mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 02:44:36 +00:00
ggml : sync ggml (add GPT-NeoX RoPE implementation)
This commit is contained in:
parent
9ff334f3c9
commit
12b5900dbc
58
ggml.c
58
ggml.c
@ -8653,9 +8653,11 @@ static void ggml_compute_forward_rope_f32(
|
||||
|
||||
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
|
||||
const int p = (mode == 0 ? n_past + i2 : i2);
|
||||
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
|
||||
const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
|
||||
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
||||
if (ir++ < ir0) continue;
|
||||
if (ir > ir1) break;
|
||||
@ -8668,14 +8670,25 @@ static void ggml_compute_forward_rope_f32(
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
if (!is_neox) {
|
||||
const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[1];
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[1];
|
||||
|
||||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[1] = x0*sin_theta + x1*cos_theta;
|
||||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[1] = x0*sin_theta + x1*cos_theta;
|
||||
} else {
|
||||
const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
|
||||
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims/2];
|
||||
|
||||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -8730,9 +8743,11 @@ static void ggml_compute_forward_rope_f16(
|
||||
|
||||
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
|
||||
const int p = (mode == 0 ? n_past + i2 : i2);
|
||||
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
|
||||
const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
|
||||
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
||||
if (ir++ < ir0) continue;
|
||||
if (ir > ir1) break;
|
||||
@ -8745,14 +8760,25 @@ static void ggml_compute_forward_rope_f16(
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
if (!is_neox) {
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[1]);
|
||||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[1]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
} else {
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
|
||||
|
||||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
3
ggml.h
3
ggml.h
@ -630,7 +630,8 @@ struct ggml_tensor * ggml_soft_max(
|
||||
|
||||
// rotary position embedding
|
||||
// in-place, returns view(a)
|
||||
// if mode == 1, skip n_past elements
|
||||
// if mode & 1 == 1, skip n_past elements
|
||||
// if mode & 2 == 1, GPT-NeoX style
|
||||
// TODO: avoid creating a new tensor every time
|
||||
struct ggml_tensor * ggml_rope(
|
||||
struct ggml_context * ctx,
|
||||
|
@ -1618,6 +1618,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
// quantize only 2D tensors
|
||||
quantize &= (tensor.ne.size() == 2);
|
||||
|
||||
// GG: uncomment this to keep the output layer in FP16
|
||||
//if (tensor.name.rfind("output")) {
|
||||
// quantize = false;
|
||||
//}
|
||||
|
||||
enum ggml_type new_type;
|
||||
void * new_data;
|
||||
size_t new_size;
|
||||
|
Loading…
Reference in New Issue
Block a user