save-load-state : fix example + add ci test (#3655)

* save-load-state : fix example (close #3606)

* ci : add test for save-load-state example

ggml-ci
This commit is contained in:
Georgi Gerganov 2023-10-17 19:12:46 +03:00 committed by GitHub
parent 5fe268a4d9
commit 1142013da4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 52 additions and 51 deletions

View File

@ -208,6 +208,8 @@ function gg_run_open_llama_3b_v2 {
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
@ -296,6 +298,7 @@ function gg_sum_open_llama_3b_v2 {
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
@ -382,6 +385,8 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
@ -470,6 +475,7 @@ function gg_sum_open_llama_7b_v2 {
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"

View File

@ -8,10 +8,7 @@
int main(int argc, char ** argv) {
gpt_params params;
llama_sampling_params & sparams = params.sampling_params;
params.seed = 42;
params.n_threads = 4;
sparams.repeat_last_n = 64;
params.prompt = "The quick brown fox";
if (!gpt_params_parse(argc, argv, params)) {
@ -25,56 +22,49 @@ int main(int argc, char ** argv) {
}
auto n_past = 0;
auto last_n_tokens_data = std::vector<llama_token>(sparams.repeat_last_n, 0);
std::string result0;
std::string result1;
// init
llama_model * model;
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params( params );
if (model == nullptr) {
return 1;
}
if (ctx == nullptr) {
llama_free_model(model);
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__);
return 1;
}
// tokenize prompt
auto tokens = llama_tokenize(ctx, params.prompt, true);
auto n_prompt_tokens = tokens.size();
if (n_prompt_tokens < 1) {
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
llama_free(ctx);
llama_free_model(model);
return 1;
}
// evaluate prompt
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0));
llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
n_past += tokens.size();
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
n_past += n_prompt_tokens;
const size_t state_size = llama_get_state_size(ctx);
uint8_t * state_mem = new uint8_t[state_size];
// Save state (rng, logits, embedding and kv_cache) to file
// save state (rng, logits, embedding and kv_cache) to file
{
FILE *fp_write = fopen("dump_state.bin", "wb");
llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
fwrite(state_mem, 1, state_size, fp_write);
fclose(fp_write);
std::vector<uint8_t> state_mem(llama_get_state_size(ctx));
{
FILE *fp_write = fopen("dump_state.bin", "wb");
llama_copy_state_data(ctx, state_mem.data()); // could also copy directly to memory mapped file
fwrite(state_mem.data(), 1, state_mem.size(), fp_write);
fclose(fp_write);
}
}
// save state (last tokens)
const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
const auto n_past_saved = n_past;
// first run
printf("\n%s", params.prompt.c_str());
printf("\nfirst run: %s", params.prompt.c_str());
for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
@ -83,9 +73,10 @@ int main(int argc, char ** argv) {
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx, &candidates_p);
auto next_token_str = llama_token_to_piece(ctx, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str.c_str());
result0 += next_token_str;
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx);
@ -103,32 +94,28 @@ int main(int argc, char ** argv) {
// make new context
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
// Load state (rng, logits, embedding and kv_cache) from file
{
FILE *fp_read = fopen("dump_state.bin", "rb");
if (state_size != llama_get_state_size(ctx2)) {
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
llama_free(ctx2);
llama_free_model(model);
return 1;
}
printf("\nsecond run: %s", params.prompt.c_str());
const size_t ret = fread(state_mem, 1, state_size, fp_read);
if (ret != state_size) {
// load state (rng, logits, embedding and kv_cache) from file
{
std::vector<uint8_t> state_mem(llama_get_state_size(ctx2));
FILE * fp_read = fopen("dump_state.bin", "rb");
const size_t ret = fread(state_mem.data(), 1, state_mem.size(), fp_read);
if (ret != state_mem.size()) {
fprintf(stderr, "\n%s : failed to read state\n", __func__);
llama_free(ctx2);
llama_free_model(model);
return 1;
}
llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
llama_set_state_data(ctx2, state_mem.data());
fclose(fp_read);
}
delete[] state_mem;
// restore state (last tokens)
last_n_tokens_data = last_n_tokens_data_saved;
n_past = n_past_saved;
// second run
@ -143,10 +130,11 @@ int main(int argc, char ** argv) {
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx2, &candidates_p);
auto next_token_str = llama_token_to_piece(ctx2, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str.c_str());
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
result1 += next_token_str;
if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx2);
llama_free_model(model);
@ -155,10 +143,17 @@ int main(int argc, char ** argv) {
n_past += 1;
}
printf("\n\n");
printf("\n");
llama_free(ctx2);
llama_free_model(model);
if (result0 != result1) {
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
return 1;
}
fprintf(stderr, "\n%s : success\n", __func__);
return 0;
}