mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 03:14:35 +00:00
add metadata check
This commit is contained in:
parent
41ced241f2
commit
0e16188985
@ -371,6 +371,8 @@ enum llm_kv {
|
||||
LLM_KV_TOKENIZER_SUFFIX_ID,
|
||||
LLM_KV_TOKENIZER_MIDDLE_ID,
|
||||
LLM_KV_TOKENIZER_EOT_ID,
|
||||
|
||||
LLM_KV_TRAINING_TYPE,
|
||||
};
|
||||
|
||||
static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
@ -464,6 +466,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
|
||||
{ LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
|
||||
{ LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
|
||||
|
||||
{ LLM_KV_TRAINING_TYPE, "training.type" },
|
||||
};
|
||||
|
||||
struct LLM_KV {
|
||||
@ -18519,8 +18523,6 @@ static void llama_lora_adapter_init_internal(struct llama_model * model, const c
|
||||
static const int n_out_tensors = 5; // see llama_model
|
||||
LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
|
||||
|
||||
// TODO: check lora base model arch
|
||||
|
||||
ggml_context * ctx = nullptr;
|
||||
struct gguf_init_params meta_gguf_params = {
|
||||
/* .no_alloc = */ false,
|
||||
@ -18532,6 +18534,25 @@ static void llama_lora_adapter_init_internal(struct llama_model * model, const c
|
||||
throw std::exception();
|
||||
}
|
||||
|
||||
// check metadata
|
||||
{
|
||||
auto get_kv_str = [&](std::string key) -> std::string {
|
||||
std::vector<char> str_buf(32, 0); // we only get the arch, so no need big buffer here
|
||||
int id = gguf_find_key(ctx_gguf, key.c_str());
|
||||
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
|
||||
};
|
||||
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
auto lora_arch_name = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
|
||||
auto lora_arch = llm_arch_from_string(lora_arch_name);
|
||||
if (lora_arch != model->arch) {
|
||||
throw std::runtime_error("model arch and LoRA arch mismatch");
|
||||
}
|
||||
auto train_type = get_kv_str(llm_kv(LLM_KV_TRAINING_TYPE));
|
||||
if (train_type != "finetune_lora") {
|
||||
throw std::runtime_error("expect training.type to be finetune_lora, but got: " + train_type);
|
||||
}
|
||||
}
|
||||
|
||||
// calculate n_tensors_per_layer
|
||||
int n_tensors_per_layer = 0;
|
||||
{
|
||||
@ -18542,7 +18563,6 @@ static void llama_lora_adapter_init_internal(struct llama_model * model, const c
|
||||
if (il == 0) n_tensors_per_layer++;
|
||||
}
|
||||
}
|
||||
// printf("n_tensors_per_layer %d\n", n_tensors_per_layer);
|
||||
|
||||
// count layer buffer types
|
||||
std::map<ggml_backend_buffer_type_t, int> buft_tensor_count;
|
||||
|
Loading…
Reference in New Issue
Block a user