mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 10:54:36 +00:00
llama : accept a list of devices to use to offload a model (#10497)
* llama : accept a list of devices to use to offload a model * accept `--dev none` to completely disable offloading * fix dev list with dl backends * rename env parameter to LLAMA_ARG_DEVICE for consistency
This commit is contained in:
parent
1f922254f0
commit
10bce0450f
@ -298,6 +298,27 @@ static void common_params_print_usage(common_params_context & ctx_arg) {
|
||||
print_options(specific_options);
|
||||
}
|
||||
|
||||
static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
auto dev_names = string_split<std::string>(value, ',');
|
||||
if (dev_names.empty()) {
|
||||
throw std::invalid_argument("no devices specified");
|
||||
}
|
||||
if (dev_names.size() == 1 && dev_names[0] == "none") {
|
||||
devices.push_back(nullptr);
|
||||
} else {
|
||||
for (const auto & device : dev_names) {
|
||||
auto * dev = ggml_backend_dev_by_name(device.c_str());
|
||||
if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) {
|
||||
throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
|
||||
}
|
||||
devices.push_back(dev);
|
||||
}
|
||||
devices.push_back(nullptr);
|
||||
}
|
||||
return devices;
|
||||
}
|
||||
|
||||
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
|
||||
auto ctx_arg = common_params_parser_init(params, ex, print_usage);
|
||||
const common_params params_org = ctx_arg.params; // the example can modify the default params
|
||||
@ -324,6 +345,9 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
|
||||
}
|
||||
|
||||
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
|
||||
// load dynamic backends
|
||||
ggml_backend_load_all();
|
||||
|
||||
common_params_context ctx_arg(params);
|
||||
ctx_arg.print_usage = print_usage;
|
||||
ctx_arg.ex = ex;
|
||||
@ -1312,6 +1336,30 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
else { throw std::invalid_argument("invalid value"); }
|
||||
}
|
||||
).set_env("LLAMA_ARG_NUMA"));
|
||||
add_opt(common_arg(
|
||||
{"-dev", "--device"}, "<dev1,dev2,..>",
|
||||
"comma-separated list of devices to use for offloading (none = don't offload)\n"
|
||||
"use --list-devices to see a list of available devices",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.devices = parse_device_list(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_DEVICE"));
|
||||
add_opt(common_arg(
|
||||
{"--list-devices"},
|
||||
"print list of available devices and exit",
|
||||
[](common_params &) {
|
||||
printf("Available devices:\n");
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
auto * dev = ggml_backend_dev_get(i);
|
||||
if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
|
||||
size_t free, total;
|
||||
ggml_backend_dev_memory(dev, &free, &total);
|
||||
printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
|
||||
}
|
||||
}
|
||||
exit(0);
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
||||
"number of layers to store in VRAM",
|
||||
@ -1336,10 +1384,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
} else if (arg_next == "layer") {
|
||||
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
||||
} else if (arg_next == "row") {
|
||||
#ifdef GGML_USE_SYCL
|
||||
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
|
||||
exit(1);
|
||||
#endif // GGML_USE_SYCL
|
||||
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
||||
} else {
|
||||
throw std::invalid_argument("invalid value");
|
||||
@ -2042,6 +2086,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.speculative.n_ctx = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-devd", "--device-draft"}, "<dev1,dev2,..>",
|
||||
"comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
|
||||
"use --list-devices to see a list of available devices",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.devices = parse_device_list(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
|
||||
"number of layers to store in VRAM for the draft model",
|
||||
|
@ -377,9 +377,6 @@ void common_init() {
|
||||
#endif
|
||||
|
||||
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
|
||||
|
||||
// load dynamic backends
|
||||
ggml_backend_load_all();
|
||||
}
|
||||
|
||||
std::string common_params_get_system_info(const common_params & params) {
|
||||
@ -982,9 +979,12 @@ void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_l
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_model_params common_model_params_to_llama(const common_params & params) {
|
||||
struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
auto mparams = llama_model_default_params();
|
||||
|
||||
if (!params.devices.empty()) {
|
||||
mparams.devices = params.devices.data();
|
||||
}
|
||||
if (params.n_gpu_layers != -1) {
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
|
@ -156,6 +156,7 @@ struct common_params_sampling {
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
int32_t n_ctx = 0; // draft context size
|
||||
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
|
||||
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
|
||||
@ -178,9 +179,6 @@ struct common_params {
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
@ -193,6 +191,13 @@ struct common_params {
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = 0.1f; // KV cache defragmentation threshold
|
||||
|
||||
// offload params
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
@ -201,7 +206,6 @@ struct common_params {
|
||||
|
||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||
|
||||
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||
@ -462,7 +466,7 @@ struct common_init_result {
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params);
|
||||
|
||||
struct llama_model_params common_model_params_to_llama (const common_params & params);
|
||||
struct llama_model_params common_model_params_to_llama ( common_params & params);
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
|
@ -692,6 +692,7 @@ struct server_context {
|
||||
|
||||
auto params_dft = params_base;
|
||||
|
||||
params_dft.devices = params_base.speculative.devices;
|
||||
params_dft.model = params_base.speculative.model;
|
||||
params_dft.n_ctx = params_base.speculative.n_ctx;
|
||||
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
|
||||
|
@ -46,6 +46,7 @@ int main(int argc, char ** argv) {
|
||||
ctx_tgt = llama_init_tgt.context;
|
||||
|
||||
// load the draft model
|
||||
params.devices = params.speculative.devices;
|
||||
params.model = params.speculative.model;
|
||||
params.n_ctx = params.speculative.n_ctx;
|
||||
params.n_batch = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch;
|
||||
|
@ -76,6 +76,7 @@ int main(int argc, char ** argv) {
|
||||
ctx_tgt = llama_init_tgt.context;
|
||||
|
||||
// load the draft model
|
||||
params.devices = params.speculative.devices;
|
||||
params.model = params.speculative.model;
|
||||
params.n_gpu_layers = params.speculative.n_gpu_layers;
|
||||
if (params.speculative.cpuparams.n_threads > 0) {
|
||||
|
@ -253,6 +253,15 @@ void ggml_backend_device_register(ggml_backend_dev_t device) {
|
||||
}
|
||||
|
||||
// Backend (reg) enumeration
|
||||
static bool striequals(const char * a, const char * b) {
|
||||
for (; *a && *b; a++, b++) {
|
||||
if (std::tolower(*a) != std::tolower(*b)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return *a == *b;
|
||||
}
|
||||
|
||||
size_t ggml_backend_reg_count() {
|
||||
return get_reg().backends.size();
|
||||
}
|
||||
@ -265,7 +274,7 @@ ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
|
||||
ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
|
||||
ggml_backend_reg_t reg = ggml_backend_reg_get(i);
|
||||
if (std::strcmp(ggml_backend_reg_name(reg), name) == 0) {
|
||||
if (striequals(ggml_backend_reg_name(reg), name)) {
|
||||
return reg;
|
||||
}
|
||||
}
|
||||
@ -285,7 +294,7 @@ ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
|
||||
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
if (strcmp(ggml_backend_dev_name(dev), name) == 0) {
|
||||
if (striequals(ggml_backend_dev_name(dev), name)) {
|
||||
return dev;
|
||||
}
|
||||
}
|
||||
|
@ -272,6 +272,9 @@ extern "C" {
|
||||
};
|
||||
|
||||
struct llama_model_params {
|
||||
// NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
|
||||
ggml_backend_dev_t * devices;
|
||||
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
|
||||
|
||||
|
@ -19364,6 +19364,7 @@ void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
|
||||
//
|
||||
struct llama_model_params llama_model_default_params() {
|
||||
struct llama_model_params result = {
|
||||
/*.devices =*/ nullptr,
|
||||
/*.n_gpu_layers =*/ 0,
|
||||
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
|
||||
/*.main_gpu =*/ 0,
|
||||
@ -19576,19 +19577,24 @@ struct llama_model * llama_load_model_from_file(
|
||||
}
|
||||
|
||||
// create list of devices to use with this model
|
||||
// currently, we use all available devices
|
||||
// TODO: rework API to give user more control over device selection
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
switch (ggml_backend_dev_type(dev)) {
|
||||
case GGML_BACKEND_DEVICE_TYPE_CPU:
|
||||
case GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
||||
// skip CPU backends since they are handled separately
|
||||
break;
|
||||
if (params.devices) {
|
||||
for (ggml_backend_dev_t * dev = params.devices; *dev; ++dev) {
|
||||
model->devices.push_back(*dev);
|
||||
}
|
||||
} else {
|
||||
// use all available devices
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
switch (ggml_backend_dev_type(dev)) {
|
||||
case GGML_BACKEND_DEVICE_TYPE_CPU:
|
||||
case GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
||||
// skip CPU backends since they are handled separately
|
||||
break;
|
||||
|
||||
case GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
model->devices.push_back(dev);
|
||||
break;
|
||||
case GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
model->devices.push_back(dev);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user