mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-09 10:11:44 +00:00
profiler: initial support for profiling graph ops
This commit is contained in:
parent
a89f75e1b7
commit
10908a57f7
@ -1330,6 +1330,7 @@ add_library(ggml
|
||||
ggml-backend.cpp
|
||||
ggml-quants.c
|
||||
ggml-quants.h
|
||||
ggml-profile.cpp
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC}
|
||||
|
@ -172,6 +172,17 @@ static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct g
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
// op profile data (per op / per thread)
|
||||
enum ggml_profile_event {
|
||||
GGML_PROF_OP_START,
|
||||
GGML_PROF_OP_SYNC,
|
||||
GGML_PROF_OP_END
|
||||
};
|
||||
|
||||
struct ggml_profile_data {
|
||||
uint64_t nsec[GGML_PROF_OP_END + 1]; // event times in nsec
|
||||
};
|
||||
|
||||
// computation graph
|
||||
|
||||
enum ggml_cgraph_eval_order {
|
||||
@ -189,6 +200,8 @@ struct ggml_cgraph {
|
||||
struct ggml_tensor ** grads;
|
||||
struct ggml_tensor ** leafs;
|
||||
|
||||
struct ggml_profile_data ** prof;
|
||||
|
||||
struct ggml_hash_set visited_hash_set;
|
||||
|
||||
enum ggml_cgraph_eval_order order;
|
||||
@ -196,6 +209,12 @@ struct ggml_cgraph {
|
||||
|
||||
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
|
||||
|
||||
void ggml_profile_graph_init(struct ggml_cgraph *cg, int n_threads);
|
||||
void ggml_profile_graph_start(struct ggml_cgraph *cg, int n_threads);
|
||||
void ggml_profile_graph_finish(struct ggml_cgraph *cg, int n_threads);
|
||||
void ggml_profile_graph_free(struct ggml_cgraph *cg);
|
||||
void ggml_profile_op_event(const struct ggml_cgraph *cg, enum ggml_profile_event e, int node_n, int ith);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
140
ggml/src/ggml-profile.cpp
Normal file
140
ggml/src/ggml-profile.cpp
Normal file
@ -0,0 +1,140 @@
|
||||
#include "ggml-impl.h"
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <chrono>
|
||||
|
||||
extern "C" void ggml_profile_graph_init(struct ggml_cgraph *cg, int n_threads)
|
||||
{
|
||||
if (!getenv("GGML_GRAPH_PROFILE")) { return; }
|
||||
|
||||
// The number of threads may change between passes (pp vs tg).
|
||||
// Allocate for max_n_threads for simplicity for now.
|
||||
// TODO: use aligned allocator
|
||||
|
||||
size_t node_size = sizeof(struct ggml_profile_data) * GGML_MAX_N_THREADS;
|
||||
size_t pvec_size = sizeof(std::intptr_t) * cg->n_nodes;
|
||||
size_t data_size = node_size * cg->n_nodes;
|
||||
size_t t_size = pvec_size + data_size;
|
||||
|
||||
cg->prof = (struct ggml_profile_data **) malloc(t_size);
|
||||
if (!cg->prof) {
|
||||
fprintf(stderr, "ggml-profile: failed to allocate profiling data : n_threads %d n_nodes %d\n", n_threads, cg->n_nodes);
|
||||
return;
|
||||
}
|
||||
|
||||
memset(cg->prof, 0, t_size);
|
||||
|
||||
// init pre-thread pointers
|
||||
uint8_t * data = (uint8_t *) cg->prof + pvec_size;
|
||||
for (int i=0; i < cg->n_nodes; i++) {
|
||||
cg->prof[i] = (struct ggml_profile_data *) data; data += node_size;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void ggml_profile_graph_start(struct ggml_cgraph *cg, int n_threads)
|
||||
{
|
||||
if (!cg->prof) { ggml_profile_graph_init(cg, n_threads); }
|
||||
if (!cg->prof) { return; }
|
||||
}
|
||||
|
||||
static inline int ggml_profile_format_tensor_dims(char *str, struct ggml_tensor *t)
|
||||
{
|
||||
return sprintf(str, "%d:%d:%d:%d",
|
||||
(int) t->ne[0], (int) t->ne[1], (int) t->ne[3], (int) t->ne[3]);
|
||||
}
|
||||
|
||||
static inline void ggml_profile_format_op_dims(char *str, struct ggml_tensor *t)
|
||||
{
|
||||
char *p = str;
|
||||
|
||||
// append src0 and src1 (if any)
|
||||
if (t->src[0]) {
|
||||
p += ggml_profile_format_tensor_dims(p, t->src[0]);
|
||||
|
||||
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
|
||||
p += sprintf(p, " x ");
|
||||
p += ggml_profile_format_tensor_dims(p, t->src[i]);
|
||||
}
|
||||
|
||||
p += sprintf(p, " -> ");
|
||||
}
|
||||
|
||||
// format self dims separately for better visual alignment
|
||||
char self[64];
|
||||
ggml_profile_format_tensor_dims(self, t);
|
||||
|
||||
p += sprintf(p, "%12s", self);
|
||||
}
|
||||
|
||||
static inline void ggml_profile_format_op_types(char *str, struct ggml_tensor *t)
|
||||
{
|
||||
char *p = str;
|
||||
|
||||
// append src0 and src1 (if any)
|
||||
if (t->src[0]) {
|
||||
p += sprintf(p, "%s", ggml_type_name(t->src[0]->type));
|
||||
|
||||
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
|
||||
p += sprintf(p, " x ");
|
||||
p += sprintf(p, "%s", ggml_type_name(t->src[i]->type));
|
||||
}
|
||||
|
||||
p += sprintf(p, " -> ");
|
||||
}
|
||||
|
||||
p += sprintf(p, "%3s", ggml_type_name(t->type));
|
||||
}
|
||||
|
||||
|
||||
extern "C" void ggml_profile_graph_finish(struct ggml_cgraph *cg, int n_threads)
|
||||
{
|
||||
if (!cg->prof) { return; }
|
||||
|
||||
fprintf(stderr, "ggml-profile: | node idx | op name | proc (nsec) | sync (nsec) | total (nsec) | op dims | op types | tensor name |\n");
|
||||
fprintf(stderr, "ggml-profile: | -------: | :------ | ----------: | ----------: | -----------: | ------: | -------: | ----------: |\n");
|
||||
|
||||
char dims[64 * GGML_MAX_SRC];
|
||||
char types[16 * GGML_MAX_SRC];
|
||||
|
||||
for (int i = 0; i < cg->n_nodes; i++) {
|
||||
uint64_t p_nsec = 0;
|
||||
uint64_t s_nsec = 0;
|
||||
uint64_t t_nsec = 0;
|
||||
|
||||
// add up per thread counters and reset them
|
||||
for (int t=0; t < n_threads; t++) {
|
||||
p_nsec += cg->prof[i][t].nsec[GGML_PROF_OP_SYNC] - cg->prof[i][t].nsec[GGML_PROF_OP_START];
|
||||
s_nsec += cg->prof[i][t].nsec[GGML_PROF_OP_END] - cg->prof[i][t].nsec[GGML_PROF_OP_SYNC];
|
||||
t_nsec += cg->prof[i][t].nsec[GGML_PROF_OP_END] - cg->prof[i][t].nsec[GGML_PROF_OP_START];
|
||||
|
||||
cg->prof[i][t].nsec[GGML_PROF_OP_START] = 0;
|
||||
cg->prof[i][t].nsec[GGML_PROF_OP_SYNC] = 0;
|
||||
cg->prof[i][t].nsec[GGML_PROF_OP_END] = 0;
|
||||
}
|
||||
|
||||
ggml_profile_format_op_dims(dims, cg->nodes[i]);
|
||||
ggml_profile_format_op_types(types, cg->nodes[i]);
|
||||
|
||||
fprintf(stderr, "ggml-profile: | %04d | %10s | %10lu | %10lu | %10lu | %46s | %22s | %20s |\n",
|
||||
i, ggml_op_name(cg->nodes[i]->op),
|
||||
(unsigned long) p_nsec, (unsigned long) s_nsec, (unsigned long) t_nsec,
|
||||
dims, types, cg->nodes[i]->name);
|
||||
}
|
||||
fprintf(stderr, "ggml-profile: \n"); // empty line to split tables
|
||||
}
|
||||
|
||||
extern "C" void ggml_profile_graph_free(struct ggml_cgraph *cg)
|
||||
{
|
||||
if (!cg->prof) { return; }
|
||||
|
||||
free(cg->prof); cg->prof = nullptr;
|
||||
}
|
||||
|
||||
extern "C" void ggml_profile_op_event(const struct ggml_cgraph *cg, enum ggml_profile_event e, int node_n, int ith)
|
||||
{
|
||||
if (!cg->prof) { return; }
|
||||
|
||||
using clock = std::chrono::high_resolution_clock;
|
||||
cg->prof[node_n][ith].nsec[e] = std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
|
||||
}
|
@ -18988,6 +18988,7 @@ struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t siz
|
||||
/*.nodes =*/ nodes_ptr,
|
||||
/*.grads =*/ grads_ptr,
|
||||
/*.leafs =*/ leafs_ptr,
|
||||
/*.prof =*/ NULL,
|
||||
/*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
|
||||
/*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
|
||||
};
|
||||
@ -19009,6 +19010,7 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1)
|
||||
/*.nodes =*/ cgraph0->nodes + i0,
|
||||
/*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
|
||||
/*.leafs =*/ NULL,
|
||||
/*.prof =*/ NULL,
|
||||
/*.hash_table =*/ { 0, NULL, NULL },
|
||||
/*.order =*/ cgraph0->order,
|
||||
};
|
||||
@ -19873,6 +19875,8 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
|
||||
ggml_profile_op_event(cgraph, GGML_PROF_OP_START, node_n, state->ith);
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
if (state->ith == 0 && cplan->abort_callback &&
|
||||
@ -19881,7 +19885,11 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
tp->ec = GGML_STATUS_ABORTED;
|
||||
}
|
||||
|
||||
ggml_profile_op_event(cgraph, GGML_PROF_OP_SYNC, node_n, state->ith);
|
||||
|
||||
ggml_barrier(state->threadpool);
|
||||
|
||||
ggml_profile_op_event(cgraph, GGML_PROF_OP_END, node_n, state->ith);
|
||||
}
|
||||
|
||||
return 0;
|
||||
@ -20154,6 +20162,8 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
||||
threadpool->ec = GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
ggml_profile_graph_start(cgraph, n_threads);
|
||||
|
||||
#ifdef GGML_USE_OPENMP
|
||||
if (n_threads > 1) {
|
||||
#pragma omp parallel num_threads(n_threads)
|
||||
@ -20193,6 +20203,8 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
||||
ggml_threadpool_free(threadpool);
|
||||
}
|
||||
|
||||
ggml_profile_graph_finish(cgraph, n_threads);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user