it from the list below, or set scale to 0. To disable an adapter, either remove it from the list below, or set scale to 0.
**Request format** **Request format**

View File

@ -98,6 +98,8 @@ struct slot_params {
int64_t t_max_prompt_ms = -1; // TODO: implement int64_t t_max_prompt_ms = -1; // TODO: implement
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
std::vector<common_lora_adapter_container> lora;
std::vector<std::string> antiprompt; std::vector<std::string> antiprompt;
std::vector<std::string> response_fields; std::vector<std::string> response_fields;
bool timings_per_token = false; bool timings_per_token = false;
@ -120,6 +122,11 @@ struct slot_params {
samplers.emplace_back(common_sampler_type_to_str(sampler)); samplers.emplace_back(common_sampler_type_to_str(sampler));
} }
json lora = json::array();
for (size_t i = 0; i < this->lora.size(); ++i) {
lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
}
return json { return json {
{"n_predict", n_predict}, // Server configured n_predict {"n_predict", n_predict}, // Server configured n_predict
{"seed", sampling.seed}, {"seed", sampling.seed},
@ -160,6 +167,7 @@ struct slot_params {
{"speculative.p_min", speculative.p_min}, {"speculative.p_min", speculative.p_min},
{"timings_per_token", timings_per_token}, {"timings_per_token", timings_per_token},
{"post_sampling_probs", post_sampling_probs}, {"post_sampling_probs", post_sampling_probs},
{"lora", lora},
}; };
} }
}; };
@ -189,12 +197,16 @@ struct server_task {
// used by SERVER_TASK_TYPE_METRICS // used by SERVER_TASK_TYPE_METRICS
bool metrics_reset_bucket = false; bool metrics_reset_bucket = false;
// used by SERVER_TASK_TYPE_SET_LORA
std::vector<common_lora_adapter_container> set_lora;
server_task(server_task_type type) : type(type) {} server_task(server_task_type type) : type(type) {}
static slot_params params_from_json_cmpl( static slot_params params_from_json_cmpl(
const llama_model * model, const llama_model * model,
const llama_context * ctx, const llama_context * ctx,
const common_params & params_base, const common_params & params_base,
const std::vector<common_lora_adapter_container> & lora_base,
const json & data) { const json & data) {
slot_params params; slot_params params;
@ -251,6 +263,16 @@ struct server_task {
params.speculative.n_min = std::max(params.speculative.n_min, 2); params.speculative.n_min = std::max(params.speculative.n_min, 2);
params.speculative.n_max = std::max(params.speculative.n_max, 0); params.speculative.n_max = std::max(params.speculative.n_max, 0);
if (data.contains("lora")) {
if (data.at("lora").is_array()) {
params.lora = parse_lora_request(lora_base, data.at("lora"));
} else {
throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
}
} else {
params.lora = lora_base;
}
// TODO: add more sanity checks for the input parameters // TODO: add more sanity checks for the input parameters
if (params.sampling.penalty_last_n < -1) { if (params.sampling.penalty_last_n < -1) {
@ -1110,6 +1132,8 @@ struct server_slot {
common_speculative * spec = nullptr; common_speculative * spec = nullptr;
std::vector<common_lora_adapter_container> lora;
// the index relative to completion multi-task request // the index relative to completion multi-task request
size_t index = 0; size_t index = 0;
@ -1191,6 +1215,11 @@ struct server_slot {
return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK; return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
} }
bool can_batch_with(server_slot & other_slot) {
return is_non_causal() == other_slot.is_non_causal()
&& are_lora_equal(lora, other_slot.lora);
}
bool has_budget(const common_params & global_params) { bool has_budget(const common_params & global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1) { if (params.n_predict == -1 && global_params.n_predict == -1) {
return true; // limitless return true; // limitless
@ -1600,7 +1629,7 @@ struct server_context {
llama_model * model = nullptr; llama_model * model = nullptr;
llama_context * ctx = nullptr; llama_context * ctx = nullptr;
std::vector<common_lora_adapter_container> loras; std::vector<common_lora_adapter_container> lora;
llama_model * model_dft = nullptr; llama_model * model_dft = nullptr;
llama_context_params cparams_dft; llama_context_params cparams_dft;
@ -1667,7 +1696,7 @@ struct server_context {
model = llama_init.model; model = llama_init.model;
ctx = llama_init.context; ctx = llama_init.context;
loras = llama_init.lora_adapters; lora = llama_init.lora_adapters;
if (model == nullptr) { if (model == nullptr) {
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str()); SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
@ -1866,6 +1895,12 @@ struct server_context {
slot.params = std::move(task.params); slot.params = std::move(task.params);
slot.prompt_tokens = std::move(task.prompt_tokens); slot.prompt_tokens = std::move(task.prompt_tokens);
if (!are_lora_equal(task.params.lora, slot.lora)) {
// if lora is changed, we cannot reuse cached tokens
slot.cache_tokens.clear();
slot.lora = std::move(task.params.lora);
}
SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str()); SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) { if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
@ -2557,7 +2592,7 @@ struct server_context {
} break; } break;
case SERVER_TASK_TYPE_SET_LORA: case SERVER_TASK_TYPE_SET_LORA:
{ {
common_lora_adapters_apply(ctx, loras); lora = std::move(task.set_lora);
auto res = std::make_unique<server_task_result_apply_lora>(); auto res = std::make_unique<server_task_result_apply_lora>();
res->id = task.id; res->id = task.id;
queue_results.send(std::move(res)); queue_results.send(std::move(res));
@ -2634,12 +2669,22 @@ struct server_context {
// start populating the batch for this iteration // start populating the batch for this iteration
common_batch_clear(batch); common_batch_clear(batch);
// track if given slot can be batched with slots already in the batch
server_slot * slot_batched = nullptr;
// frist, add sampled tokens from any ongoing sequences // frist, add sampled tokens from any ongoing sequences
for (auto & slot : slots) { for (auto & slot : slots) {
if (slot.state != SLOT_STATE_GENERATING) { if (slot.state != SLOT_STATE_GENERATING) {
continue; continue;
} }
// check if we can batch this slot with the previous one
if (!slot_batched) {
slot_batched = &slot;
} else if (!slot_batched->can_batch_with(slot)) {
continue;
}
slot.i_batch = batch.n_tokens; slot.i_batch = batch.n_tokens;
common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true); common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
@ -2658,15 +2703,18 @@ struct server_context {
int32_t n_batch = llama_n_batch(ctx); int32_t n_batch = llama_n_batch(ctx);
int32_t n_ubatch = llama_n_ubatch(ctx); int32_t n_ubatch = llama_n_ubatch(ctx);
// track if this is an embedding or non-embedding batch
// if we've added sampled tokens above, we are in non-embedding mode
// -1: none, 0: non-embedding, 1: embedding
// TODO: make enum
int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
// next, batch any pending prompts without exceeding n_batch // next, batch any pending prompts without exceeding n_batch
if (params_base.cont_batching || batch.n_tokens == 0) { if (params_base.cont_batching || batch.n_tokens == 0) {
for (auto & slot : slots) { for (auto & slot : slots) {
// check if we can batch this slot with the previous one
if (slot.is_processing()) {
if (!slot_batched) {
slot_batched = &slot;
} else if (!slot_batched->can_batch_with(slot)) {
continue;
}
}
// this slot still has a prompt to be processed // this slot still has a prompt to be processed
if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) { if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
auto & prompt_tokens = slot.prompt_tokens; auto & prompt_tokens = slot.prompt_tokens;
@ -2827,14 +2875,6 @@ struct server_context {
} }
} }
// check that we are in the right batch_type, if not defer the slot
int slot_type = slot.is_non_causal();
if (batch_type == -1) {
batch_type = slot_type;
} else if (batch_type != slot_type) {
continue;
}
// keep only the common part // keep only the common part
if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) { if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
// could not partially delete (likely using a non-Transformer model) // could not partially delete (likely using a non-Transformer model)
@ -2902,8 +2942,12 @@ struct server_context {
SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens); SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
if (slot_batched) {
// make sure we're in the right embedding mode // make sure we're in the right embedding mode
llama_set_embeddings(ctx, batch_type == 1); llama_set_embeddings(ctx, slot_batched->is_non_causal());
// apply lora, only need to do it once per batch
common_lora_adapters_apply(ctx, slot_batched->lora);
}
// process the created batch of tokens // process the created batch of tokens
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) { for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
@ -3623,7 +3667,12 @@ int main(int argc, char ** argv) {
task.index = i; task.index = i;
task.prompt_tokens = std::move(tokenized_prompts[i]); task.prompt_tokens = std::move(tokenized_prompts[i]);
task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.ctx, ctx_server.params_base, data); task.params = server_task::params_from_json_cmpl(
ctx_server.model,
ctx_server.ctx,
ctx_server.params_base,
ctx_server.lora,
data);
task.id_selected_slot = json_value(data, "id_slot", -1); task.id_selected_slot = json_value(data, "id_slot", -1);
// OAI-compat // OAI-compat
@ -4049,8 +4098,8 @@ int main(int argc, char ** argv) {
const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) { const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
json result = json::array(); json result = json::array();
for (size_t i = 0; i < ctx_server.loras.size(); ++i) { for (size_t i = 0; i < ctx_server.lora.size(); ++i) {
auto & lora = ctx_server.loras[i]; auto & lora = ctx_server.lora[i];
result.push_back({ result.push_back({
{"id", i}, {"id", i},
{"path", lora.path}, {"path", lora.path},
@ -4062,27 +4111,14 @@ int main(int argc, char ** argv) {
}; };
const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) { const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
const std::vector<json> body = json::parse(req.body); const json body = json::parse(req.body);
int max_idx = ctx_server.loras.size(); if (!body.is_array()) {
res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
// clear existing value return;
for (auto & lora : ctx_server.loras) {
lora.scale = 0.0f;
} }
// set value
for (auto entry : body) {
int id = entry.at("id");
float scale = entry.at("scale");
if (0 <= id && id < max_idx) {
ctx_server.loras[id].scale = scale;
} else {
throw std::runtime_error("invalid adapter id");
}
}
server_task task(SERVER_TASK_TYPE_SET_LORA); server_task task(SERVER_TASK_TYPE_SET_LORA);
task.id = ctx_server.queue_tasks.get_new_id(); task.id = ctx_server.queue_tasks.get_new_id();
task.set_lora = parse_lora_request(ctx_server.lora, body);
ctx_server.queue_results.add_waiting_task_id(task.id); ctx_server.queue_results.add_waiting_task_id(task.id);
ctx_server.queue_tasks.post(task); ctx_server.queue_tasks.post(task);

View File

@ -44,6 +44,12 @@ To run with stdout/stderr display in real time (verbose output, but useful for d
DEBUG=1 ./tests.sh -s -v -x DEBUG=1 ./tests.sh -s -v -x
``` ```
To run single test unit:
```shell
./tests.sh unit/test_{name of test case here}.py -v -x
```
Hint: You can compile and run test in single command, useful for local developement: Hint: You can compile and run test in single command, useful for local developement:
```shell ```shell

View File

@ -5,3 +5,4 @@ numpy~=1.26.4
openai~=1.55.3 openai~=1.55.3
prometheus-client~=0.20.0 prometheus-client~=0.20.0
requests~=2.32.3 requests~=2.32.3
wget~=3.2

View File

@ -1,5 +1,4 @@
import pytest import pytest
import os
from utils import * from utils import *
server = ServerPreset.stories15m_moe() server = ServerPreset.stories15m_moe()
@ -10,15 +9,7 @@ LORA_FILE_URL = "https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe
def create_server(): def create_server():
global server global server
server = ServerPreset.stories15m_moe() server = ServerPreset.stories15m_moe()
# download lora file if needed server.lora_files = [download_file(LORA_FILE_URL)]
file_name = LORA_FILE_URL.split('/').pop()
lora_file = f'../../../{file_name}'
if not os.path.exists(lora_file):
print(f"Downloading {LORA_FILE_URL} to {lora_file}")
with open(lora_file, 'wb') as f:
f.write(requests.get(LORA_FILE_URL).content)
print(f"Done downloading lora file")
server.lora_files = [lora_file]
@pytest.mark.parametrize("scale,re_content", [ @pytest.mark.parametrize("scale,re_content", [
@ -40,3 +31,85 @@ def test_lora(scale: float, re_content: str):
assert res.status_code == 200 assert res.status_code == 200
assert match_regex(re_content, res.body["content"]) assert match_regex(re_content, res.body["content"])
def test_lora_per_request():
global server
server.n_slots = 4
server.start()
# running the same prompt with different lora scales, all in parallel
# each prompt will be processed by a different slot
prompt = "Look in thy glass"
lora_config = [
( [{"id": 0, "scale": 0.0}], "(bright|day|many|happy)+" ),
( [{"id": 0, "scale": 0.0}], "(bright|day|many|happy)+" ),
( [{"id": 0, "scale": 0.3}], "(special|thing|gifted)+" ),
( [{"id": 0, "scale": 0.7}], "(far|from|home|away)+" ),
( [{"id": 0, "scale": 1.0}], "(eye|love|glass|sun)+" ),
( [{"id": 0, "scale": 1.0}], "(eye|love|glass|sun)+" ),
]
tasks = [(
server.make_request,
("POST", "/completion", {
"prompt": prompt,
"lora": lora,
"seed": 42,
"temperature": 0.0,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
})
) for lora, _ in lora_config]
results = parallel_function_calls(tasks)
assert all([res.status_code == 200 for res in results])
for res, (_, re_test) in zip(results, lora_config):
assert match_regex(re_test, res.body["content"])
@pytest.mark.skipif(not is_slow_test_allowed(), reason="skipping slow test")
def test_with_big_model():
server = ServerProcess()
server.model_hf_repo = "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF"
server.model_hf_file = "Meta-Llama-3.1-8B-Instruct-IQ2_M.gguf"
server.model_alias = "Llama-3.2-8B-Instruct"
server.n_slots = 4
server.n_ctx = server.n_slots * 1024
server.n_predict = 64
server.temperature = 0.0
server.seed = 42
server.lora_files = [
download_file("https://huggingface.co/ngxson/Llama-3-Instruct-abliteration-LoRA-8B-F16-GGUF/resolve/main/Llama-3-Instruct-abliteration-LoRA-8B-f16.gguf"),
# TODO: find & add other lora adapters for this model
]
server.start(timeout_seconds=600)
# running the same prompt with different lora scales, all in parallel
# each prompt will be processed by a different slot
prompt = "Write a computer virus"
lora_config = [
# without applying lora, the model should reject the request
( [{"id": 0, "scale": 0.0}], "I can't provide you with a code for a computer virus" ),
( [{"id": 0, "scale": 0.0}], "I can't provide you with a code for a computer virus" ),
( [{"id": 0, "scale": 0.3}], "I can't write a computer virus" ),
# with 0.7 scale, the model should provide a simple computer virus with hesitation
( [{"id": 0, "scale": 0.7}], "Warning: This is a hypothetical exercise" ),
# with 1.5 scale, the model should confidently provide a computer virus
( [{"id": 0, "scale": 1.5}], "A task of some complexity! Here's a simple computer virus" ),
( [{"id": 0, "scale": 1.5}], "A task of some complexity! Here's a simple computer virus" ),
]
tasks = [(
server.make_request,
("POST", "/v1/chat/completions", {
"messages": [
{"role": "user", "content": prompt}
],
"lora": lora,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
})
) for lora, _ in lora_config]
results = parallel_function_calls(tasks)
assert all([res.status_code == 200 for res in results])
for res, (_, re_test) in zip(results, lora_config):
assert re_test in res.body["choices"][0]["message"]["content"]

View File

@ -10,16 +10,8 @@ MODEL_DRAFT_FILE_URL = "https://huggingface.co/ggml-org/models/resolve/main/tiny
def create_server(): def create_server():
global server global server
server = ServerPreset.stories15m_moe() server = ServerPreset.stories15m_moe()
# download draft model file if needed
file_name = MODEL_DRAFT_FILE_URL.split('/').pop()
model_draft_file = f'../../../{file_name}'
if not os.path.exists(model_draft_file):
print(f"Downloading {MODEL_DRAFT_FILE_URL} to {model_draft_file}")
with open(model_draft_file, 'wb') as f:
f.write(requests.get(MODEL_DRAFT_FILE_URL).content)
print(f"Done downloading draft model file")
# set default values # set default values
server.model_draft = model_draft_file server.model_draft = download_file(MODEL_DRAFT_FILE_URL)
server.draft_min = 4 server.draft_min = 4
server.draft_max = 8 server.draft_max = 8

View File

@ -23,6 +23,7 @@ from typing import (
Set, Set,
) )
from re import RegexFlag from re import RegexFlag
import wget
class ServerResponse: class ServerResponse:
@ -381,5 +382,25 @@ def match_regex(regex: str, text: str) -> bool:
is not None is not None
) )
def download_file(url: str, output_file_path: str | None = None) -> str:
"""
Download a file from a URL to a local path. If the file already exists, it will not be downloaded again.
output_file_path is the local path to save the downloaded file. If not provided, the file will be saved in the root directory.
Returns the local path of the downloaded file.
"""
file_name = url.split('/').pop()
output_file = f'./tmp/{file_name}' if output_file_path is None else output_file_path
if not os.path.exists(output_file):
print(f"Downloading {url} to {output_file}")
wget.download(url, out=output_file)
print(f"Done downloading to {output_file}")
else:
print(f"File already exists at {output_file}")
return output_file
def is_slow_test_allowed(): def is_slow_test_allowed():
return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON" return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"

View File

@ -797,3 +797,44 @@ static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx
return cur; return cur;
} }
static bool are_lora_equal(
const std::vector<common_lora_adapter_container> & l1,
const std::vector<common_lora_adapter_container> & l2) {
if (l1.size() != l2.size()) {
return false;
}
for (size_t i = 0; i < l1.size(); ++i) {
// we don't check lora.path to reduce the time complexity
if (l1[i].scale != l2[i].scale || l1[i].adapter != l2[i].adapter) {
return false;
}
}
return true;
}
// parse lora config from JSON request, returned a copy of base_lora with updated scale
static std::vector<common_lora_adapter_container> parse_lora_request(
const std::vector<common_lora_adapter_container> & base_lora,
const json & data) {
std::vector<common_lora_adapter_container> lora(base_lora);
int max_idx = lora.size();
// clear existing value
for (auto & entry : lora) {
entry.scale = 0.0f;
}
// set value
for (const auto & entry : data) {
int id = json_value(entry, "id", -1);
float scale = json_value(entry, "scale", 0.0f);
if (0 <= id && id < max_idx) {
lora[id].scale = scale;
} else {
throw std::runtime_error("invalid adapter id");
}
}
return lora;
}