mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 04:00:16 +00:00
llama : check that all the tensor data is in the model file (#6885)
* llama : check that all the tensor data is in the model file * also check for unsigned overflow
This commit is contained in:
parent
51543729ff
commit
0ead1f1072
23
llama.cpp
23
llama.cpp
@ -2999,9 +2999,13 @@ struct llama_model_loader {
|
||||
|
||||
ggml_tensor * tensor;
|
||||
|
||||
llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
|
||||
llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
|
||||
const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
|
||||
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
|
||||
|
||||
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
|
||||
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
|
||||
}
|
||||
}
|
||||
};
|
||||
std::vector<llama_tensor_weight> weights;
|
||||
@ -3040,15 +3044,15 @@ struct llama_model_loader {
|
||||
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
|
||||
llm_kv = LLM_KV(llm_arch_from_string(arch_name));
|
||||
|
||||
files.emplace_back(new llama_file(fname.c_str(), "rb"));
|
||||
contexts.emplace_back(ctx);
|
||||
|
||||
// Save tensors data offset of the main file.
|
||||
// For subsidiary files, `meta` tensor data offset must not be used,
|
||||
// so we build a unified tensors index for weights.
|
||||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
|
||||
weights.emplace_back(0, cur->name, meta, cur);
|
||||
weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
|
||||
}
|
||||
files.emplace_back(new llama_file(fname.c_str(), "rb"));
|
||||
contexts.emplace_back(ctx);
|
||||
|
||||
uint16_t n_split = 0;
|
||||
get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
|
||||
|
||||
@ -3082,13 +3086,14 @@ struct llama_model_loader {
|
||||
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
|
||||
}
|
||||
|
||||
// Save tensors data offset info of the shard.
|
||||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
|
||||
weights.emplace_back(idx, cur->name, ctx_gguf, cur);
|
||||
}
|
||||
files.emplace_back(new llama_file(split_path, "rb"));
|
||||
contexts.emplace_back(ctx);
|
||||
|
||||
// Save tensors data offset info of the shard.
|
||||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
|
||||
weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user